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Abstract
This paper addresses the problem of quantifying the differences between entity extraction systems, where in general only a small
proportion a document should be selected. Comparing overall accuracy is not very useful in these cases, as small differences in accuracy
may correspond to huge differences in selections over the target minority class. Conventionally, one may use per-token complementarity
to describe these differences, but it is not very useful when the set is heavily skewed. In such situations, which are common in
information retrieval and entity recognition, metrics like precision and recall are typically used to describe performance. However,
precision and recall fail to describe the differences between sets of objects selected by different decision strategies, instead just describing
the proportional amount of correct and incorrect objects selected. This paper presents a method for measuring complementarity for
precision, recall and F-score, quantifying the difference between entity extraction approaches.
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1. Introduction
Many NLP systems are evaluated using F-score, which de-
scribes system performance using a scale from zero to one.
However, F-score lacks detail. When two approaches to an
NLP problem achieve similar F-scores, they are not nec-
essarily successful at the same kind of thing. This paper
attempts to address this lack of detail, describing some of
its impacts and putting forward an evaluation measure to be
used alongside F-score that alleviates some of these prob-
lems.
F-score itself is derived from two summary measures: pre-
cision and recall. Precision describes the proportion of en-
tities – e.g. mentions of people, events, or any given target
phenomenon – which a system returns that are correct. Re-
call describes the proportion of all entities that potentially
should be found, that a given system actually returns. Like
F-score, these two are also summary measures, and so suf-
fer from a similar lack of detail. When one NLP system
achieves higher recall or precision than another, it does not
imply that the better-scoring system accurately reproduces
the results of the other and then exceeds them; rather, just
the overall selection of entities is more precise, or more
comprehensive, in some way. And indeed, high precision
or recall can be achieved superficially through extreme –
and often useless – conditions, like “return everything”.
None of these measures can tell us much about the strate-
gies that systems adopt. Importantly, they also cannot tell
us about the differences in mistakes that systems make.
Identifying strongly-different systems tells us which com-
parisons are interesting to make, and which data we should
look at in order to learn the most about a system, task or
dataset. Seeing the impact that different strategies have can
be interesting from a qualitative point of view: one system
may do a lot better on data that is rich in a particular kind of
linguistic phenomenon, for example. Also, it is interesting
to see the impact that different kinds of prior knowledge
and models have, through for example changes in feature
representation – two systems may reach the same F-score,
but on very different examples, depending on what infor-
mation they use.

If systems make the same mistakes, there is little unique-
ness that sets the systems apart, and little to be gained by
combining them. Conversely, if they make reasonably dif-
ferent mistakes, one may be able to profit from e.g. com-
bining them and reducing the number of cases where they
are both wrong, and conducting analyses. This difference,
hidden by F-score, can be measured in terms of comple-
mentarity.

2. Complementarity
Complementarity (Brill and Wu, 1998) is a measure of the
difference in decisions made by two systems that assign la-
bels. It represents the amount of times where one system
is wrong that the other is correct. This is referred to as the
complementary rate, and works as follows. Given systems
A and B, Comp(A,B) is the proportion of cases in which
A is wrong and B is correct.
From Brill’s paper:

Comp(A,B) = 1− (
common errors

errors only in A
) (1)

In this case, Comp(A,B) shows the proportion of errors in
A that could be corrected by using B’s responses. Another
way of looking at it is that Comp(A,B) shows the maxi-
mum improvement that a B can make over A; a value of 1
means that B can correct all of A’s errors.
Complementarity works well in situations where a label
must be assigned to every entry. For example, in part-
of-speech tagging there is no argument over which tokens
should be labelled: every token gets a label. This is a clas-
sical classification scenario, where for a set of instances I ,
each instance i ∈ I is assigned a class label from inventory
C. The could also be something like assigning a spatial
relation, or determining the language of a text.
When combining approaches, it is useful to know how dif-
ferent their performances are. The idea of combining clas-
sifiers into ensembles is not new to NLP or in general:
there is considerable research in supervised (Zhou et al.,
2005) semi-supervised (Dasgupta and Ng, 2009) and unsu-
pervised (Zimek et al., 2013) ensembles. Complementarity
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has uses in building ensembles: intuitively, such construc-
tions require diversity to function, and this intuition is borne
out in practice (Zhou et al., 2005; Uzuner et al., 2011). Re-
gardless of how voting is conducted, at least one contribut-
ing system should get the right answer, and complementar-
ity indicates when this happens.
Complementarity has three key behaviours. Namely:

• High disagreement is a strong indicator of error. This
is a byproduct of how approaches to many tasks that
use similar information will achieve similar perfor-
mance.

• Complementarity is additive. As more systems are
added and the performance goes of the hypothetically
best possible combination rises, the complementary
rate of the next system will go down monotonically
(see also Brill and Wu (1998), Section 2).

• As the amount of information common to all ap-
proaches increases (e.g. training data in a statistical
learning context), complementarity reduces (Banko
and Brill, 2001)

Now we have a measure for comparing two systems’ out-
puts. This form of complementarity works best in situations
where the class label distribution is not heavily skewed, and
where every instance is of equal interest.

3. Precision and Recall
Precision and recall are well-suited to evaluating problems
where the goal is to find a set of items from a larger set
of items. In NLP, this can correspond to finding certain
linguistic phenomena in a corpus. For example, one may
want to search for named entities in a single news article, or
identify predominantly French documents in a multilingual
corpus. This is in contrast to situations where one assigned
a label to every item in a set, such as part-of-speech tagging,
where all tokens receive a PoS tag. Phenomena could be
things like named entities (phrases referring to things like
places, organisations, people, products); times; events; job
titles; words connecting pairs of ideas; and so on.
A factor common to most entity recognition scenarios is
that the interesting entity counts for only a small propor-
tion of the words examined. This makes the evaluation sets
fairly skewed. Indeed, the imbalance of entities vs. non-
entities in named entity recognition rewards machine learn-
ing approaches that recognise and take advantage of class
skew (Li et al., 2009).
Entity recognition could be thought of as a binary classi-
fication task. For each token in a document, it is either
part of the required type of entity or not. As a result, the
majority of words are marked as negative, and the remain-
ing minority as positive – forming part of an entity chunk.
Using conventional classifier accuracy is not so helpful in
this instance; getting just a small percentage of class labels
wrong can have a large effect on entity recognition. In-
deed, labelling every token as out-of-entity would be use-
less, but give a high classifier accuracy. In these scenarios,
the very large class of negatives is not so interesting, and
getting a true negative is typically unremarkable; a simple
most-common-class approach, which assigns the most fre-
quent label in the dataset to every instance it encounters,

will achieve perfect performance on the negative class and
generate no “false positives”.
For this reason, entity recognition performance is com-
monly measured using precision and recall (Jardine and van
Rijsbergen, 1971). These measure the quality and quantity
of entities found by the recognition approach.
Precision represents the proportion of items – in this case,
entities – that the system returns which are accurately cor-
rect. It rewards careful selection, and punishes over-zealous
systems that return too many results: to achieve high preci-
sion, one should discard anything that might not be correct.
False positives – spurious entities – decrease precision. It
is defined as::

P =
|true positives|

|true positives|+ |false positives|
(2)

Recall indicates how much of all items that should have
been found, were found. This metric rewards comprehen-
siveness: to achieve high recall, it is better to include en-
tities that one is uncertain about. False negatives – missed
entities – lead to low recall. It balances out precision. Re-
call is defined as:

R =
|true positives|

|true positives|+ |false negatives|
(3)

It is possible to “cheat” at both these metrics, in that one
can design a system with certain behaviours that are of very
limited use but achieve high scores. For recall, if a system
simply returns everything possible, then by definition is has
returned every correct answer. There are no false negatives.
Such a system would have recall of 1.0, but contribute lit-
tle. Slightly harder is the case of cheating precision. If one
correct answer can be found, then that is all that needs to be
returned. Because no false positives are generated, and the
numerator is above zero, so this gives maximum precision
1.0.
Together, these metrics can be balanced out. These extreme
situations used to exploit them contrast with each other:
returning everything gives only a baseline precision, and
returning just one thing typically gives a very low recall
measure. Therefore, it is common practice to combine pre-
cision and recall with a weighted harmonic mean, as an F-
score (Van Rijsbergen, 1974).

Fβ = (1 + β2)
PR

β2P +R
(4)

In this equation, coefficient β determines the balance be-
tween precision and recall, with high values favouring re-
call.1 This is a harmonic weighted mean of precision and
recall.
When evaluating using these metrics, focus is given to true
positives, false positives and false negatives. However, no
attention is given to the large and uninteresting true neg-
ative group, which is also the majority class. The result
is that one is able to appropriately evaluate differences in
classifier performance that, when reported just as part of

1Typically F-score is used with β = 1, c.f. its sometimes being
called “F1 score.”
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overall per-instance classification accuracy, would be small
and perhaps insignificant.
As with any lossy operation, the blending of precision and
recall into a single F-score has disadvantages. Chiefly, one
is unable to distinguish low-recall from low-precision sys-
tems.
In feature ablation, a machine learning analysis technique
commonly used in NLP, groups of features are removed
and the system re-run over the same training and evaluation
data.The goal of this exercise is to assess the impact each
group of features has on the overall evaluation score by
monitoring the change in precision, recall or F-score. This
analysis method is somewhat opaque: the same scores can
be generated by markedly different behaviours. In ablation,
it is important to see the differences in system behaviours.
If one feature group’s removal keeps overall performance
similar, but selects completely different entities, this indi-
cates a potentially interesting analysis candidate. However,
this is not possible using the conventional measures.
Entity recognition is typically difficult, and it is often useful
to compare the performance of different entity recognition
systems. However, comparing F-score differences doesn’t
tell us how different the mistakes made by each classifier
are, and therefore sheds only minimal light on how helpful
classifier combination might be.

4. Complementarity Precision and Recall
We propose a set of metrics that measure complementarity
over skewed data. They are based on precision and recall,
thus using conventional solutions to evaluation problems
that come from the typical skew toward negatives. How-
ever, they also take into account complementarity, giving
more insight into differences than F-score, precision or re-
call. We call these complementary precision, complemen-
tary recall and complementary F-score.
Given key set Y , and candidate labelling setsB andA, pre-
cision and recall can help answer questions in terms of spu-
rious and missed entities.

• What errors does A make?
• What errors does B make?
• What errors made by A are not made by B?
• What errors do both make?

Based on these questions, we can determine F-score in
the conventional sense. In the context of complementarity,
other sets of data can be examined.

• Shared errors. missed, spurious
• Shared accurate items.
• How much is likely to be gained from combining the

two: recall by taking the union (reducing missed, in-
creasing spurious), precision by taking the intersection
(reducing spurious, increasing missed).

• For disagreements, such as partial results where only
one system finds the items, we can also see: spurious
in one, missed in one

4.1. Complementary P, R and F
We define four subsets: two of the reference label set
and two of a candidate label set. Firstly, we have sets

positive and negative, where positive corresponds to in-
stances labelled as belonging to the sought-after class –
our target entities – and negative the remainder. In ad-
dition, for the candidate labeling, we have sets correct for
correctly-labeled instances and wrong for wrongly-labeled
instances. This gives us the properties:

|correct ∩ wrong| = 0 (5)

|positive ∩ negative| = 0 (6)

|correct|+ |wrong| = |positive|+ |negative| (7)

We write these groups as a subscript. For example,Acorrect
is the correctly-labeled instances (that is, the union of true
negatives and true positives) returned by system A.
We must also define complementary rate. As per (Brill
and Wu, 1998), this is the maximum improvement that
one candidate labeling can offer over another. That is,
Comp(A,B) indicates the maximum proportional error re-
duction that B offers over A.

Comp(A,B) =

{
|Bwrong = 0|, 1

otherwise, 1− |Awrong∩Bwrong|
|Awrong|

(8)
If B returns a perfect result, Comp(A,B) = 1.
Complementary rate is agnostic to the set of labels in-
volved, and so can also be applied beyond binary classifica-
tion. Therefore, the positive and negative groups do not
feature in its definition. Rather, it just provides the propor-
tion of instances mislabeled by A that would be correctly
labeled by B. Note that this is a non-symmetric measure;
Comp(A,B) 6= Comp(B,A).
We next define complementary recall and precision, using
similar notations. Complementary recall RComp is the pro-
portion of interesting (i.e. positive) items missed by A that
are not missed by B. It describes the error reduction in false
negatives that B offers over A.

RComp(A,B) = 1− |Bwrong ∩Awrong ∩ Ypositive|
|Awrong ∩ Ypositive|

(9)

Complementary precision PComp is the proportion of un-
interesting (i.e. negative) items included in A that are not
included by B. It describes the error reduction in false pos-
itives that B offers over A.

PComp(A,B) = 1− |Bwrong ∩Awrong ∩ Ynegative|
|Awrong ∩ Ynegative|

(10)
Finally, just as F-score combines precision and recall, so
we define complementary F-score:

FComp(A,B) = 2
PComp(A,B)RComp(A,B)

PComp(A,B) +RComp(A,B)
(11)
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FComp(A,B) describes the overall improvement over A
that is possible with B, in terms of F-score, in this scenario.
The adaptation for Fβ is given in Equation 12.

FβComp(A,B) = 1+ β
PComp(A,B)RComp(A,B)

β2PComp(A,B) +RComp(A,B)
(12)

One application of complementary F-score is for compari-
son to baseline systems. Such comparisons are very com-
mon in NLP research, with comparison relative to a prior
competitive approach or heuristic being a prevalent eval-
uation approach. For example, in the SemEval exercises
baseline systems are commonly included. While an ab-
solute improvement over baseline in F-score can indicates
better performance, to analyse and explain the finding, it is
important to know how different from the baseline a target
system is – not only overall, but also in terms of the met-
rics we are used to; precision, recall and F-score. Further,
many systems often achieve similar scores given a single
task over the same data. The typical tight cluster of perfor-
mance values that this leads to is hard to explain, and can be
unpacked and investigated by discovering the differences in
entity annotation among outputs.

4.2. Interpretation of complementarity measures
The measures PComp and RComp can signal certain effects
from the combination of system results. These allow one to
construct simple ensembles which have altered entity ex-
traction performance.
In general, one can increase recall at the cost of precision
by taking the union of multiple approaches’ entity selec-
tions, or increase precision at the cost of recall by taking
the intersection of entity selections. Complementarity can
provide extra insight into the performance changes likely to
result from taking the union or intersection of result sets.
If RComp is high, then the selection of entities retrieved is
markedly different. Combining systems by taking the union
of results is likely to lead to a higher increase in recall than
in the general case. Conversely, if RComp is low, little is
likely to be gained by taking the union of system outputs.
If PComp is high, then the selection of true positive entities
differs between systems. This means that taking the inter-
section of results will lead to a larger drop in overall result
set size than other approaches (like voting). If PComp is
low, taking the intersection of results will not lead to a big
change in true positive rate. Also, there is a higher chance
of maintaining high precision when taking the union of re-
sults, as the perturbation in true positives will be low.

5. Example Scenarios
All examples use non-synthetic, real datasets, where one is
interested in a minority of cases that are significant in some
way or another.

5.1. Named Entity Recognition
Named entity recognition focuses on the identification of
rigid designators (Kripke, 1972) in text, typically proper
nouns that refer to a particular object. For example, one
may want to recognise names of all locations, people and

System Precision Recall F1
Standard

ANNIE 68.20 83.72 75.17
OpenNLP 81.45 53.29 64.43

Complementary
Comp(ANNIE, OpenNLP) 78.15 14.22 24.06
Comp(OpenNLP, ANNIE) 20.00 56.04 31.67

Table 1: Named entity recognition: first standard precision,
recall and F-score, and then complementary.

System Precision Recall F1
Standard

LTG 85.1 82.2 83.6
TRIPS 85.1 85.1 85.1

Complementary
Comp(LTG, TRIPS) 32.5 6.37 10.7
Comp(TRIPS, TRIOS) 15.5 4.55 7.03

Table 2: Temporal expression annotation: first standard
precision, recall and F-score, and then complementary.

organisations in text. It is a long-standing challenge in NLP
with many applications (Nadeau and Sekine, 2007).
For this example, we look look at location names present in
the CoNLL 2003 dataset (Tjong Kim Sang and De Meul-
der, 2003). We compare two approaches based on dif-
ferent technologies: ANNIE, which uses gazetteers and
finite state transducers (Cunningham et al., 2002); and
Open NLP, which uses statistical learning to perform se-
quence labelling (Baldridge, 2005). Results are shown in
Table 1. The first row of complementary figures are for
the maximum improvement that OpenNLP offers over AN-
NIE, and the second for the maximum improvement AN-
NIE offers over OpenNLP. From these results, we can see
that OpenNLP offers strong precision improvement poten-
tial over ANNIE. Also, from the high complementary recall
that ANNIE offers over OpenNLP, adding ANNIE’s results
is likely to offer strong recall improvements. However,
from PComp(OpenNLP,ANNIE) being only 20.00 we
can see that ANNIE and OpenNLP select quite different
entities, and that precision gains are not likely to be made.

5.2. Temporal Expression Extraction
Temporal expressions are another kind of entity prevalent in
text, this time describing a time or period of time. Recog-
nising these entities is difficult and has been the subject
of much recent research, including shared challenges. To
evaluate performance over these expressions, We use the
TempEval-2 dataset (Verhagen et al., 2010). In the chal-
lenge based on this dataset, one system was used as a base-
line for others: a good scenario for applying complemen-
tary precision and recall. We compare a system based on
semantic information, LTG (Grover et al., 2010), to an ad-
vanced parser-based system, TRIPS (UzZaman and Allen,
2010). Results are given in Table 2.
In this instance, we can see that despite having similar
F-scores in the overall evaluation, the systems score well
on quite different results. Both can offer the other an in-
crease in precision, with TRIPS offering higher quality re-
sults than LTG. However, only minor changes in recall are
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possible, suggesting that both systems make similar errors
in terms of false negatives.

6. Related Work
Cohen’s kappa (Cohen and others, 1960) is often used to
measure the difference between responses of raters (be they
human or automatic). This provides a method of measur-
ing disagreement among multiple sources when the ground
truth is not known.
Derczynski (2013) notes that complementarity between
systems performing temporal relation extraction – a re-
siliently difficult NLP problem – does not indicate particu-
larly deficient systems, but rather provides hints as to which
temporal relations are more difficult to label than others.
Dimililer et al. (2009) use a genetic algorithm to select
classifiers which form an ensemble for biomedical entity
recognition. They discover that complementarity is a pre-
ferred property, but do not perform evaluations to measure
this specifically in terms of precision and recall.
Ferris et al. (2013) address the general behaviours of com-
plementarity. This work includes a plethora of distance
measures applicable in various situations, such as market
power and classifier margin distance. Of note is Lesbesgue
measure (Lebesgue, 1902), used here for measuring subsets
of potentially high-dimensional space.
Powers (2011) investigates the relation between precision,
recall, F-score and ROC and a variety of complementary
metrics for assessing system performance.

7. Conclusion
This paper discussed precision, recall and F-score in the
context of NLP. The limitation of ability to describe differ-
ences in result set perturbations was identified. This was
followed by a solution – the use of complementarity. Com-
plementarity was then adapted to work with precision and
recall, and F-score. The different properties of comple-
mentary precision and recall, and interpretation guidelines,
were also given. This was then demonstrated in two entity-
extraction cases.
We propose the adaptation of complementary precision, re-
call and F-score in situations where the differences between
system outputs is of help in analysis; particularly in shared
evaluation tasks, in feature ablation, and in cases where tra-
ditional F-score results are very close.
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