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Abstract
In this paper we propose an approach to predict punctuation marks for unsegmented speech transcript. The approach is purely lexical,
with pre-trained Word Vectors as the only input. A training model of Deep Neural Network (DNN) or Convolutional Neural Network
(CNN) is applied to classify whether a punctuation mark should be inserted after the third word of a 5-words sequence and which kind
of punctuation mark the inserted one should be. TED talks within IWSLT dataset are used in both training and evaluation phases. The
proposed approach shows its effectiveness by achieving better result than the state-of-the-art lexical solution which works with same
type of data, especially when predicting puncuation position only.
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1. Introduction
Generally the text transcript generated by automatic speech
recognition (ASR) systems is unpunctuated and unseg-
mented. However, the readability of the transcript can be
largely improved by the existence of punctuation marks,
and the segmentation of the transcript based on punctuation
positions will also increase the efficiency of many down-
stream natural languages processing (NLP) tasks, such as
semantic parsing, question answering or machine transla-
tion(Matusov et al., 2007; Wang et al., 2010). It may also
act as effective pre-processing to facilitate some other tasks
like subtitling(Tiedemann, 2007).
Therefore many efforts, some of which may focus on sim-
iliar topic “sentence boundary detection”, have been made
to restore or predict the punctuation marks. Most of the re-
cent works can be divided into three categories: prosodic or
acoustic feature based (Levy et al., 2012; Xie et al., 2012;
Sinclair et al., 2014), lexical feature based (Gravano et al.,
2009; Lu and Ng, 2010; Ueffing et al., 2013) and the hybrid
of previous two (Wang et al., 2012; Xu et al., 2014; Hasan
et al., 2014). In this paper, we focus on the lexical aspect
only.
A pure lexical model is understandably less powerful than
a hybrid model, or even a pure acoustic model. But it is
able to cope with the situation either with or without the
audio files. Another fact is that the training data of a hy-
brid model, which take both lexical and acoustic features
as input, must be the standardized ASR transcripts, but a
pure lexical model can take any kind of textual material
into consideration, which is almost endless and extremely
easy to get. However, the posterior probabilities of the in-
dependent lexical model can be freely used in late fusion
with acoustic features(Tilk and Alumäe, 2015; Khomitse-
vich et al., 2015). Considering all these facts, we believe a
good lexical model is widely applicable.
In previous research efforts, frequently used lexical features
include the language model (LM) score, token, part-of-
speech (POS) tag, chunk tag and so on. However, we would
like attempt another possibility by using the Word Vector.
Word vectors are learned through neural language mod-
els (Bengio et al., 2003). Each word will be represented

by a comparatively low-dimentional real-valued vector and
the lexical similarity between words can be evaluated by
the Euclidean distance between their correspondent vectors
(Mikolov et al., 2013; Pennington et al., 2014). Thus, word
vectors can be used as lexical features in various NLP appli-
cations and have achieved many positive results (Collobert
et al., 2011; Maas et al., 2011).
When training, some state-of-the-art punctuation prediction
approaches chose Conditional Random Fields (CRFs) as
the classifier, but only taking traditional types of lexical fea-
tures as input. Meanwhile, some recent experiments have
shown the effectiveness of the combination of word vec-
tor and convolutional neural network (CNN) in the task of
sentence classification or sentiment analysis (Kim, 2014;
Kalchbrenner et al., 2014). Inspired by these experiments,
we would like to attempt this combination in the task of
punctuation prediction in this paper.

2. Model Description

2.1. Input Preparation

In our approach, all the data are collected from text files,
which will be first transformed into a long word sequence.
We treat the classification problem as whether a word in the
sequence is followed by a punctuation mark. We define 4
classes in total: O (means no punctuation mark followed),
COMMA, PERIOD and QUESTION. Exclamation marks
or semicolons are classified as PERIOD, while colons or
dashes are classified as COMMA. There are no brackets
in our data and all the other punctuation marks, such as
quotation marks, are just ignored.
For the word wi in the sequence, we apply an continuous
m-words subsequence<wi−(m−1)/2,..., wi−1, wi, wi+1,...,
wi+(m−1)/2> to represent the context. The n-dimensional
word vectors of these words can be extracted from a pre-
trained “dictionary”, and a default vector will be used as the
replacement for all words which do not exist in the dictio-
nary. Then we obtain anm×n feature matrix as the training
model input, just as shown in Fig. 1. During the training
process, the value of word vectors will be kept static.
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Figure 1: Input Preparation

Figure 2: Model Architecture of CNN-1

2.2. Training Models
We attempt three different models for the training pro-
cess. The first model is a typical deep neural network
with 3 hidden fully connected layers. We address it as
DNN in our experiments. The m × n input matrix will
be reshaped into a long vector, which equals to concate-
nate the m word vectors together, and this long vector acts
as the input layer of the neural network. Then each train-
ing sample can be represented as {Xi, Yi}, i = 1, 2, ... , N .
Xi ∈ Rm×n, Xi = {x1, x2, ... , xm×n}, while Yi ∈ RK ,
yi = {y1, y2, ... , yK}. The goal is to find the optimal
weights W and biases b within cost function C:

argmin
W,b

C =
1

2N

N∑
i=1

‖Ŷi − Yi‖2 +
λ

2

L−1∑
l=1

‖Wl‖2F (1)

where Ŷi is the predicted output, while the second term in
(1) is the weight decay. It is implemented to prevent over-
fitting, with the weight decay parameter λ which is set to
0.0005 in our case. Sigmoid function as (2) is applied to
all hidden layers and softmax function as (3) to the output
layer.

f(x) =
1

1 + e−x
(2)

Sk(y) =
eyk∑K
j=1 e

yj

, k = 1, 2, ... ,K (3)

In order to prevent co-adaptation between neurons in the
hidden layers, we implement “dropout” on fully connected
layers, which randomly “hide” some neurons along with
their connections to reduce overfitting (Srivastava et al.,

2014). Dropout is also applied in the fully connected layers
in other two models.
The architecture of second model (Fig. 2) is similar as de-
scribed by Kim (2014). Taking m × n matrix as input, a
convolutional filter with the kernel size of h×n will be ap-
plied, in which 1 ≤ h < m. Because the value of n is fixed,
the filter acts as a sliding window which moves only verti-
cally and works with every h continuous words within the
sample. As a result, a feature map with m−h+1 elements
will be generated. Then a max-over-time pooling operation
will extract the maximum value as the final feature of this
filter. By implementing a group of such filters, with same
or different value of h, multiple features can be achieved
and then concatenated together, which will be further fed
into two fully connected layers with a softmax output. In
this model, the integrity of word representation is guaran-
teed during the process of convolution. We will address this
model as CNN-1 in later sections.
The third model (Fig. 3) is also a variant of CNN, but we
will treat them×n feature matrix no longer asm complete
word vectors. Instead, each element in the matrix will be
treated independently, just like a pixel in an image with a
resolution of m × n. There are 3 typical convolution lay-
ers and 1 pooling layer, followed also by 2 fully connected
layers and softmax output. This model will be addressed as
CNN-2.

2.3. Implementation
We choose the 50-dimensional pre-trained word vec-
tors from GloVe for our experiments1. Compared with

1http://nlp.stanford.edu/projects/glove/
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Figure 3: Model Architecture of CNN-2

Dataset Words COMMA PERIOD QUESTION

Ref Ueffing et al. (2013) 17207 1096 925 84
Ours 12626 830 808 46

ASR Ueffing et al. (2013) 17344 1084 904 82
Ours 12822 798 810 35

Table 1: Test Sets Details

other publicly available word vector packs, such as 300-
dimensional word2vec2, GloVe-50d is a much smaller set,
not only dimensional, but also on the total words involved.
But for our purpose, GloVe-50d is already sufficient. And
in all our experiments, we will use 5-words subsequence as
a sample. All above models are trained on CAFFE frame-
work (Jia et al., 2014), taking HDF5 as input format and
with m = 5, n = 50.
In DNN model, we set the total number of neurons for each
layer to 2048, 4096 and 2048. In CNN-1 model, we apply
128 “convolutional + pooling” filter pairs for each window
size from 1-word to 4-words, and the two following fully
connected layers have 4096 and 2048 neurons respectively.
In CNN-2 model, the numbers of filters of three sequen-
tial convolutional layers, with pooling layer after the first
one, are set to 64, 128 and 128, followed by the same fully
connected layers of CNN-1. When running, the resources
occupied by 3 models can be ordered by: DNN < CNN-1
< CNN-2.

3. Evaluation
3.1. Datasets
We test our models on the IWSLT datasets, which were
originally used to evaluate ASR or SLT output. IWSLT
datasets consist of TED talks which are openly available
online3. There are both punctuated reference transcripts
and unpunctuated but segmented ASR transcripts provided.
Ueffing et al. (2013) reported the performance of their ap-
proach on IWSLT2011 test set, which we would like to
compare with. However, we found that the IWSLT2011
dataset we achieved4 is smaller than claimed by Ueffing et
al. (2013). The detail about the test set can be found in
Table 1.

2https://code.google.com/p/word2vec/
3https://www.ted.com/talks
4http://hltc.cs.ust.hk/iwslt/index.php/evaluation-

campaign/ted-task.html

We divide the training data of machine translation track in
IWSLT2012, which also consists of TED talks, into two
parts as our training and development sets. Based on TED
talk ID, we make sure that there is no overlapping between
datasets. The training and development sets contain 2.1M
and 296k samples respectively.
Several reports have indicated that the performance of
punctuation prediction is largely influenced by the average
number of punctuation marks per utterance in the dataset
(Wang et al., 2012). It is quite understandable that there
will always be a period or question mark at the end of the
utterance. In our evaluation, we remove all the segmenta-
tion from both the reference and ASR transcripts of IWSLT
data files and there is only one single utterance existing in
each dataset.

3.2. Metrics
If we define a word sequence between two punctuation
marks as a minimal sentence unit, the average length of
such minimal sentence units of our training dataset is 7.8,
which means there are over 85% of the words are not fol-
lowed by any punctuation mark, in other words, they are
the “O” samples. The majority of these “O” samples can
be successfully classified by our model and make the gen-
eral accuracy of the classification beyond 90%. But in pur-
pose of predicting punctuation marks, we care much more
about the performance on the samples belonging to the
other three “punctuated” classes. Therefore the correctly
classified “O” samples will be ignored and we evaluate the
performance by:

Precision =
# Correctly predicted punctuation marks

# All predicted punctuation marks
(4)

Recall =
# Correctly predicted punctuation marks

# All expected punctuation marks
(5)

F1 =
2× Precision×Recall
Precision+Recall

(6)
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Model 4-Classes 3-Classes 2-Classes
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

Ref

CRF Best 49.8 58 53.5 − − − − − 75.8
DNN 60.3 48.6 53.8 62.1 50.1 55.5 86.0 69.2 76.7

CNN-1 55.2 46.4 50.4 57.0 47.9 52.1 83.0 69.8 75.8
CNN-2 57.8 49.9 53.5 59.6 51.5 55.3 83.6 72.3 77.5
DNN-A 54.8 53.6 54.2 56.4 55.2 55.8 79.0 77.3 78.2
CNN-2A 53.4 55.0 54.2 55.1 56.7 55.9 77.6 79.9 78.8

ASR

CRF Best 47.8 54.8 51 − − − − − 64
DNN 54.4 45.6 49.6 56.0 46.9 51.0 77.5 64.9 70.7

CNN-1 49.9 45.2 47.5 51.4 46.6 48.9 73.9 66.9 70.2
CNN-2 51.0 46.8 48.8 52.3 48.1 50.1 74.2 68.1 71.0
DNN-A 49.2 51.6 50.4 50.5 53.0 51.6 70.6 74.1 72.3
CNN-2A 46.4 51.9 49.1 47.6 53.2 50.2 68.2 76.3 72.1

Table 2: Experimental Results on General Accuracy

Model COMMA PERIOD QUESTION
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

Ref

DNN 58.2 35.7 44.2 61.6 64.8 63.2 0 0 −
CNN-1 48.3 36.3 41.4 60.6 59.6 60.1 0 0 −
CNN-2 53.4 37.6 44.1 60.7 65.4 63.0 0 0 −
DNN-A 48.6 42.4 45.3 59.7 68.3 63.7 0 0 −
CNN-2A 48.1 44.5 46.2 57.6 69.0 62.8 0 0 −

ASR

DNN 47.2 32.0 38.1 59.0 60.9 60 0 0 −
CNN-1 40.2 33.5 36.5 57.8 58.8 58.3 0 0 −
CNN-2 42.1 33.6 37.4 57.5 61.9 59.6 0 0 −
DNN-A 41.0 40.9 40.9 56.2 64.5 60.1 0 0 −
CNN-2A 37.3 40.5 38.8 54.6 65.5 59.6 0 0 −

Table 3: Experimental Results per Class

The original test is addressed as 4-Classes. Then we com-
bine the QUESTION and PERIOD together as “full-stop”
class to form a 3-Classes test. Furthermore, the “full-stop”
and COMMA classes can be combined again as “punctu-
ated” in a 2-Classes test. By this configuration, we pre-
dict punctuation position only, regardless of the punctua-
tion type. We implement 3-Classes and 2-Classes tests be-
cause in some applications, such as semi-automated subtitle
generation, pre-segmenting the transcript by accurately de-
tected punctuation position can save a lot of time for the
human staff, but whether it is a comma or a period at the
end of the segment is less important.
Besides the general accuracy evaluation introduced above,
we are also interested in “per-class” performance. The
statistics about comma, period and question mark will be
collected separately. The general accuracy and per-class
performance can be found in Table 2 and Table 3 respec-
tively.

3.3. Results
As shown in Table 2, the general accuracy of the experi-
ments on both reference transcripts and ASR output can be
found. “CRF best” represent the best model performance
reported by Ueffing et al. (2013). “DNN”, “CNN-1” and
“CNN-2” are corresponding to the 3 models proposed in
this work. Furthermore, since we found out that all three
proposed models achieved much higher precision than re-
call, we did one additional adjustment to our better per-

formers: half the value of softmax output for class “O”. By
this effort (addressed as DNN-A & CNN-2A), more border
cases would be classified as “punctuated”, which balanced
the precision and recall.
From the stats we can find out that in 2-Classes evaluation,
all proposed models perform better than the benchmark,
with CNN-2A and DNN-A as best performers on reference
transcripts and ASR output respectively. CNN-2A is also
the best performer for 4-Classes evaluation on reference.
But in ASR 4-Classes evaluation, none of proposed models
can outperform the benchmark. These facts show that our
approach is good at predicting the punctuation positions,
but needs to improve on distinguishing puctuation types.
Table 3 shows the per-class performances. Obviously, our
proposed models failed to predict even one question mark
in the test dataset. We believe there are two reason for this
phenomenon: the first is that the QUESTION samples in
the training set are not sufficient; the second, which we con-
sider as the more crucial one, is that the sample we apply,
a 5-word sequence, does not cover the sentence beginning,
where the typical question pattern locates, such as “what do
you ...” or “how can I ...”. Therefore, the incompetence of
proposed model in detecting question mark is understand-
able, also still disappointing.
Among comma and period, all proposed model works much
better with period. We think it is normal because the gram-
matical ambiguity of a pause is generally higher than a
full-stop, especially in less formal text like the transcript
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of TED talks. Another interesting finding is that our CNN-
1 model, which keeps the integrity of word representation
during the convolutional process, achieved worse perfor-
mance than the other two. It means, at least in punctuation
prediction task, the digits in the word vectors could be con-
sidered as independent features.

4. Conclusion
In this paper we attempted to use word vectors as the
features in predicting punctuation marks for unsegmented
transcript in a pure lexical approach. The pre-trained word
vectors are fed into proposed models based on DNN or
CNN for training. The evaluation shows that the proposed
approach can achieve quite promising result. In the future
we intend to first improve the input word vectors, by apply-
ing larger pre-trained set or training our own word vectors,
and use longer word sequence as samples. Then we will
also attempt to involve prosodic feature.
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