
The Gavagai Living Lexicon

Magnus Sahlgren†, Amaru Cuba Gyllensten†, Fredrik Espinoza†, Ola Hamfors†, Jussi Karlgren†

Fredrik Olsson†, Per Persson†, Akshay Viswanathan† and Anders Holst?
†Gavagai, Slussplan 9, 111 30 Stockholm, Sweden

?SICS, Box 1263, 164 29 Kista, Sweden
[firstname.lastname]@gavagai.se, aho@sics.se

Abstract
This paper presents the Gavagai Living Lexicon, which is an online distributional semantic model currently available in 20 different
languages. We describe the underlying distributional semantic model, and how we have solved some of the challenges in applying such
a model to large amounts of streaming data. We also describe the architecture of our implementation, and discuss how we deal with
continuous quality assurance of the lexicon.

Keywords: Distributional semantics, word embeddings, lexical resources

1. Introduction
The availability of large amounts of text data in open
sources like online news and social media, coupled with the
recent developments of scalable and effective techniques
for computational semantics, opens up new possibilities
for lexicographic research and resource development. As
a complement to traditional lexica and thesauri, it is now
possible to automatically build lexical resources by min-
ing large amounts of text data using unsupervised machine
learning methods.
The perhaps most well-known example of a data-driven
thesaurus is the Sketch Engine,1 which features distribu-
tional thesauri for some 60 different languages (Kilgar-
riff et al., 2014). Another example is the polyglot
Python library,2 which contains word embeddings trained
on Wikipedia for 137 different languages (Al-Rfou et al.,
2013). There are also several academic projects that pro-
vide data-driven thesauri, like the Wortschatz project,3 and
the JoBimText project.4

This paper presents a continuously learning distributional
thesaurus — the Gavagai Living Lexicon — that updates
its semantic model according to the input data stream in
an online fashion, and produces lexical entries in several
different languages.5 The lexicon currently includes sev-
eral different types of entries: string similar terms, topically
related terms, sequentially related terms, multiword terms,
and semantically similar terms. In the following sections,
we describe how we use an online distributional semantic
model to identify and compile these various relations. We
also describe the architecture of our implementation, and
discuss how we deal with continuous quality assurance.

1www.sketchengine.co.uk
2pypi.python.org/pypi/polyglot
3corpora.informatik.uni-leipzig.de
4
maggie.lt.informatik.tu-darmstadt.de/jobimtext

5As of 2016-03-10, the lexicon includes the following 20
languages: Czech, Danish, Dutch, English, Estonian, Finnish,
French, German, Hebrew, Hungarian, Italian, Latvian, Lithua-
nian, Norwegian, Polish, Portuguese, Romanian, Russian, Span-
ish, Swedish.

2. (Online) Distributional Semantics
Distributional Semantic Models (DSMs) represent terms as
distributional vectors that record (some function of) co-
occurrence counts collected within a context window sur-
rounding each occurrence of the terms. There are many
different approaches to building such vectors, ranging from
simple accumulation of co-occurrence frequencies to more
advanced methods based on matrix factorization (Österlund
et al., 2015) and artificial neural networks (Turian et al.,
2010). The particular framework we use for building DSMs
is called Random Indexing (RI) (Kanerva et al., 2000; Kan-
erva, 2009), which provides an attractive processing model
for streaming environments because it can be formulated as
an online model that processes data as soon as it becomes
available. This is done in RI by accumulating distributional
vectors incrementally by vector addition; every time a term
a occurs in the text, its distributional vector ~v(a) is updated
according to:

~v(a)← ~v(ai) +

c∑
j=−c,j 6=0

w(x(i+j))πj~r(x(i+j)) (1)

where c is the extension to the left and right of the context
window surrounding term a, w(b) is a weight function that
quantifies the importance of context term b (the default set-
ting is w(b) = 1 for all terms), ~rd(b) is a random index
vector that acts as a fingerprint of context term b, and πj is
a permutation that either rotates the random index vectors
according to the position j (what we call order-coded win-
dows) or the direction (what we call directional windows)
of the context items within the context windows, thus en-
abling the model to take word order into account (Sahlgren
et al., 2008).
Distributional vectors accumulated with Equation (1) en-
code semantic properties, and can be used to quantify se-
mantic similarities between terms. RI can also be used to
accumulate the equivalent of a topic model (Steyvers and
Griffiths, 2006), which can be used to quantify topical re-
lations between terms. Such an RI topic model can be for-
mulated as:

344

~v(a)← ~v(a) +
∑
t∈T

w(a, t)~r(t) (2)

where T is the set of documents in the data, w(a, t) is the
weight of term a in document t, and ~r(t) is the random
index vector of document t.
RI handles data and vocabulary growth by using fixed-
dimensional vectors of dimensionality d (such that d �
(V, T) where V is the size of the vocabulary and T is the
cardinality of the document set; d is normally on the or-
der of thousands), which means that a new context does not
affect the dimensionality of the distributional vectors. We
simply assign a new d-dimensional random index vector to
each new context; the dimensionality of the distributional
vectors remains constant regardless of the size of the data.

3. Online Frequency Weighting
The most important step when building a DSM is deal-
ing with the skewness of the frequency distribution. This
amounts to reducing the impact of high-frequent items,
since they pollute the distributional representations. For the
topic vectors, we can simply use some version of TFIDF,
such as:

w(a, t) = log TF(a, t)× log
T

DF(a)
(3)

where TF(a, t) is the frequency of term a in document t,
and DF(a) is the document frequency of term a. Note that
we take the log of the TF, which is done in order to control
for topicality (i.e. we effectively require that terms occur
several times in documents in order to count as relevant).
For the semantic vectors, frequency weighting is normally
done by either using stop lists (based on either part of
speech tags or frequency thresholds), or by using asso-
ciation measures such as Pointwise Mutual Information
(PMI).6 The online setting complicates matters when it
comes to frequency weighting, since we have to operate
with a continuous stream of data. There are streaming ver-
sions of PMI (Durme and Lall, 2009), but since we use
RI to accumulate distributional statistics in a distributed
representation, we do not have access to individual co-
occurrence counts that can be transformed with PMI.
The way we approach frequency weighting in the online
setting is to weight each individual vector addition by an
online frequency weight w(b) that operates only on the ac-
cumulated frequency f(b) of the current context item b and
the total number of unique context items seen thus far V
(i.e. the current size of the growing vocabulary):

w(b) = e−λ·
f(b)
V (4)

where λ is an integer that controls the aggressiveness of the
frequency weight.
This weighting formula returns a weight that ranges be-
tween close to 0 for very frequent terms, and close to 1

6PMI(a, b) = log p(a,b)
p(a)p(b)

, where p(a, b) simplifies to the co-
occurrence count of a and b (normally multiplied with the number
of tokens in the data), and a and b simplifies to the frequencies of
a and b.

for not so very frequent terms. Figure 1 shows the distribu-
tion of weights plotted against the frequency of the 20,000
most frequent terms in the ukWaC data.7 As can be seen
in the figure, the weighting formula gives the desired effect
of reducing the impact of high-frequent terms, while giv-
ing a nearly constant weight to medium- and low-frequent
items. Note that the use of the weighting formula does not
completely remove all co-occurrences with high-frequent
terms; they have a weight close to zero, but not exactly zero,
and at the beginning of processing they will still have a use-
ful weight, since the weighting formula has not yet learned
the frequency distribution.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000

λ = 5
λ = 10
λ = 15
λ = 20

Figure 1: Distribution of weights with different λ for the
20,000 most frequent terms in the ukWaC.

4. Dominant Eigenvector Removal
Equations (1) to (4) describe an online DSM that accumu-
lates fixed-dimensional distributional vectors from a con-
tinuous stream of data. However, an artifact of only using
addition for accumulating the distributional vectors in RI is
that all vectors will tend towards the dominant eigenvector
of the distributional space (this is the case also for standard
DSMs built without RI). One way to reduce the gravita-
tional force of the dominant eigenvector without having to
compute a full principal component analysis is to utilize
the fact that RI can be seen as the first step in a power iter-
ation, which extracts eigenvectors by iterating: v′ ← Av

||Av||
(i.e. multiplying the vector v with the matrix A, and nor-
malizing). Thus, by summing all distributional vectors (and
normalizing the result), we are effectively approximating
the dominant eigenvector of the distributional space. We
can then remove this dominant vector from all distributional
vectors by using:

a′ = a− a · b
|b|2

(5)

where a is the original vector and b is the vector we want
to remove. This operation is known as the Gram-Schmidt
process (Golub and Van Loan, 1996), which has also been
referred to as orthogonal negation (Widdows, 2003).

7wacky.sslmit.unibo.it

345

5. Collocation Cleaning
Since the semantic distributional vectors are built from co-
occurrences, they will encode a significant amount of col-
locations. This unfortunately has a negative effect on the
distributional model, since the collocations affect the re-
sult of nearest neighbor searches by introducing neighbors
that share the trace of the collocate (as an example, the
term “white” may occur significantly in the collocation
“white house,” which can introduce nearest neighbors that
only share the co-occurrence with “house,” like “brick” and
“beach”). Such collocations can be identified by looking
for spiky patterns in the distributional vectors. As an exam-
ple, consider the following two vectors:

Figure 2: Example of distributional vectors produced with
RI, one with a spiky pattern (to the left), and one without
(to the right).

The vector to the left has a very spiky pattern, with a small
number of elements having much higher values than the
rest, while the elements in the vector to the right have much
more even values. The elements with high values in the
vector to the left come from one very frequent collocation,
and we can identify that collocation by taking only the ele-
ments with high values (i.e. the spiky pattern) and searching
(using inverse permutations) for a random index vector that
looks like the spiky pattern. The term whose random in-
dex vector is most similar to the spiky pattern is the most
likely collocate, and since we have used permutations to ac-
cumulate the distributional vectors, we also know at what
position in the context window the term has occurred. This
means that we can now form a multiword unit by concate-
nating the two terms in the correct order, and we can then
include that multiword unit as a term in its own right in the
distributional model. Note that this method is also able to
detect skip-grams like “ministry . . . defence.” We use the
following condition for identifying spiky vectors:

0.01 ∗ d > N|vi|>max |vi|
2

(6)

i.e. if the number of elements N that have values that are
higher than a threshold (defined as the highest value in the
vector divided by 2) is less than 1% of the dimensionality. If
a distributional vector satisfies this criterion, we make a col-
location vector consisting of only the spiky pattern (i.e. all
elements satisfying the right-hand part of Equation (6)), and
we can now use that collocation vector to remove the im-
pact of the collocation on the distributional vector. We do
this by weighted orthogonalization:

a′ = a− δ · a · b
|b|2

(7)

where a is the original distributional vector, b is the collo-
cation vector, and δ ranges between 0 and 1. Note that with
δ = 1, Equation (7) equals the Gram-Schmidt process in
Equation (5). We use δ < 1, since we want to retain some

traces of the collocation in the distributional vector (even
though “house” might primarily co-occur with “white” in
the collocation “white house,” it is possible that there are
other occurrences of “white house” that are not instances
of the collocation in question).
By continuously running a collocation extraction job, the
online DSM is able to incrementally identify multiword
terms of higher order; starting with bigrams, and continu-
ing with higher-order n-grams – in theory all the way up to
frequently recurring phrases (idioms) and even whole sen-
tences.

6. Lexicon Compilation
The dominant eigenvector removal, the collocation clean-
ing, and the multiword identification are performed as pre-
processing steps before using the distributional vectors for
lexicon compilation, which is done by extracting the k near-
est neighbors to the nmost frequent terms in the vocabulary
(what we call the target vocabulary). We use k = 50 and
n is on the order of 100,000 to 200,000 depending on the
amount of incoming data for the language in question. We
also extract the 10 most salient left and right neighbors to
each term in the target vocabulary by doing nearest neigh-
bor search over the random index vectors using inversely
permuted distributional vectors, as described in Sahlgren et
al. (2008). Multiword terms are identified using the col-
location criterion, and for the semantic and topical near-
est neighbors, we also compute the relative neighborhood
graph (Cuba Gyllensten and Sahlgren, 2015), which un-
covers the different usages of terms and can be seen as a
form of word-sense discovery. We also include string sim-
ilar terms in the lexicon, which is computed using stan-
dard Levenshtein distance (Levenshtein, 1966). In order
to avoid information overload in the GUI, we use the fol-
lowing heuristic for the semantic neighbors: if the neigh-
bors are grouped into more than 5 relative neighborhoods,
we only show the top 5 neighborhoods; if not, we show all
50 nearest semantic neighbors. For the left and right neigh-
bors, we only show neighbors with a similarity that exceeds
a predefined threshold.

7. System Architecture
The Gavagai Living Lexicon is implemented using Enter-
prise JavaBeans, and is designed to work with large and
streaming data in a decentralized and scalable fashion. The
distributional vectors are stored in a cluster of Redis in-
stances,8 and nearest neighbor compilation is performed
on a dedicated GPU server. The GPU solution is advan-
tageous to using, e.g., a Hadoop cluster, which is optimized
for small calculations that are repeated on large amounts
of input data, while the nearest neighbor compilation re-
quires large (and very regular) numerical calculations on
fairly small amounts of input data, a scenario that GPUs
are ideal for. The GPU server carries out approximately
250 million point-wise comparisons per second. The re-
sult of the nearest neighbor calculation is stored in MySQL,
which serves as the back-end for the Living Lexicon. The

8redis.io

346

Living Lexicon can be accessed either through an API,9 or
using a web-based GUI, shown in Figure 3.10

8. Data
The Living Lexicon is continuously fed with data from a
range of different sources, including news media, blogs,
and forums. The input data is retrieved from a number of
different data providers, e.g., Trendiction11, Twingly12, and
Gnip13, as well as by means of internal processes. The data
is normalized to a unified internal format, a process that
includes language detection, assignment of source defini-
tions, de-duplication, and time-stamping, before the texts
are subject to processing with the purpose of updating the
lexicon. The data flow contains millions of documents each
day; at peak periods, the flow can reach some 20 million
documents each day, which amounts to more than a billion
tokens each day.
The lexicon is currently available in 20 different lan-
guages. The amount of data differs considerably between
languages: English is by far the largest language, followed
by Russian, Swedish, German and French.

9. Examples
Table 1 provides a few illustrative examples of the type of
entries learned by the lexicon. For each entry in the lexicon,
the table lists all types of relations currently represented
in the lexicon: string similar terms identified using Leven-
shtein distance; commonly preceding and succeeding terms
computed using inverse permutations; the nearest semantic
neighbors, sorted according to their relative neighborhood
graph; multiword units identified using the collocation cri-
terion; and topical neighbors, sorted according to their rel-
ative neighborhood graph.
Note that the preceding and succeeding columns contain
different numbers of terms, which is an effect of using a
global threshold for the syntagmatic similarities. The entry
for “great” illustrates the somewhat noisy nature of the syn-
tagmatic relations; the succeeding terms all make sense, but

9developer.gavagai.se
10lexicon.gavagai.se
11trendiction.com
12twingly.com
13gnip.com

the preceding terms seem less intelligible; the syntagmatic
relations for “great” would probably have benefited from
using a slightly more aggressive threshold. Note also that
the topical neighbors do not always make sense. This is due
to the lack of topically coherent discussions in online media
featuring the terms in question. Out of the four examples in
Table 1, “apple” has the clearest topical neighbors, which
indicates that this term is used in topically more coherent
contexts than the other terms in this example. For terms
like “great” and “what the hell”, which occur in topically
very diverse contexts in online media, the topical neighbors
seem more or less random.
The term “what the hell” does not have any string similar
terms, and it has not been part of any multiword units (or
rather, the system has thus far not detected any multiword
units featuring “what the hell” as a part, but that might hap-
pen in the future). For the relative neighborhood graphs,
which can be seen as a representation of the different us-
ages of terms (and hence as a sort of word-sense discov-
ery), the lexicon also provides a best guess for labels that
describe the various usages. These labels (which are not
shown in the table, but are available in the web-based GUI)
are produced by looking at common preceding or succeed-
ing terms among the members of each relative neighbor-
hood.

10. Continuous Quality Assurance
As should be obvious from the examples provided in the
last section, the quality of the lexicon entries can differ con-
siderably. Since one of the points of the Living Lexicon is
to investigate how an unsupervised DSM will develop as it
continuously reads uncontrolled data from online sources,
such qualitative differences are to be expected; the lexicon
is nothing more than a representation of the current state of
online language use. However, this makes it slightly chal-
lenging to perform quality assurance and evaluation of the
lexicon.
One way we tackle this problem is to include the Living
Lexicon in our automated testing routine, which monitors
our continuous deployment process, with system changes
pushed to production on a daily basis. These automated
tests track and identify what the impact of system devel-
opment is on the quality and consistency of the lexicon.
The automated tests include both standard benchmark tests

Figure 3: The Gavagai Living Lexicon GUI.

347

Entry String Preceding Semantic Succeeding Multiwords Topical

suit

suity cabbies [suits the needs the suit [how to eat]
suitx navy law suit] follow suit [law suit
suita strongest [class-action lawsuit followed suit rebelled
suits civil the suit civil suit legions]
suite class-action suit bathing suit [suits
sunit wrongful death lawsuit filed suit auto racing]
subit statement of claim black suit [clavin klein
sumit class action suit law suit euphoria

apple

applea [the apple ceo tim cook the apple [apple’s
applen apple’s pie apple inc apple watch
applet apple inc’s] juice apple pay the apple watch]
apples [android wear apple tv [ceo tim cook
appl jailbroken apple iphone tim cook]
appel android-based apple store [the iphone
appletv apple ios the apple watch the iphone 6s
appleid iphone 4s apple pie rumours

great

greate brick walls [terrific lakes the great [jurgen
greats special interests brillliant] lengths great way unconfirmed reports]
grenat manly [tremendous pride great idea [bookmarked
grea pragmatic phenomenal running start great britain thanks for sharing
greta polluting unbelievable hbo series great day blogroll
gret even greater britain great lakes websites
greater immense business acumen great things obliged]
greatly incredible great value [don’t move

what the hell

wondering [what the fuck [wincing
wonder wtf meandering
figured dafuq] 17-point]

[what on earth [revulsion
what the fuss inhabiting]
who the heck [run with it]
what ever happened [take me home]
what went wrong [constructors]

Table 1: Example entries in the Gavagai Living Lexicon.

(such as those mentioned in the next section), as well as
more specific in-house test sets, where we measure lexi-
con agreement with external resources. These tests are fo-
cused exclusively on the semantically similar terms, since
the other types of relations in the lexicon are either more
volatile in nature (e.g. the topically related terms), or lack
standardized benchmarks (e.g. the multiword terms).
Continuous automated quality assurance of a learning se-
mantic model is admittedly a difficult problem, and we do
not pretend to have a definite solution in place.14 We would
like to avoid including humans in the loop as far as pos-
sible to facilitate continuous delivery, but we acknowledge
that human plausibility ratings might be the most relevant
evaluation for this type of resource.

11. Batch Evaluation
We also regularly perform batch experiments and compare
the underlying DSMs to other state-of-the-art algorithms.
As an example, we use three different semantic tests: the
TOEFL synonym test,15 the BLESS test (Baroni and Lenci,

14Evaluating dynamic behavior of semantic models is a chal-
lenge in itself (Karlgren et al., 2015).

15Kindly provided by the late Professor Thomas Landauer.

2011),16 and the SimLex-999 similarity test (Hill et al.,
2014). As data, we use a dump of Wikipedia, which is
tokenized by removing punctuation, and down-casing all
terms. The resulting data contains some 1.1 billion tokens.
We compare the online model defined in Equations (1),
(4), (5), (6) and (7) with two other well-known types of
models: a standard DSM with terms as context in a ±2-
sized window using the raw co-occurrence counts (DSM),
optimized frequency thresholds (Frequency), and standard
PMI weighting (PMI), and the two models included in the
word2vec library,17 SGNS and CBoW, both with opti-
mized parameters.18 For the online models, we use 3,000-
dimensional vectors and a window size of ±2. The results
are summarized in Table 2.
As can be seen from the results in Table 2, the proposed

16The BLESS test is originally formulated as a test where mod-
els compute similarities for 200 target terms to terms represent-
ing 8 different kinds of semantic relations. We only use the co-
hyponymy relation in our experiments, and require that the model
ranks one of the terms from the co-hyponymy relation higher than
the terms included in all the other relations in the test data.

17code.google.com/archive/p/word2vec
18Both models perform best in our experiments using 500-

dimensional vectors and a context window of 2.

348

TOEFL SimLex BLESS
DSM 63.75 0.09 69.34
Frequency 77.5 0.28 70.85
PMI 81.25 0.38 69.34
SGNS 81.25 0.34 80.5
CBoW 85 0.35 84.5
Order-w 81.25 0.28 72
Order-w-e 81.25 0.29 72.5
Order-w-e-c 78.75 0.32 79
Dir-w 85 0.29 70
Dir-w-e 86.25 0.30 71
Dir-w-e-c 88.75 0.33 77.5

Table 2: Results on three different semantic tests using
three variations of a standard DSM, the two models in the
word2vec library, and two different versions of the online
distributional method: using order-coded context windows
(Ord-), and using directional context windows (Dir-), both
with online frequency weights (-w), eigenvector removal
(-e), and collocation cleaning (-c).

online model is competitive in comparison with both stan-
dard DSMs and neural network-based models. The online
model produces the best score on the TOEFL synonyms
(88.75%), while the results on the SimLex-999 test for the
online model is comparable to the SGNS and CBoW mod-
els (0.33 vs. 0.34 and 0.35) but lower than the PMI model,
which produces the best result on SimLex-999 (0.38). For
the BLESS test, the CBoW model produces the best score
(84.5%), with the online model in second place (79%), and
the PMI model only performing on a par with the raw fre-
quency matrix (69.34%). These results demonstrate that
the online model produces results that are comparable to,
and in some cases even exceed, the current state of the art,
and that both the proposed online model and the models
included in word2vec produce consistently good results
over the three different tests used in these experiments.
One weakness of the evaluation measures used here is that,
at least in theory, a model could produce good results on the
tests, while still returning irrelevant terms as nearest neigh-
bors. An optimal test for a DSM would therefore evaluate
the quality of the nearest neighbors directly, but this is a dif-
ficult problem, since these nearest neighbors will be highly
data-dependent. We are not aware of any such test suites. In
order to get an idea about the quality of the nearest neigh-
borhoods in the different models, Table 3 provides some ex-
amples of the five nearest neighbors for four different terms
in the online model, the CBoW model, and the PMI model.
These examples indicate that all three models produce rea-
sonable neighborhoods, and that the online model and the
CBoW model are the most similar in this respect. The PMI
model is the only model that produce collocates as neigh-
bors (e.g. “very” and “luck” as neighbors to “good”), while
both the online model and the CBoW models exclusively
feature paradigmatically similar terms as neighbors.
Since the online model and the CBoW models produce both
very similar neighborhoods and similar results on the three
different test suites, it may be informative to look at how

Dir-w-e-c CBoW PMI
suit

lawsuit suits suits
suits lawsuit filed

countersuit lawsuits lawsuit
complaint countersuit wearing

counterclaim complaint jacket
play

playing compete plays
compete playing playing

participate perform played
perform plays season

play participate players
good

bad bad excellent
excellent decent luck

poor excellent decent
decent poor poor
better mediocre very

blue
purple purple yellow
yellow red red

turquoise yellow purple
lightblue bloodred pink

reddishbrown skyblue green

Table 3: Examples of the five nearest neighbors to “suit,”
“play,” “good,” and “blue” in the online model, the CBoW
model and the PMI model.

the different models behave when exposed to increasing
amounts of data. Figure 4 shows learning curves for the
different models; the left-hand plot shows the results for the
TOEFL test using increasing amounts of Wikipedia data,
the middle plot shows the results for the BLESS test, and
the right-hand plot shows the results for the SimLex-999
test. Note the log scale of the x-axis in the plots, which
makes it easier to see the development of the models at
the beginning of processing, which is arguably the most
critical phase. As can be seen from these learning curves,
the PMI model consistently outperforms the other models
when there is only limited data available, but when data
increases, the results for the PMI model seem to reach a
plateau fairly quickly, while the results for the other models
continue to improve. For the SimLex-999 test, the results
for the PMI model even decrease after having seen approx-
imately half of the Wikipedia data (the top result for the
PMI model on SimLex-999 is 0.39).

12. Conclusion
This paper has presented an implementation of an online
distributional semantic model that learns various types of
lexical relations between terms from a continuous large
stream of text data. The model is used to produce an un-
supervised distributional thesaurus – the Gavagai Living
Lexicon – that contains entries for hundreds of thousands
of terms in several different languages. The motivation for
developing the lexicon is threefold: firstly, the lexicon is a

349

 0

 0.2

 0.4

 0.6

 0.8

 1

50M 100M 500M 1G

Dir-w-e-c
CBoW

PMI
 0

 0.2

 0.4

 0.6

 0.8

 1

50M 100M 500M 1G

Dir-w-e-c
CBoW

PMI
 0

 0.1

 0.2

 0.3

 0.4

 0.5

50M 100M 500M 1G

Dir-w-e-c
CBoW

PMI

Figure 4: Learning curves for the TOEFL, BLESS, and SimLex-999 tests for the three different models (RI-dir-w-e-c,
CBoW and PMI) using Wikipedia as data. Note the log scale of the x-axis.

valuable resource for higher-level text analysis systems and
natural language processing applications, since it provides
a constantly up-to-date semantic base layer; novel termi-
nology and novel language use is automatically included
and updated in the lexicon continuously, without the need
for editorial intervention. Secondly, the lexicon is valuable
from a scientific perspective, since it constitutes a long-term
experiment that investigates how a DSM develops when
continuously fed with large amounts of uncontrolled data
from online sources. Thirdly, the lexicon is a useful tool
for lexicographic research, since it represents current lan-
guage use in online media; by looking at the entry for some
term over time, we can get a good understanding of how the
use of the term changes and evolves.
In this paper, we have described the underlying online
DSM, and the various processing steps we use to compile
the lexical entries. We have also briefly discussed the sys-
tem architecture, and the input data, and we have exempli-
fied the varying quality of entries in the Living Lexicon. We
have argued that such qualitative variance is to be expected,
since the online DSM only reflects the current language
use on the internet; extremely diverse contextual behavior
limits the statistical regularities that can be utilized by the
DSM. Since quality assurance of an unsupervised continu-
ously learning semantic model trained on uncontrolled on-
line data is a challenging problem, we have also provided
results from batch experiments using controlled data sets,
which demonstrate that the online DSM used by the lexicon
performs on a par with current state-of-the-art algorithms.
We conclude that the Living Lexicon demonstrates the vi-
ability of utilizing unsupervised techniques for compiling
lexical resources, and we hypothesize that we will see a
much wider use for such systems in the near future.

13. Bibliographical References
Al-Rfou, R., Perozzi, B., and Skiena, S. (2013). Polyglot:

Distributed word representations for multilingual nlp. In
Proceedings of CoNLL, pages 183–192.

Baroni, M. and Lenci, A. (2011). How we blessed distri-
butional semantic evaluation. In Proceedings of GEMS,
pages 1–10.

Cuba Gyllensten, A. and Sahlgren, M. (2015). Navigating
the semantic horizon using relative neighborhood graphs.
In Proceedings of EMNLP, pages 2451–2460.

Durme, B. V. and Lall, A. (2009). Streaming point-

wise mutual information. In Proceedings of NIPS, pages
1892–1900.

Golub, G. H. and Van Loan, C. F. (1996). Matrix Compu-
tations (3rd Ed.). Johns Hopkins University Press, Balti-
more, MD, USA.

Hill, F., Reichart, R., and Korhonen, A. (2014). Simlex-
999: Evaluating semantic models with (genuine) similar-
ity estimation. http://arxiv.org/abs/1408.
3456.

Kanerva, P., Kristofersson, J., and Holst, A. (2000). Ran-
dom indexing of text samples for latent semantic analy-
sis. In Proceedings of CogSci, page 1036.

Kanerva, P. (2009). Hyperdimensional computing. Cogni-
tive Computation, 1(2):139–159.

Karlgren, J., Callin, J., Collins-Thompson, K., Gyllensten,
A. C., Ekgren, A., Jürgens, D., Korhonen, A., Olsson, F.,
Sahlgren, M., and Schütze, H. (2015). Evaluating learn-
ing language representations. In Proceedings of CLEF.
Springer.

Kilgarriff, A., Baisa, V., Bušta, J., Jakubı́ček, M., Kovář, V.,
Michelfeit, J., Rychlý, P., and Suchomel, V. (2014). The
sketch engine: ten years on. Lexicography, 1(1):7–36.

Levenshtein, V. I. (1966). Binary codes capable of correct-
ing deletions, insertions, and reversals. Soviet Physics—
Doklady 10, 707710. Translated from Doklady Akademii
Nauk SSSR, pages 845–848.

Österlund, A., Ödling, D., and Sahlgren, M. (2015). Fac-
torization of latent variables in distributional semantic
models. In Proceedings of EMNLP, pages 227–231.

Sahlgren, M., Holst, A., and Kanerva, P. (2008). Permuta-
tions as a means to encode order in word space. In Pro-
ceedings of CogSci, pages 1300–1305.

Steyvers, M. and Griffiths, T. (2006). Probabilistic topic
models. In T. Landauer, et al., editors, Latent Semantic
Analysis: A Road to Meaning. Laurence Erlbaum.

Turian, J., Ratinov, L., and Bengio, Y. (2010). Word rep-
resentations: A simple and general method for semi-
supervised learning. In Proceedings of ACL, pages 384–
394.

Widdows, D. (2003). Orthogonal negation in vector spaces
for modelling word-meanings and document retrieval. In
Proceedings of ACL, pages 136–143.

350

