

LexTerm Manager: Design for an Integrated Lexicography & Terminology
System

Logan Kearsley, Joshua Elliot, Jason Housley, Alan Melby
Brigham Young University Department of Linguistics & English Language

4064 JFSB

Provo, UT 84602 USA

Email: chronosurfer@gmail.com, joshuacelliott@gmail.com, housleyjk@gmail.com, alan.melby@gmail.com

Abstract

We present a design for a multi-modal database system for lexical information that can be accessed in either lexicographical or
terminological views. The use of a single merged data model makes it easy to transfer common information between termbases and
dictionaries, thus facilitating information sharing and re-use. Our combined model is based on the LMF and TMF metamodels for
lexicographical and terminological databases and is compatible with both, thus allowing for the import of information from existing
dictionaries and termbases, which may be transferred to the complementary view and re-exported. We also present a new Linguistic
Configuration Model, analogous to a TBX XCS file, which can be used to specify multiple language-specific schemata for validating and
understanding lexical information in a single database. Linguistic configurations are mutable and can be refined and evolved over time as
understanding of documentary needs improves. The system is designed with a client-server architecture using the HTTP protocol,
allowing for the independent implementation of multiple clients for specific use cases and easy deployment over the web.

Keywords: TBX, terminology, lexicography

1. Introduction

Termbases and dictionaries have a great deal of overlap in

the kind of information they contain. However, there is

very little overlap in the tools used to build and interact

with them or in the data formats used to store and transmit

them. This means that the data assembled in the creation of

a termbase or dictionary is rarely re-used to assist in

creating the other kind of artefact. Since authoring

dictionaries and termbases as well as ensuring their

accuracy is a time consuming and labor intensive process,

there is potentially a great deal to be gained from

facilitating this kind of re-use of lexical information.

Building on previous work by Melby and Wright (1999),

on translating between lexicographical and teminological

data formats, we have designed a system to merge

lexicographical and terminological information into a

single database. Combined entries can then be accessed in

either lexicographical or terminological views depending

on the needs of the user as a lexicographer or terminologist,

with any data entered being immediately available in either

format. We have chosen the name “LexTerm” to reflect this

fusion of lexicographical and terminological functions.

Hereafter, lexicographical and terminological data will be

referred to as lexical data (i.e., dealing with lexical items)

when considering the union of the two.

It is important to note that this work should not be

confused with the similarly-named Linguoc LexTerm

software (Oliver et al., 2007). While Linguoc LexTerm

deals with the problem of automatic extraction of terms for

inclusion in a termbase from a corpus of text, the current

LexTerm manager project is concerned with the sharing of

data between lexicographical and terminological contexts

and curation of that data once it has been acquired.

1.1. Standards Compatibility

The designs for each half of the combined LexTerm data

model were based on the existing Lexical Markup

Framework (LMF) standard (ISO 24613, 2008) and the

Terminological Markup Framework and TermBase

Exchange (TMF and TBX) standards (ISO 16642, 2003;

ISO 30042, 2008), and the combined model is compatible

with both. Our model structure was derived by identifying

data elements that are semantically identical or similar

between the LMF and TMF metamodels followed by the

selection of a canonical name and merger of matching

elements into one in the combined model. While the LMF

and TMF metamodels are both conceived of as describing

hierarchical trees, the combined LexTerm data model is a

more generic directed acyclic graph (DAG).

Terminological or lexicographical views are derived by

choosing to consider the appropriate nodes (concepts or

languages, respectively) as roots and allowing the

remainder of the graph to 'hang' from them (discarding

nodes containing data elements irrelevant to the chosen

view), thus restoring the appearance of the appropriate tree

structure.

1.2. Inter-Standard Compatibility

There are many pairs of data elements between the LMF

and TMF models that are not identical in meaning, but are

similar enough that inclusion of both in the combined

model would result in unnecessary duplication of

information, requiring additional human effort to fill both

fields and hindering the goal of automatically transferring

as much information as possible between the two viewing

modes. Additionally, in order to further the goal of sharing

information from multiple sources, it’s desirable to

maintain at least import compatibility with as many

pre-existing termbase and dictionary formats as possible.

The attempt to support compatibility with each additional

1686

format results in a dramatic increase in the number of such

pairs. Thus, depending on the richness of the data in

question, export to a standard format such as TBX is not

always as straightforward a process as traversing the

database from the appropriate tree root and writing out the

corresponding TBX elements for each node. Additional

transformations are defined to handle the mapping between

the elements of other lexicographical and terminological

data models and the merged elements of LexTerm's internal

data model. This can result in some loss of information

when importing data from an external source format to the

LexTerm database and re-exporting again to an arbitrary

target format even when all of the relevant data elements

from both the source and target formats are theoretically

represented in the LexTerm model; in most cases, however,

this is expected to be negligible. For example, many types

of data elements are allowed to appear at multiple locations

in the hierarchy of a TBX termbase, for maximal flexibility

and backwards compatibility with other systems; in the

LexTerm model, however, any type is allowed to occur in

only one location relative to other data elements. As a

result, the opinions encoded in LexTerm on what

constitutes a single lexeme or what must grouped in a

single concept entry may differ from the requirements of

any particular import or export situation, but it is nearly

always possible to perform the requisite rearrangements

entirely automatically.

2. Data Model

2.1. Model Derivation

The key insight to merging lexicographical and
terminological data is that a dictionary word sense is
equivalent to a termbase concept (Melby & Wright, 1999).
Linking these two data elements forms the initial bridge
between lexicographical and terminological data models.
After that connection is made, the models are further
merged by deduplication of shared information in
semantically similar elements- i.e., both termbases and
dictionaries will contain definitions, and these need be
stored only once for each combination of concept and
language (in which a concept is instantiated as a lexical
item or term), as long as a single definition can be accessed
from or pointed to by both a terminological concept entry
and a lexicographical word entry.

Figure 1: The Normalized Data Model

1687

2.2. Model Normalization

The initial naively dedupli cated model frequently allows
for the same information to be accessed by multiple paths;
while this is desirable in the public API (and indeed, is
necessary to fulfil the goal of presenting common
information in either a lexicographical or terminological
view), it results in the possibility of data inconsistencies
where two paths that should point to the same data in fact
lead elsewhere. The final database design thus uses the
normalized model shown in Figure 1.
 Achieving consistency guarantees through
normalization comes at the cost of access efficiency.
Reconstructing the non-normalized model to extract LMF
or TMF halves requires multiple queries or complex table
joins. For example, to obtain all of the representations (e.g.,
standard orthography, IPA pronunciation, etc.) for all of the
terms for a particular concept in a term base, the Concept,
Lexeme, LexicalForm, Representation, and
RepresentationType tables must all be queried. This results
in what can be a severe performance penalty when
requesting hundreds or thousands of concepts and
triggering thousands or hundreds of thousands of queries
against the database.

To improve performance, we use a separate cache of
pre-compiled lexeme entries from which concept entries
can also be quickly reconstructed. Changes to each table
are tracked and trigger updates to any related cached
entries. For example, updating a concept for cat (animal)
will result in identifying and retrieving the lexeme entries
for "cat" in English and "ねこ" in Japanese. The cache can
reduce latency by up to a factor of 100.

2.3. Model Flexibility

In addition to merging lexicographical and terminological
information, we have also attempted to make the system as
flexible as possible with regards to the structures of
languages about which lexical data can be stored. For
reference, TBX achieves the necessary flexibility via the
use of XCS files that specify the allowed language names,
grammatical numbers, grammatical gender markers, etc.,
that can occur in any given TBX file. This system as
described in the TBX standard is, however, insufficient for
our use because of the relatively greater complexity of
information that may be required in lexicographical
contexts compared to the terminological contexts TBX

1

was developed for, and because TBX provides no means of
distinguishing which values are allowed on a per-language
basis (such that one cannot specify that, for example,
neuter gender is invalid on French words in a file
containing entries for both French and German). In the
lexicographic world, the Multi-Dictionary Formatter
(MDF) format used by SIL Shoebox

2
 (based on SIL

Standard Format), while being developed as a fully
specified machine-readable format (Coward & Grimes,
1995), achieves sufficient flexibility to record any
conceivable language largely by virtue of allowing the user
to extend the format by defining their own Standard Format
data elements with no reference to comprehensibility by

1 While it can be argued that lexicographical information is no

more complex than terminological data in general, here we are

concerned specifically with the structures that can be encoded in

TBX specifically.
2 http://www-01.sil.org/computing/shoebox/

any other system. This results in a multitude of
idiosyncratic “MDF-derived / MDF-based formats”
(Drude & Nevskaya, 2010). The overly-flexible (and thus
difficult to validate) design of standard MDF is also known
to allow the possibility of data inconsistencies (Drude &
Nevskaya, 2010).

 While other existing lexicon-management systems

such as COLDIC (Bel et al., 2006) are capable of handling

essentially arbitrary LMF-compliant schemata, and thus of

describing essentially any human language with full

validation, they still have the minor drawback of requiring

that a full schema be defined up-front. In other words,

before you can begin documenting a language's lexicon,

you must know beforehand what features will need to be

documented. To further streamline the process of

documenting new lexical data while maintaining the

capacity for automatic validation, we have chosen to

consider the language-specific schemata as a part of the

mutable data model, thus allowing for new features to be

added to a lexicon as they are deemed necessary and for

different schemata to be used for data on different

languages in the same database.

2.4. The Linguistic Configuration Model

Language specific schemata are defined by a meta-schema
known as the Linguistic Configuration Model (LCM),
whose basic structure is shown in Figure 2. Linguistic
configurations are based loosely on and are analogous in
function to XCS files from TBX. LCM data can be
dynamically updated just like lexical data and used to
validate the lexical data on a per-language, rather than
per-file or per-database, basis. The ability to dynamically
update language configurations and re-validate lexical
information at any time allows the system to accept imports
and merge data from multiple different sources that may
have used different incompatible schemata by extending
the relevant language descriptions as needed to
accommodate incoming data. It also expands the system's
usability in, e.g., field work, or other situations in which
relevant linguistic features may not be known at all prior to
data collection.

 In order to maintain a balance between flexibility and

comprehensibility, the LexTerm LCM initially assumes

that:

1. all languages have one or more representational

systems (e.g., native orthography, romanization,

IPA transcription, etc.)

2. all languages have one or more lexical classes

(i.e., parts of speech).

3. words belonging to a class may exhibit any

number of morphological forms and any number

of grammatical features with finite sets of values

associated with that class

4. some form in each class will be preferred for

citation (the lemma form).

 The names and functions of representations,

morphological forms, grammatical features, and values of

features may be freely specified, with permissible values

for each data element specified by a named enumeration;

1688

however, it is intended that LexTerm interfaces will in

some way highlight data elements that do not belong to

standardized categories, such as those indexed in ISOcat

(Kemps-Snijders et al., 2008), to encourage users of the

system to adopt standard categories or to submit necessary

new categories for standardization.

2.5. Data Validation

By moving schema information into the database itself, we

are implicitly giving up any data validation capabilities that

otherwise come built-in with the underlying database

system (e.g., MySQL, PostgreSQL, or similar). We must

therefore re-implement validation of lexical data against

LCM schemata. We consider this, however, to be a

worthwhile trade-off in exchange for greater end-user

flexibility. The process is analogous to validation of an

XML document against a arbitrary XSD file, or of a TBX

document against an arbitrary XCS file.

 In addition to internal validation, LCM data is

intended to be used by LexTerm interfaces to determine

what fields should be presented to a user for display and/or

editing. When displaying an incomplete entry, LCM data

indicates what should be present, thus allowing the

interface to prompt the user for missing information.

3. Application Architecture

The LexTerm system employs a client-server architecture

which allows re-implementation of either the client or the

server in different programming languages or on different

computing platforms independently of the other.

Canonically, this allows a single LexTerm server,

managing all of the stored information, to be accessed over

the internet by any number of independent LexTerm

clients. However, it is intended that a LexTerm server and

client may be packaged into a single desktop application

with the client and server simply being different processes

residing on the same machine. In either case, the same

communication protocol and division of responsibilities is

used.

 Our prototype system has a client implemented in

HTML and JavaScript and a server implemented in Python

with the Django web framework
3
. It is important to note,

however, that the JavaScript client is in no way tied to the

Django application. While the two could be hosted in a

single location to provide a unified LexTerm web

application, they are logically distinct. The client

application can be served from any location, including the

local filesystem, independent from and dynamically

connected to a particular LexTerm server.

3.1. The LexTerm Server

The server is responsible for validating and storing data

received from a client and retrieving data in either

lexicographical or terminological views in response to

requests. Additionally, the server performs mapping

between separate client-facing lexicographical and

terminological data models and the unified internal data

model. In software engineering terms, it corresponds to the

Model component in a Model-View-Controller (MVC)

architecture (Deacon, 1995). The server provides only a

machine-to-machine API, and presents no human-readable

interface of its own.

3 https://www.djangoproject.com/

Figure 2: The Linguistic Configuration Model

1689

3.2. The LexTerm Client

The client is responsible for displaying information and

(optionally) providing an interface for editing. In MVC

terms, it corresponds to the View and Controller

components of the entire application. These functions can

be realized in multiple ways; e.g., by an interactive

graphical interface for browsing and editing entries, or by

automated programs for importing from and exporting to

files in various external formats. The client-server

architecture thus makes it relatively easy to write plugins to

handle interfacing with other systems, exporting

human-readable PDF or HTML dictionaries, etc., simply

by writing a client that can transform the intermediate

format of the LexTerm client-server protocol into the

desired format or vice-versa, with no changes required to

the rest of the system.

 To serve the common use case of importing from and

exporting to various external data formats, we have

investigated the possibility of defining a declarative

templating language to automatically handle the requisite

transformations, thus allowing new formats to be

supported simply by writing a template interpreted by a

common client. While we have yet to discover a fully

satisfactory solution to this problem, there are several

widely-used generic templating formats in existence (e.g.,

Mustache
4
, which is capable of producing XML, LaTeX,

JSON (JavaScript Object Notation), and any other

text-based document type), and research in that area is

essentially independent of core LexTerm functionality.

3.3. The Communication Protocol

In keeping with the idea of internet-based access, the

client-server protocol is based on REST (Representational

State Transfer) principles (Fielding, 2002), sending

JSON-encoded objects (Bray, 2014) over HTTP. The

widespread accessibility of libraries for processing HTTP

requests and JSON serialization in most popular

programming languages makes this a logical choice. JSON

was chosen for object serialization due to its relative

simplicity, but an alternate XML-based serialization mode

is also possible, and may be preferred for ease of

transformation into other XML-based formats (such as

dialects of TBX).

 One downside of the choice to use the HTTP protocol

is that it is impossible for the server to notify any client of

changes to the database made independently of that client,

which complicates the usage of the LexTerm system as

currently designed in multi-user concurrent real-time

editing situations and necessitates work-arounds such as

periodic long-polling
5
 (Loreto et al., 2011; Stratmann,

Ousterhout, and Madan, 2011). This is only a serious issue

if two users are simultaneously editing fields of the same

4 http://mustache.github.io/
3Long-polling is a means of simulating server-initiated

communication by sending a request that is not expected to be

resolved immediately, and leaving the connection open until the

server has data to respond with rather than timing out after a short

interval.

lexicographical or terminological entry; in that case, one

user's changes will simply be overwritten. This situation

should be rare enough, and the consequences suitably mild,

that this is not considered an impedance to the practical use

of the system; this situation is, however, an excellent

candidate for optimistic concurrency control (OCC)

methods which can detect and roll back conflicting

transactions that would otherwise be lost and report back to

the user for conflict resolution (Kung & Robinson, 1981).

The OCC approach avoids the problem of a user acquiring

a data lock and then never releasing it, which is especially

problematic in stateless web-based systems without

persistent connections that could be tied to data locking and

unlocking. Completely resolving this issue also touches on

the problem of properly merging duplicated entries and

represents a potential area for future research.

 In accordance with REST principles, the initial

protocol design called for a series of HTTP end-points

corresponding to each logical resource in the database

(dictionary, termbase, lexeme, concept, definition, etc.). As

data within either lexicographical or terminological views

are inherently hierarchical, this resulted in hierarchically

nested URLs, analogous to the usual directory-structured

URL schemas used by most websites., but with multiple

paths (using either a dictionary or termbase as the root

node) to most resources. While conceptually elegant, this

interface is, however, difficult to work with from both

ends: on the server it requires translating hierarchical paths

into the appropriate underlying database calls and often

duplicating code paths to map multiple URLs onto a single

object, while on the client it often requires jumping through

numerous hoops to traverse the tree to the bits of data you

actually want.

 For ease of use, an alternative ‘flattened’ API was

designed which corresponds much more closely to queries

against the underlying database. Due to the previously

mentioned caching layer, GET requests against this API

can be handled by an Elasticsearch
6
 document search

server, often avoiding the need to touch the underlying

normalized database at all.

4. Future Work

The implementation of a complete, commercially useful

LexTerm system requires attention to several

administrative concerns in addition to the simple capacity

for storing, validating, and retrieving lexical information,

some of which require annotations and additions to the

basic data model. These include handling user accounts

and permissions, term and lexeme life cycle management,

and practical aids like duplicate entry detection, fact

checking, and collaboration tools. More work also remains

to be done on expanding the LexTerm data model to handle

a wider range of potentially data elements.

 Several expansions to the configuration model are

also planned. First, it would be useful to allow internal

names for data elements to be specified separately from

6
 http://www.elasticsearch.org/

1690

their correspondences to standard categories (as specified

by ISOcat or another appropriate registry). This would

significantly reduce the burden on the client software to

identify data elements that lack a correspondence to a

standardized definition. It would also represent the first

step towards completely separating display names from

internal data element identifiers, thus allowing for better

localization. However, the process would introduce a

non-trivial amount of additional complexity into the data

model, as the valid values of user-facing data element

names in the linguistic configuration data for the features

of any particular language would depend on the other

languages also defined in the configuration model and the

valid representation types specified for those languages

(unless interface language configurations are added

separate from and independent of the existing

configurations for documented languages).

5. Acknowledgements

The authors would like to acknowledge a generous

grant from the Brigham Young University Office of

Research & Creative Activities in furtherance of this

research. Additional grant funding has been provided by

LTAC Global
7
. We would also like to acknowledge the

assistance of Kara Warburton and Hanne Smaadahl in

providing feedback and guidance on developing

terminological data models and typical user expectations.

6. References

Bel, N.; Espeja, S.; Marimon. M.; and Villegas, M. (2006)
COLDIC, a Lexicographic Platform for LMF Compliant
Lexica. In Proceedings of LREC 2006, Genoa.

Bray, T. (2014). The JavaScript Object Notation (JSON)
Data Interchange Format. Internet Engineering Task
Force, Request for Comments, 7158(2070-1721).

Deacon, J. (1995) Model-View-Controller (MVC)
Architecture. Retrieved from
http://www.jdl.co.uk/briefings/MVC.pdf

ISO 16642 (2003). Computer applications in terminology
– Terminological markup framework (LMF). Geneva:
International Organization for Standardization.

ISO 24613 (2008). Lexical resource management –
Lexical markup framework (LMF). Geneva:
International Organization for Standardization.

ISO 30042 (2008). Terminology and other language and
content resources – Computer applications in
terminology – TermBase eXchange Format
Specification (TBX). Geneva: International
Organization for Standardization.

Fielding, R. T.; Taylor, R. N. (2002), Principled Design of
the Modern Web Architecture. In ACM Transactions on
Internet Technology (TOIT), 2(2). New York:
Association for Computing Machinery, pp. 115–150

Kemps-Snijders, M.; Windhouwer, M.; Wittenburg, P.; and
Wright, S. E. (2008). ISOcat: Corralling Data Categories
in the Wild. In Proceedings of LREC 2008, Marrakech.

Kung, H. T.; Robinson, J. T. (1981). On optimistic methods
for concurrency control. ACM Transactions on
Database Systems (TODS), 6(2), pp. 213–226.

7 http://www.ltacglobal.org/

Loreto, S.; Saint-Andre, P.; Salsano, S.; and Wilkins, G.
(2011). Known issues and best practices for the use of
long polling and streaming in bidirectional http. Internet
Engineering Task Force, Request for Comments, 6202
(2070-1721).

Melby, A.; Wright, S.E. (1999). Leveraging
Terminological Data for Use in Conjunction with
Lexicographical Resources. Proceedings of the Fifth
International Congress on Terminology and Knowledge
Engineering 23-27 August 1999, Innsbruck, Austria,
544-569. Vienna: TermNet.

Oliver, A.; Vàzquez, M.; and Moré, J. (2007). Linguoc
lexterm: una herramienta de extracción automática de
terminología gratuita. Translation Journal, 11(4).

Stratmann, E.; Ousterhout, J.; and Madan, S. (2011).
Integrating long polling with an MVC framework. In
Proceedings of the 2nd USENIX conference on Web
application development. USENIX Association, p. 10.

7. Appendix

7.1. Reference Implementations

Source code for reference implementations of the LexTerm

client and server is hosted publically on GitHub.

LexTerm Client:

https://github.com/LexTerm/LexTermClient

LexTerm Server:

https://github.com/LexTerm/LexTermServer

7.2. API Documentation

Detailed documentation on the hierarchical API, including
specification of routes and examples of JSON-formatted
request and response bodies can be found at
http://docs.lexterm.apiary.io/ .
 Interactive documentation of the ‘flattened’ API
(which allows experimentation with raw HTTP requests
and direct inspection of the resulting data structures) can be
found at http://lexterm.gevterm.net/api/ .

1691

