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Abstract
In the task of event coreference resolution, recent work has shown the need to perform not only full coreference but also partial
coreference of events. We show that subevents can form a particular hierarchical event structure. This paper examines a novel two-stage
approach to finding and improving subevent structures. First, we introduce a multiclass logistic regression model that can detect
subevent relations in addition to full coreference. Second, we propose a method to improve subevent structure based on subevent clusters
detected by the model. Using a corpus in the Intelligence Community domain, we show that the method achieves over 3.2 BLANC F1
gain in detecting subevent relations against the logistic regression model.
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1 Introduction
Event coreference resolution is the problem of determining
whether two event mentions refer to the same event. This
problem is important in that resolved event coreference is
useful in various tasks such as topic detection and tracking,
information extraction, question answering, textual entail-
ment, and contradiction detection (Bejan and Harabagiu,
2010).
However, one aspect that makes the problem challenging
is that events can form a complex structure and relate to
each other in various ways (Huttunen et al., 2002; Bejan
and Harabagiu, 2008). In particular, some of event relations
exhibit subtle deviation from the perfect identity of events
(Hovy et al., 2013). One of these relations is a subevent
relation. This relation forms a stereotypical sequence of
events, or a script (Schank and Abelson, 1977; Chambers
and Jurafsky, 2008). Figure 1 shows some examples of that
relation in the illustrative text below. In this figure, we say
that E15 is a subevent of E12, for example.

Ismail said the fighting, which lasted several days, intensi-
fied when forces loyal to Egal’s Ha-bar Awal sub-clan of the
Issak attacked(E12) a militia stronghold of his main oppo-
sition rival, . . .

Egal militia, claiming to be the national defence force, said
they had captured(E15) two opposition posts, killing(E16)
and wounding(E17) many of the fighters, destroying(E18)
three technicals (armed pick-up trucks) and confiscat-
ing(E19) artillery guns and assorted ammunition.

As Figure 1 shows, we see that E15, E16, E17, E18, and
E19 form a cluster under their parent E12. Let us call this
cluster a subevent cluster. In this work, we also pay atten-
tion to undirected relations between subevents sharing the
same parent. Let us call them subevent sister relations, ex-
emplified by lines in Figure 1.
In the context of event coreference resolution, we adopt the
approach of (Hovy et al., 2013) in which a subevent rela-
tion exhibits partial identity of events whereas normal event
coreference represents full identity of them. For clarifica-
tion, we refer to the latter as full (event) coreference in this
paper. Unlike previous work on event coreference, we deal

Figure 1: Examples of the subevent relation. An arrow rep-
resents a subevent relation with the direction from a parent
to its subevent.

with subevent parent-child and sister relations as additional
classes to be assigned. Detecting subevent structure is im-
portant for event coreference resolution because we can re-
duce the difficulty of full coreference resolution by exclud-
ing subevent relations from candidates of full coreference
chains after finding such structure.
In this paper, we propose a novel two-stage approach to de-
tecting subevent structure, and evaluate the approach. We
focus on within-document full coreference and subevent re-
lations in the Intelligence Community (IC) domain. The
contributions of this work are as follows:

• This is the first work to systematically detect subevent
parent-child relations as partial coreference for event
coreference resolution. We address the problem
from the perspective of subevent structure based on
subevent clusters.

• We present a multiclass logistic regression model us-
ing a rich set of features to represent different linguis-
tic characteristics, which can identify both full coref-
erence and subevent relations. It is also able to deter-
mine the direction of subevent relations.

• We show that the logistic regression model gains rea-
sonable performance for both full coreference and
subevent relations.
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• We propose a voting algorithm to select out parents
for subevents in subevent clusters captured by the
model. We show that the method can successfully de-
tect those parents and improve the performance of de-
tecting subevent parent-child relations.

2 Related Work
Event coreference is much less studied as compared to a
large body of work on entity coreference. All previous
work on event coreference except (Cybulska and Vossen,
2012) deals only with full coreference.
Early work (Humphreys et al., 1997; Bagga and Baldwin,
1999) performed event coreference resolution on scenario
specific events. Pradhan et al. (2007) dealt with both en-
tity and event coreference by taking a three-layer approach.
Chen et al. (2009) proposed a clustering algorithm using
a maximum entropy model with a range of features. They
showed that features related to four event attributes had a
big impact on intra-document event coreference resolution.
Bejan and Harabagiu (2010) built a class of nonparamet-
ric Bayesian models using a (potentially infinite) number
of features to resolve both intra- and inter-document event
coreference. Lee et al. (2011) formed a system with de-
terministic layers to make coreference decisions iteratively
while jointly resolving entity and event coreference. Their
systems perform only on full coreference, and do not detect
any other type of event relations.
More recently, Cybulska and Vossen (2012) presented
an unsupervised model to capture semantic relations and
coreference resolution. Although their model considered
non-full coreference in addition to full coreference, they did
not show quantitatively how well their system performed in
each of these two cases. This work also differs from their
work in that we focused specifically on subevent parent-
child relations while capturing subevent structure.
In relation to subevent structure detection, there has been
some previous work on extracting scriptal event schemas.
Chambers and Jurafsky (2008) presented an unsupervised
learning approach to extracting a chain of temporal order-
ing of events called narrative schemas. The database of nar-
rative schemas turns out to be useful for detecting subevent
sister relations. Regneri et al. (2010) explored a multiple
sequence alignment algorithm to construct a graph repre-
sentation of temporal event structure of scripts. Balasubra-
manian et al. (2013) employed co-occurrence statistics of
triples in the form of (Arg1, Relation, Arg2), and achieved
more coherent event schemas. They all focused on subevent
sister relations, not on subevent parent-child relations.

3 Approach
3.1 First Stage: Event Relation Learning
Given that event mentions are annotated in a corpus, the
goal of this stage is to build up a multiclass event coref-
erence resolver that classifies a relation between two event
mentions into one of the following four classes: full coref-
erence (FC), subevent parent-child (SP), subevent sister
(SS), or no coreference (NC). Our model is based on the
pairwise coreference model (Chen et al., 2009; Bengtson
and Roth, 2008), which examines the relation between each

pair of two event mentions. We use L2-regularized logistic
regression to avoid overfitting. After training, it exclusively
assigns one of the four classes above to each pair. We re-
gard this model as our baseline system.
One additional note is that in the case of SP, our system
internally models the directionality of that relation from the
perspective of the discourse flow. Thus, it can output which
event is a parent and which is its subevent, if necessary, in
addition to an SP decision.

3.2 Second Stage: Subevent Detection
Our motivation for this stage comes from the result of the
first stage. As we describe in Section 4, it turns out that our
logistic regression model gains relatively high precision on
SS relations. Therefore, we hypothesize that we can rely on
the SS relations and resulting subevent clusters obtained in
the first stage, and use a voting algorithm to select their par-
ent for improving the system performance on SP relations.
The basic idea is that for each subevent cluster, we enu-
merate all event mentions (parent candidates) outside the
cluster, and calculate probabilities of SP between each par-
ent candidate and the cluster using the logistic regression
model trained in the first stage. We then select out an event
mention with the highest SP probability as the most likely
parent for that cluster among the parent candidates. We
consider two options for calculating the highest probabil-
ity. In Option 1, we regard the highest probability as the
highest SP probability among all pairs of parent candidates
and sisters in the cluster. In Option 2, we sum up SP proba-
bilities between a parent candidate and the sisters, and take
the largest out of the sums.

3.3 Evaluation
Since our system deals with four different relations between
event mentions, it is natural to use link-based metrics for
evaluation. Thus, we used BLANC (Recasens and Hovy,
2011), which claims that the metric is more adequate for
coreference scoring. BLANC was developed to compute
precision, recall, and the F1 score separately for two types
of link (i.e., positive and negative links), and then average
them for the final score. More specifically, if a system gains
precision Pp and recall Rp for positive links, and precision
Pn and recall Rn for negative ones, the BLANC F1 score
is computed as follows:

FBLANC =
Fp + Fn

2
=

PpRp

Pp +Rp
+

PnRn

Pn +Rn

where Fp and Fn denote the F1 score for positive links and
negative ones, respectively. Following the original defini-
tion, we apply BLANC to the four-class case as follows.
Given system output as a 4x4 confusion matrix, we con-
vert the matrix into four 2x2 one-vs-all confusion matrices,
each of which represents a binary decision of the system as
to each class. From these 2x2 matrices, we compute Pp,
Rp, Pn, and Rn for each class, and then use them to com-
pute FBLANC .

4 Experimental Results
4.1 Corpus
We used a corpus consisting of 65 newspaper articles in the
IC domain. The inter-annotator agreement numbers for FC
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and SP are 0.620 and 0.467 in terms of Fleisss kappa, re-
spectively. In addition to relations manually annotated in
the corpus, we also considered subevent relations extended
from the combination of FC and SP relations. For instance,
if A is a subevent of B, and B is coreferential with C, then
A is also a subevent of C. We regarded this type of rela-
tion as an SP relation. Table 1 shows the corpus statistics,
including our data split. We conducted 5-fold cross valida-
tion using the split.

Training+Dev Test Total
# Articles 49 16 65
# Relations 26499 9409 35908

FC 1037 216 1253
SP 997 201 1198
SS 399 139 538
NC 24066 8853 32919

Table 1: Corpus statistics.

4.2 Results
We constructed the logistic regression model using 135 fea-
tures1. We employed MetaCost (Domingos, 1999) to ad-
dress the data imbalance shown in Table 1. Table 2 shows
the system performance in the first stage. In this table, P
and R stand for precision and recall, respectively, for posi-
tive and negative links, and F1 stands for the final BLANC
F1 score. Table 2 indicates that the system achieved rela-
tively high precision on SS relations in the first stage. This
is basically because we incorporated more effective fea-
tures for SS.

Relation Pos Links Neg Links Avg
R P R P F1

FC 41.20 41.59 98.64 98.62 70.01
SP 8.46 34.00 99.64 98.03 56.19
SS 14.39 66.67 99.89 98.73 61.49
NC 98.18 95.36 23.92 45.24 64.02

Table 2: BLANC scores gained in the first stage.

Relation Pos Links Neg Links Avg
SP R P R P F1

Option 1 13.43 31.03 99.35 98.13 58.74
Option 2 14.43 33.33 99.37 98.15 59.45

Table 3: BLANC scores gained in the second stage.

Table 3 shows the performance on SP relations in the sec-
ond stage in terms of the BLANC scores. As compared to
the baseline performance (the second row in Table 2), the
second stage with Option 1 and 2 improved the BLANC
F1 score by 2.5 points and by 3.2 points, respectively. We
also see from Table 3 that Option 2 achieved a better per-
formance than Option 1.

1See Appendix A for more details.

(a) A subevent cluster extracted in the first stage.

(b) A subevent structure extracted in the second stage.

Figure 2: An example of system output obtained in the two
stages.

Figure 2 illustrates how the system performs subevent
structure detection through the two-stage process with re-
spect to the subevent structure shown in Figure 1. As shown
in Figure 2a, the extracted subevent cluster lost E19, but
still captured four subevents out of the five in the gold stan-
dard. Figure 2b shows a subevent structure that the system
obtained in the second stage from the subevent cluster ex-
tracted in the first stage. The system selected out E23 for
a parent of the four subevents, which is different from E12
in Figure 1. However, E12 and E23 are coreferential in the
gold standard annotation. Hence, all detected links in the
subevent structure shown in Figure 2b are correct by means
of extended subevent relations.

5 Discussion
The comparison between Option 1 and 2 gives us an inter-
esting insight on voting of subevents in an obtained cluster.
Figure 3 provides an evidence to show where the perfor-
mance difference between the two options comes from. In
this figure, a numeric value stands for a subevent proba-
bility between a parent candidate and a subevent. E22 is
the correct parent for the subevent cluster {E23, E24} in
this case. The parent selection algorithm with Option 1
mistakenly chose E21 for the parent because the highest
subevent probability 0.881 comes from the subevent rela-
tion between E21 and E23.

Figure 3: Parent selection from subevent sisters.

Our error analysis indicated that a common error derives
from linguistic complexity in the expression of a subevent
parent. For instance, E14 and E15 are subevents of E16
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in the text below. E16 is a rare, abstract term, making it
difficult to capture SP relations.

Over 90 Palestinians and one Israeli soldier have been
killed(E14) since Israel launched(E15) a massive air and
ground offensive(E16) into the Gaza Strip on June 28, . . .

6 Conclusion
We presented a multiclass logistic regression model that
can detect subevent relations in addition to full coreference.
We then proposed and evaluated a novel approach to im-
proving subevent structure using a voting algorithm. Our
evaluation indicates that the approach achieves significantly
better performance gain. To the best of our knowledge, this
is the first work to differentiate subevent relations as partial
coreference from full coreference, and examine subevent
structure including subevent sister relations.
One possible extension to this work is to systematically
check structural consistency beyond pairwise decisions
and resolve inconsistency in detected subevent structures,
thereby obtaining a better performance on SP and SS. In
addition, we can construct a library of domain event back-
bones by aggregating improved subevent structures, and
then use it as a background knowledge resource for resolv-
ing full coreference in related domains.
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Appendix A Features
Table 4 shows the 135 features used in the logistic regres-
sion model described in Section 3.1. They can be orga-
nized into five groups as shown in the table. Our feature
selection study showed that ’Subevent Ontology’ and ’Nar-
rative Schemas’ are effective for SP and SS relations. As
for the former feature, we developed a subevent ontology
tree from our training data set, shown in Figure 5. From the
tree, we observed that some event words (e.g., ’raid’ and
’explosion’) show up as a subevent parent only, and others
(e.g., ’kill’ and ’injure’) as a subevent only, while several
words (e.g, ’attack’ and ’bomb’) can be both. Narrative
schemas2 aggregate structured sets of related events. Fig-
ure 4 shows parts of the narrative schemas that are relevant
to the IC domain. We observed that the resource is particu-
larly effective in capturing SS relations.

2http://www.usna.edu/Users/cs/nchamber/data/schemas/acl09/

score=24.877186
Events: arrest kill shoot charge identify wound found endan-
ger threaten harm
Scores: 6.440 6.149 5.657 5.174 4.690 4.617 4.407 4.283
4.255 4.034
. . .
score=16.74399
Events: destroy loot burn smash damage steal kill rip
Scores: 5.390 4.751 4.589 4.066 3.748 3.747 3.729 3.139
. . .
score=12.323438
Events: kill shoot wound ambush murder kidnap
Scores: 5.359 4.346 4.140 3.772 3.683 3.136
. . .

Figure 4: Excerpts from narrative schemas relevant to
events in the IC domain. In each schema, the first line
shows the overall score for that schema, and the third shows
the individual verb scores, aligned with verbs in the second.

Root [350 (100.0)]
|-- attack [87 (24.9)]
| |-- kill [30 (8.6)]
| |-- wound [9 (2.6)]
| |-- injure [6 (1.7)]
| |-- fire [4 (1.1)]
...
|-- bomb [46 (13.1)]
| |-- kill [17 (4.9)]
| |-- injure [6 (1.7)]
| |-- wound [4 (1.1)]
| |-- explode [4 (1.1)]
...
|-- fight [24 (6.9)]
| |-- kill [8 (2.3)]
| |-- attack [5 (1.4)]
| |-- wound [3 (0.9)]
| |-- capture [1 (0.3)]
...
|-- raid [18 (5.1)]
| |-- kill [4 (1.1)]
| |-- arrest [3 (0.9)]
| |-- bomb [1 (0.3)]
| |-- setting [1 (0.3)]
...

Figure 5: Excerpts from the subevent ontology tree con-
structed from the training data set. The numbers in each
node show a frequency of the headword of an event mention
and its ratio (percentage) to the total number of occurrences
of event mentions, which is 350. The tree shows subevent
parents in the first level and subevent sisters in the second
level.
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Group Feature Name Description

Lexical (11)
Event String Similarity

Binary or numeric features by various string similarity measures between headwords of
event mentions, including the Levenshtein distance, the Jaro coefficient, and the Dice
coefficient.

Modifier Similarity
Binary or numeric features based on the Dice coefficient between modifiers and event
mentions.

Syntactic (44)

Part of Speech
Binary features as to plurality, tense, nominality and verbality of headwords of event
mentions.

Syntactic Dependency
Binary features as to a particular type of dependency between event mentions, annotated
by the FANSE parser (Tratz and Hovy, 2011).

Modifier Similarity
Binary features as to whether event mentions are modified and whether headwords of
event mentions are both modified by negation; numeric features by the Dice coefficient
of modifiers of event mentions (if both exist).

Determiner Binary features as to existence of a determiner of an event mention.

Semantic (41)

Subevent Ontology
A binary feature as to whether event mentions are in the subevent ontology constructed
from the training data.

Narrative Schemas
Numeric features by scores given in the database of Narrative Schemas (Chambers and
Jurafsky, 2009).

Event as Entity
Binary features as to whether nominal event mentions are resolved into entities by the
Stanford coreference resolution system (Lee et al., 2011).

WordNet Similarity
Numeric features by various WordNet similarity scores between event mentions,
including (Lesk, 1986), (Wu and Palmer, 1994), (Resnik, 1995), (Jiang and Conrath,
1997), (Hirst and St-Onge, 1998), (Leacock and Chodorow, 1998), and (Lin, 1998).

SENNA Embeddings
Numeric features by the cosine similarity between word vectors for headwords of event
mentions, given by the SENNA system (Collobert et al., 2011).

Distributional Semantics
Binary features as to whether event mentions are identical, decided by a semantic
database of distributional semantic similarity between event mentions. The underlying
model to compute distributional semantic similarity is described in (Goyal et al., 2013).

VerbOcean
Numeric features with a score by VerbOcean (Chklovski and Pantel, 2004) as to a
particular relation between head verbs of event mentions.

Semantic Frame
Binary features as to whether event mentions trigger the same semantic frame, extracted
by SEMAFOR (Das et al., 2010).

Mention Type
Binary features as to whether event mentions have the same mention type, extracted the
IBM SIRE system (Florian et al., 2010).

Semantic
(arguments)
(31)

Agent/Patient

Binary or numeric features as to whether arguments are identical, decided by different
matching algorithms (including the Stanford coreference resolution system and the Dice
coefficient), and whether the numbers (e.g., 12 in 12 Somali) associated with arguments
are identical.

Location

Binary or numeric features as to whether locations of event mentions are identical. This
is decided by various matching algorithms, including the Dice coefficient, the Stanford
coreference resolution system, and location subsumption (e.g., New York in the United
States) using geographical knowledge bases such as DBpedia (Mendes et al., 2012).

Discourse (8)
Sentence Distance Numeric features with the number of sentences between two event mentions.
Event Distance Numeric features with the number of event mentions between two event mentions.
Position Binary features as to whether an event mention is in the title or in the first sentence.

Table 4: List of features for a pair of event mentions. A number within parentheses in each feature group shows how many
features belong to that group.
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