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Abstract
Confidential corpora from the medical, enterprise, security or intelligence domains often contain sensitive raw data which lead to
severe restrictions as far as the public accessibility and distribution of such language resources are concerned. The enforcement of
strict mechanisms of data protection consitutes a serious barrier for progress in language technology (products) in such domains, since
these data are extremely rare or even unavailable for scientists and developers not directly involved in the creation and maintenance of
such resources. In order to by-pass this problem, we here propose to distribute trained language models which were derived from such
resources as a substitute for the original confidential raw data which remain hidden to the outside world. As an example, we exploit
the access-protected German-language medical FRAMED corpus from which we generate and distribute models for sentence splitting,
tokenization and POS tagging based on software taken from OPENNLP, NLTK and JCORE, our own UIMA-based text analytics pipeline.
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1. Introduction

With the growing potential of language technologies to
identify the underlying meaning of spoken or written nat-
ural language utterances, we currently witness a growing
demand for computational content analytics in many fields.
Whereas many application areas can make use of easily
and publically accessible language raw data (such as news-
paper articles or newswire feeds), others are characterized
by varying levels of confidentiality which translate directly
into corresponding protection layers to access such data.
These concerns are most evident for clinical documents
(such as those contained in electronic patient records or ge-
nomic databases, cf. e.g. Claerhout and De Moor (2005),
Damschroder et al. (2007)), documents from enterprises
(e.g. damage claims and case decision letters from insur-
ance companies, pharmaceutical test reports, cf. e.g. Small-
wood (2012)) or documents related to intelligence, security
and police activities (blackmail letters, suicide notes, etc.;
cf. e.g. Vetulani (2012)). We call these collections confiden-
tial because such sensitive data are usually collected under
binding protection rules and non-disclosure commitments
which preclude extramural use and further exploitation.
Indeed we ourselves faced such a confidentiality problem
with our FRAMED corpus (Wermter and Hahn, 2004).
FRAMED consists of a well-balanced mixture of medi-
cal document types such as discharge summaries, pathol-
ogy reports but also medical textbook excerpts, all writ-
ten in German language. Altogether, FRAMED is made of
7,000 sentences, with approximately 100,000 tokens. The
original FRAMED corpus comes with manually supplied
sentence boundary, token segmentation and part-of-speech
tags. Over the years, we received several requests for mak-
ing this corpus available to the broader language resources
community. Unfortunately, in each case we had to deny
such requests and apologize for explicit distribution barri-
ers which were part of mutual agreements with the vari-

ous clinical departments involved in the creation of this re-
source. One of the few cases where we were able to help
involved a member of our team carrying out some statis-
tical analysis for a requesting group. The results of this
work are described in Chapman et al. (2013). This service-
oriented perspective, acting as a kind of data oracle, let us
think about alternatives to raw data distribution.
In order to mitigate this unsatisfactory situation where a
highly coveted corpus remains inaccessible to the language
resources community, we here propose the following solu-
tion. Rather than distributing the original raw data as a re-
source, we distribute language models which were derived
from it and capture relevant language characteristics. Ac-
cordingly, the analytic potential is shifted from the exploita-
tion of a corpus to the re-use of language models without
unmasking the raw data which underlie their generation.1

To assure wide re-usability by the NLP community, we
have generated sentence and token segmentation models, as
well as POS tagging models within the framework of three
NLP model repositories, namely OPENNLP,2 NLTK3 and
JCORE.4 At our lab web site,5 we offer download options
for these models. As a consequence, potential consumers
of these models may process German-language clinical
text by re-using pre-computed models, without requiring
access-protected clinical raw data.

1We are aware of the possibility to read out portions of the
textual data stored in models by employing programs accessing
the API of the training frameworks being used. However, such an
unfriendly use of our service will, at best, render a probabilistic
model of the original textual resource, not the specific original
one we started from. Of course, all sensitive data which allow
to identify an individual patient have been deleted prior to corpus
assembly. See also Section 5. where we further discuss this issue.

2http://opennlp.apache.org/
3http://nltk.org/
4http://www.julielab.de/Resources.html
5http://www.julielab.de
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2. NLP Frameworks
In this section, we illustrate the model-for-data paradigm
by selecting some popular NLP frameworks, namely
OPENNLP, NLTK and JCORE, as an embedding for con-
crete NLP language models which account for sentence
splitting, tokenization and POS tagging.
In the JAVA world, APACHE OPENNLP is very popular and
widely used for a range of NLP tasks. It offers basic tools
like sentence splitters, tokenizers, name finders, chunkers,
parsers and a coreference resolver. OPENNLP comes with
a set of pre-trained models (exploiting newspaper/newswire
texts as raw data) for download from its web page.
The Natural Language Toolkit (NLTK) is a PYTHON frame-
work for general NLP, not specialized to any particular do-
main and frequently used for educational purposes (Bird
et al., 2009). It offers a comprehensive library of natural
language analysis tools such as tokenizers, stemmers, POS
taggers, syntactic parsers, and semantic reasoning tools and
excels with its comparatively low entry barrier (relative to
JAVA tooling). Yet some of its basic components, tokeniz-
ers in particular, are only available as rule-based systems.
We used NLTK’s PUNKT library for sentence splitting and
trained the POS tagger with a MEGAM model.6

The JULIE Lab UIMA Component Repository (JCORE)
(Hahn et al., 2008) was built as a repository of interoperable
UIMA components7 already adapted to the special needs
of the analysis of English life sciences-related literature.
It contains self-developed components to account for spe-
cial phenomena of the biomedical domain (e.g. especially
hard tokenization problems for protein, gene or chemical
names), as well as UIMA wrapper components for estab-
lished NLP frameworks like OPENNLP.
There are further tools and frameworks that are very pop-
ular in the NLP community, such as GATE8 or LING-
PIPE.9 However, most components we are focusing on this
paper—sentence splitters, tokenizers and POS taggers—in
these frameworks are rule-based and adaptation to certain
corpora, if needed, relies on human intuition and thus in-
depth manual inspection of the raw data. Since our goal
is automatic model learning employing machine learning
(ML) methodologies on the basis of language data, we re-
frain from considering these tools any further in this paper.

3. Training on FRAMED
Even some of the frameworks we focus on offer rule-based
components besides trainable ones. We re-trained all train-
able models for sentence splitting, tokenization and POS
tagging for all repositories using FRAMED as the refer-
ence corpus. In order to allow for an assessment of the
model quality, we performed a 10-fold cross-validation for
all trained components. All tools except NLTK’s sentence
splitter come with evaluation methods of their own. How-
ever, the NLTK POS tagger does not implement a cross-
validation algorithm. Thus, for the employed NLTK tools
we conducted the cross-validation with custom algorithms.

6http://www.umiacs.umd.edu/˜hal/megam/
7http://uima.apache.org/
8https://gate.ac.uk/
9http://alias-i.com/lingpipe/

Some of these evaluation tools use F1 metrics, whereas oth-
ers measure accuracy. For the JCORE tools, we added F-
score numbers to the evaluation report.
An overview of the results is given in Table 1. Data for
NLTK’s tokenizer is missing because it is rule-based and
requires manual tuning; JCORE’s POS tagger is basically a
wrapper for OPENNLP’s tagging tool, so data are the same
as for the OPENNLP POS tagger. We provide all evaluation
values available, i.e. cells containing only a dash indicate
that an evaluation for the corresponding measure was not
offered by the tool’s evaluation method.

framework/component F-Score accuracy

OPENNLP
+ sentence splitter 0.968 —
+ tokenizer 0.995 —
+ POS tagger — 0.969

NLTK
+ sentence splitter — 0.923
+ POS tagger — 0.938

JCORE
+ sentence splitter 0.994 0.987
+ tokenizer 0.996 0.992
+ POS tagger — 0.969

Table 1: 10-fold cross-validation results for selected frame-
work and various components.

Overall, the data indicate a nice fit of the trained models
with the FRAMED gold standard within an F-score range of
0.97 to 0.99. The lowest performance on sentence splitting
can be attributed to the NLTK sentence splitter, tokeniza-
tion performance between OPENNLP and JCORE seems on
par with each other. The POS tagging performance varies
markedly between OPENNLP and NLTK.
While these raw evaluation data may provide a first impres-
sion on tool performance, the real benefit of training mul-
tiple language models for the same task is that users may
choose between models depending on their application and
specific task requirements. This choice is hard, if not im-
possible, to justify in the absence of data to test on. As a
substitute, we now turn to a detailed error analysis of the
different taggers on otherwise hidden data.

4. Error analysis
The following error analysis is structured by model type,
i.e. models for sentence splitting, tokenization and part-of-
speech tagging. Once again, 10-fold cross-validations were
used. In this way, the whole corpus has been employed as
test data and contributes to the error analysis.

4.1. Sentence splitters
This section deals with statistics and the types of errors ob-
served on FRAMED using the sentence models trained on
the corpus. Sentence detection is the task of disambiguat-
ing potential sentence-delimiting characters such as dots,
colons etc. All errors of all sentence splitter models have
been manually reviewed and classified.
The OPENNLP sentence splitter uses a maximum entropy
model for the classification of end-of-sentence-delimiters.
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It reaches an F1 score of 0.968 on FRAMED with mostly
default parameters. However, the set of possible end-of-
sentence symbols has to be explicitly specified for the tool
in order to archieve this performance figure. Otherwise,
the sentence boundary detector will, e.g. not split at colons
causing the performance of the tool to drop to 0.789 F1.
For the OPENNLP sentence splitter, we encountered a to-
tal of 165 errors; Table 2 contain a breakdown into error
classes. Error categories we distinguish here mean that the
error happened after an abbreviation, a semicolon, etc.

error class number %

Total 165 100.00
FP 97 58.79
FN 68 41.21

Abbreviation 82 49.70
FP 71 43.03
FN 11 6.67

Semicolon (FN only) 28 16.97
Fullstop 20 12.12

FP 5 3.03
FN 15 9.09

Enumeration 17 10.30
FP 10 6.06
FN 7 4.24

Date (FP only) 7 4.24
Other 11 6.67

FP 4 2.42
FN 7 4.24

Table 2: Error statistics for OPENNLP sentence splitter
(‘FP’ stands for false positive, ‘FN’ for false negative).

A closer look at the context of the error sources ‘semicolon’
and ‘fullstop’ reveals that a large portion of those mis-
takes can be attributed to an idiosyncratic property of the
FRAMED corpus, namely pseudo-sentences without even
a predicate. In extreme cases, such sentences consist of a
single term, e.g. ‘Aufnahme-EKG:’. In such cases, the er-
ror which occurs is that before such keyword-sentences no
split is carried out. Thus, the pseudo-sentence is handled as
an extension of the previous sentence.
The NLTK sentence boundary detector (Kiss and Strunk,
2006) is an unsupervised tool that heavily relies on the
detection of collocation expressions with a special focus
on the detection of abbreviations. It reaches 0.923 F1 on
FRAMED. The error statistics can be found in Table 3.
Most errors (more than 88%) are due to erroneous splits af-
ter enumerations like ‘3.’, ‘D.’ etc. Only relatively few er-
rors have their origin in a wrong split after abbreviations.
This proliferation of enumeration errors may be a direct
consequence of the principle of the sentence splitter to fo-
cus on the identification of collocations. Enumerations do
not, in general, follow such a pattern and are thus diffi-
cult to handle. As an example for the disambiguation of
a dot following a number consider an expression such as
‘12. Juni’ (‘12th of June’). The pattern described is ‘[num-
ber]. [month]’. General enumerations do not follow such a
collocation pattern but rather ‘[number]. [arbitrary word]’
which is clearly non-discriminative.

error class number %

Total 578 100
FP 575 99.48
FN 3 0.52

Enumeration 513 88.75
Abbreviation 45 7.79
Date 8 1.38
Closed Parenthesis 7 1.21
Fullstop 5 0.87

FP 2 0.35
FN 3 0.52

Table 3: Error statistics for NLTK sentence splitter. All er-
rors are false positives (FP), unless indicated otherwise.

JCORE’s sentence splitter (Tomanek et al., 2007) is based
on conditional random fields (CRF). It scores 0.994 F1 on
FRAMED in a 10-fold cross-validation and thus shows the
highest performance of sentence splitters in this compari-
son. Error class statistics are shown in Table 4.

error class number %

Total 122 100.00
FP 64 66.39
FN 58 33.60

Abbreviation 83 68.03
FP 54 44.26
FN 29 23.77

Number followed by dot or colon 22 18.03
FP 10 8.20
FN 12 9.84

Colon in open parentheses (FN only) 17 13.93

Table 4: Error statistics for JCORE’s sentence splitter.

The main source of errors are abbreviations with 68%. The
other major error class is built up by numbers followed by
a dot or a colon, however with no particular tendency of
the kind of numerical expression. Errors are a few enu-
merations as well as date expressions. The third group of
errors stems from splits not made after colons in expres-
sions like ‘(links:’ or ‘(Lebergewicht:’. While there may
be good reasons why the corpus specifies splits at these lo-
cations, in practice sentence boundaries within non-closing
parenthesis expressions should be very rare.
Overall, the three tools have their individual strengths and
weaknesses concerning their performance on FRAMED.
The OPENNLP sentence splitter has some problems with
abbreviations, particularly the abbreviation ‘n.’ which oc-
curs frequently within the corpus. JCORE’s splitter does
not share this particular problem but errs similarly often
on abbreviations despite having the best performance of all
three tools. Here, the NLTK sentence detector makes the
fewest errors but, on the other hand, does not handle enu-
merations so well.

4.2. Tokenizers
The sentence splitter error analysis could be made on the
basis of all errors, either because there were only few of
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them or the main error class was rather well-defined. For
tokenization, however, only a sample of the error types can
be reviewed because of their diversity. For the two tokeniz-
ers employed, namely from OPENNLP and from JCORE,
samples of 50 errors each were chosen randomly.
Most of the errors for the OPENNLP tokenizer depicted
in Table 5 can be traced to abbreviations, with a remark-
able percentage rate of 74%. Another source of errors is
again a special feature of FRAMED where expressions like
‘4x7mg’ appear regularly as dosage expressions (i.e. ‘four
times 7mg’). An error in the Dosage class may mean that
either before or after the multiplication character ‘x’ a tok-
enization error occurred. This error happens on a frequent
basis, however not always.

error class number %

Total 50 100.00
FP 37 74.00
FN 13 26.00

Abbreviation 37 74.00
FP 34 68.00
FN 3 6.00

Dosage (FN only) 6 12.00
Other 7 14.00

FP 2 4.00
FN 5 10.00

Table 5: Error statistics for the OPENNLP tokenizer based
on a random error sample of size 50.

JCORE’s error statistics for tokenization is shown in Table
6 and much more diverse, as indicated by a percentage rate
of 30% for the ’other’ error class. Those errors do not fol-
low a particular pattern and consist of missing splits at full
stops, commas and semicolons as well as additional splits
at plus or percent characters. Most of the errors occur at
the ‘x’ multiplication character, all of which are missing
splits. Similarly to the OPENNLP tokenizer, this error oc-
curs quite frequently, yet not always. As an extreme case,
consider an expression like ‘18x7x4’ which is tokenized as
‘18x 7 x 4’ missing a single split in a longer sequence of
necessary split decisions (‘18’ ‘x’ ‘7’ ‘x’ ‘4’).
Finally, the error class “x’ as prefix or suffix’ is unique
to JCORE’s tokenizer in our experiments. It means that
in words like ‘Appendix’ the trailing ‘x’ is mistakenly
judged as a multiplication character and split off. This er-

error class number %

Total 50 100.00
Multiplication (FN only) 27 54.00
‘x’ as prefix or suffix (FP only) 5 10.00
Split of floating numbers (FP only) 3 6.00
Other 15 30.00

FP 9 18.00
FN 6 12.00

Table 6: Error statistics for the JCORE tokenizer based on
a random error sample of size 50.

ror happens regularly, but not always. Furthermore, float-
ing numbers, written with a comma in German texts (such
as ‘16,7’), are mistakenly split in some cases.

4.3. Part-of-Speech Taggers
Due to the large number of tags in a POS tagset (the
standard German STTS tagset incorporates 54 elements
(Schiller et al., 1999)), error analysis is not as easily car-
ried out as for the sentence and token segmentation tasks.
To carefully assess the behaviour of the two POS taggers—
the OPENNLP POS tagger and the NLTK POS tagger—
different perspectives are taken on the errors of each com-
ponent ranging from very specific information to more and
more generalized and aggregated analysis data.
First, the 20 most frequent errors are given where we fo-
cus on the decision task which exact tag was expected and
which tag was actually tagged instead. This view is very
fine grained because we distinguish as single errors whether
ADJD was tagged instead of VVPP and whether VVPP was
tagged instead of ADJD. We call this view asymmetric.
In an alternative symmetric error scenario, we abstract away
from these directional issues. In order to avoid an overly
specific error discussion—the STTS-MED tag set used for
FRAMED consists of 57 tag elements—we, furthermore,
map this original tag set to the coarser-grained 12-element
universal tag set (Petrov et al., 2012).10 This way, errors
involving the same general part of speech type, e.g. verbs
or adjectives, can easier be distinguished from ones trans-
gressing different POS class boundaries. Depending on the
application such major category errors (classifying, e.g. a
verb as an adjective) might be more critical than in-between
category misclassifications (classifying, e.g. a finite verb as
an infinitive).
The OPENNLP POS tagger made overall 3,064 errors in
a 10-fold cross-validation on FRAMED. The asymmetric,
fine-grained error statistics are displayed in Table 7. Most
errors deal with the wrong classification of proper nouns
(NE vs. NN). However, these errors only make up close
to 6% of all errors. Misclassifications between verbs and
adjectives are the second most important error class on the
level of 4%.
An even more telling view on error types is provided by
the symmetric error overview in Table 8. When direction is
ignored the NN-NE error class falls to second rank behind
errors involving VVPP and ADJD tags.
Data aggregation is further elevated when we map the spe-
cific STTS-MED tags to the universal tag set, as shown in
Table 9 for the asymmetric case and in Table 10 for the
symmetric case. Here it becomes even more apparent that
lots of errors (16.94%) involve the incorrect classification
of verbs into the wrong verbal form, followed by misclas-
sification of adjectives into verbs and vice versa. Both are
crucial for any form of relation extraction.
With 6,085 errors, the NLTK POS tagger almost doubles the
error rate of the OPENNLP POS tagger on the FRAMED
corpus. The error statistics are organized in the same way

10The tag elements of this universal set are: . – punctuation,
ADJ – adjective, ADP – pre-/postposition, ADV – adverb, CONJ
– conjunction, DET – determiner, NOUN – noun, NUM – number,
PRON – pronoun, PRT – particles, VERB – verb, X – non-word.
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expected actual number %

Total 3,064 100
NE NN 183 5.97
ADJD VVPP 142 4.63
VVPP ADJD 116 3.79
VVINF VVFIN 112 3.66
ADJA NN 106 3.46
VVFIN VVINF 97 3.17
ADJD ADJA 96 3.13
PRELS ART 85 2.77
VVFIN VVPP 83 2.71
NNL NN 73 2.38
NN NE 65 2.12
ADJD NN 55 1.80
NN ADJA 54 1.76
VVFIN ADJA 54 1.76
TRUNC NN 47 1.53
REF ENUM 46 1.50
VVPP VVFIN 45 1.47
VVINF VVPP 44 1.44
ADV ADJD 43 1.40
ADJD ADV 41 1.34

Table 7: Asymmetric POS tag error statistics of OPENNLP
POS tagger on the basis of the STTS-MED tagset.

tag1 tag2 number %

Total 3,064 100
ADJD VVPP 258 8.42
NE NN 248 8.09
VVFIN VVINF 209 6.82
ADJA NN 160 5.22
VVFIN VVPP 128 4.18
ADJA ADJD 107 3.49
ART PRELS 103 3.36
ENUM REF 87 2.84
ADJD ADV 84 2.74
NN NNL 84 2.74
ADJA VVFIN 74 2.42
ADJD NN 74 2.42
ADJD VVFIN 73 2.38
VVINF VVPP 61 1.99
ADJA ADV 50 1.63
NN TRUNC 47 1.53
VAFIN VAINF 45 1.47
ADJA VVINF 40 1.31
PDAT PDS 39 1.27
APPR PTKZU 36 1.17

Table 8: Symmetric POS tag error statistics of OPENNLP
POS tagger on the basis of the STTS-MED tagset.

as above. Corresponding to the previous figures, the fine-
grained asymmetric and symmetric errors are displayed in
Tables 11 and 12, respectively. Error statistics derived from
aggregations to the universal tag set are shown in Tables
13 and 14. Again, the classification into the wrong verbal
form is a dominant error, however, misclassifications be-

expected actual number %

Total 3,064 100
VERB VERB 519 16.94
NOUN NOUN 333 10.87
VERB ADJ 272 8.88
ADJ VERB 211 6.89
ADJ NOUN 163 5.32
PRON DET 119 3.88
ADJ ADJ 107 3.49
PRON PRON 101 3.30
X NOUN 101 3.30
X X 90 2.94
NOUN ADJ 83 2.71
ADV ADJ 80 2.61
PRON ADJ 58 1.89
ADJ ADV 55 1.80
CONJ ADP 55 1.80
PRT ADP 55 1.80
VERB NOUN 43 1.40
X ADJ 36 1.17
PRON ADV 30 0.98
ADJ X 29 0.95

Table 9: Asymmetric POS tag error statistics of OPENNLP
POS tagger on the basis of the universal tagset.

tag1 tag2 number %

Total 3,064 100
VERB VERB 519 16.94
ADJ VERB 483 15.76
NOUN NOUN 333 10.87
ADJ NOUN 246 8.03
DET PRON 138 4.50
ADJ ADV 135 4.41
ADJ ADJ 107 3.49
PRON PRON 101 3.30
NOUN X 97 3.17
X X 90 2.94
ADP PRT 84 2.74
ADJ PRON 67 2.19
ADJ X 65 2.12
ADP CONJ 63 2.06
NOUN VERB 53 1.73
ADV CONJ 43 1.40
ADJ ADP 39 1.27
ADV PRON 39 1.27
ADV NOUN 32 1.04
ADV ADP 29 0.95

Table 10: Symmetric POS tag error statistics of OPENNLP
POS tagger on the basis of the universal tagset.

tween adjectives and nouns and errors between adjectives
and verbs are even more frequent than for OPENNLP.
With this wealth of error data what can we conclude for
making informed guesses for concrete NLP applications?
One way to pave the way in this data jungle is to have a
closer look at single tags, erroneous taggings they are in-
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expected actual number %

Total 6,085 100
NN ADJA 391 6.42
ADJA NN 356 5.85
NE NN 252 4.14
ADJD VVPP 229 3.76
VVFIN VVPP 219 3.60
PTKVZ APPR 167 2.74
ADJD ADJA 145 2.38
VVPP VVFIN 131 2.15
VVFIN ADJA 130 2.14
ADV ADJA 117 1.92
ART PRELS 114 1.87
VVFIN VVINF 111 1.82
VVINF VVFIN 111 1.82
ADV ADJD 93 1.53
VVINF ADJA 88 1.45
NN NE 86 1.41
ADJD NN 85 1.40
VVPP ADJD 78 1.28
PIDAT ADJA 75 1.23
PIAT ADJA 73 1.20

Table 11: Asymmetric POS tag error statistics of NLTK
POS tagger on the basis of the STTS-MED tagset.

tag1 tag2 number %

Total 6,085 100
ADJA NN 747 12.27
VVFIN VVPP 350 5.75
NE NN 338 5.55
ADJD VVPP 307 5.04
VVFIN VVINF 222 3.65
ADJA VVFIN 195 3.20
APPR PTKVZ 190 3.12
ART PRELS 184 3.02
ADJA ADJD 155 2.55
ADJA ADV 140 2.30
ADJD ADV 136 2.23
ADJD NN 135 2.22
ADJA VVINF 118 1.94
ADJD VVFIN 114 1.87
APPR PTKZU 103 1.69
NN NNL 100 1.64
VVINF VVPP 87 1.43
ADV NN 86 1.41
VAFIN VAINF 81 1.33
ADJA VVPP 80 1.31

Table 12: Symmetric POS tag error statistics of NLTK POS
tagger on the basis of the STTS-MED tagset.

volved in and the number of occurrences of these single
tags. This way, the effects of mis-tagging are weighed
against their distributional importance. This intuition is
captured by the notion of the percentaged tag error ratio
defined as

expected actual number %

Total 6,085 100
VERB VERB 831 13.65
VERB ADJ 496 8.15
NOUN ADJ 486 7.99
ADJ NOUN 452 7.43
NOUN NOUN 452 7.43
ADJ VERB 424 6.97
PRON ADJ 305 5.01
PRT ADP 237 3.89
ADV ADJ 211 3.47
ADJ ADJ 155 2.55
VERB NOUN 152 2.50
X NOUN 121 1.99
DET PRON 114 1.87
PRON PRON 102 1.68
ADP PRT 97 1.59
PRON DET 94 1.54
PRON NOUN 79 1.30
ADP ADJ 77 1.27
X X 68 1.12
ADJ ADV 66 1.08

Table 13: Asymmetric POS tag error statistics of NLTK
POS tagger on the basis of the universal tagset.

tag1 tag2 number %

Total 6,085 100
ADJ NOUN 938 15.41
ADJ VERB 920 15.12
VERB VERB 831 13.65
NOUN NOUN 452 7.43
ADP PRT 334 5.49
ADJ PRON 306 5.03
ADJ ADV 277 4.55
NOUN VERB 217 3.57
DET PRON 208 3.42
ADJ ADJ 155 2.55
PRON PRON 102 1.68
NOUN X 97 1.59
ADV NOUN 93 1.53
ADJ ADP 90 1.48
NOUN PRON 80 1.31
ADP CONJ 79 1.30
X X 68 1.12
ADJ X 58 0.95
ADV VERB 56 0.92
ADV CONJ 52 0.85

Table 14: Symmetric POS tag error statistics of NLTK POS
tagger on the basis of the universal tagset.

[tag error ratio]i :=
#tagging errors for tagi

#tagging decisions for tagi
× 100

Table 15 compares the absolute number of errors of the
OPENNLP POS tagger relative to the number of occur-
rences of that tag on the basis of the STTS-MED tagset and
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tag errors number error ratio

ADJD 395 4,039 9.78
VVFIN 307 2,659 11.55
ADJA 219 10,358 2.11
VVINF 215 801 26.84
VVPP 209 2,123 9.84
NE 199 1,184 16.81
NN 176 23,657 0.74
ADV 169 3,517 4.81
PRELS 88 524 16.79
NNL 79 457 17.29
APPR 68 7,965 0.85
PTKVZ 59 405 14.57
ENUM 57 866 6.58
XY 50 333 15.02
KON 46 3,119 1.47
VAFIN 39 2,565 1.52
PIDAT 37 296 12.50
PIAT 34 360 9.44
ART 29 10,418 0.28
CARD 26 2,189 1.19
KOUS 24 497 4.83
PPER 23 772 2.98
PROAV 18 324 5.56
VAINF 16 524 3.05
VMFIN 12 856 1.40
APPRART 6 1,582 0.38
$( 3 2,712 0.11
PRF 3 633 0.47
$, 1 3,848 0.03
PTKNEG 1 341 0.29
$. 0 7,560 0.00
Others 454 2,115 —

Table 15: Tag-wise error ratio of the OPENNLP POS tagger
on the basis of the STTS-MED tagset.

the error ratio for each tag. For reasons of compactness, we
only depict tags with a total number of occurrences of 250
or higher. High error numbers, obviously, do not necessar-
ily coincide with high error ratios. The third element of the
list, ‘ADJA’, has more than 219 erroneous annotations, yet
by the sheer number of decisions, this is hardly more than
2% of all tagging decisions for this tag item. So this error
is almost negligible. Similar arguments can be brought for-
ward for ‘NN’, ‘APPR’, etc. However, care must clearly be
taken in the case of ‘VVFIN’, ‘VVINF’ or ‘NE’ whose ab-
solute errors are in similar ranks to the previously discussed
items but whose error ratios are exceeding 10%, which is a
substantial proportion of errors.
Table 16 tells a similar story for the NLTK POS tagger on
the basis of the STTS-MED tagset. The highest absolute
error numbers do little harm when compared with the error
ratios for ‘NN’, ‘APPR’, ‘ART’, etc. However, ‘ADJD’,
‘VVFIN’, ‘NE’, etc. suffer from rather high error rates.
Based on such considerations one might argue in favor or
against one or the other language model depending on the
requirements of the task to be solved. Still, such data help
assess the potential value of the model under scrutiny.

tag errors number error ratio

NN 688 23,657 2.91
ADJD 629 4,039 15.57
VVFIN 575 2,659 21.62
ADJA 540 10,358 5.21
ADV 339 3,517 9.64
VVPP 330 2,123 15.54
NE 300 1,184 25.34
VVINF 300 801 37.45
PTKVZ 240 405 59.26
APPR 217 7,965 2.72
ART 128 10,418 1.23
PIDAT 109 296 36.82
NNL 100 457 21.88
PROAV 99 324 30.56
PIAT 96 360 26.67
KON 84 3,119 2.69
XY 81 333 24.32
PRELS 80 524 15.27
VMFIN 72 856 8.41
CARD 68 2,189 3.11
KOUS 68 497 13.68
VAINF 65 524 12.40
VAFIN 63 2,565 2.46
ENUM 56 866 6.47
PPER 39 772 5.05
APPRART 13 1,582 0.82
$( 2 2,712 0.07
PTKNEG 2 341 0.59
$, 1 3,848 0.03
PRF 1 633 0.16
$. 0 7,560 0.00
Others 688 2,115 —

Table 16: Tag-wise error ratio of NLTK POS tagger on the
basis of the STTS-MED tagset.

5. De-Compiling Models to Trace Raw Data

We here claim that the model-for-data paradigm might re-
place the need for accessing sensitive raw data by the alter-
native disclosure of language models incorporating the rel-
evant regularities contained in the raw data. When dealing
with such sensitive data, one must assure that the published
models do not incorporate large continuous portions of the
corpus such as complete sentences. This requirement is ab-
solutely crucial when we distribute language models rather
than the original confidential data. Yet, a large variety of
ML algorithms actually store different data configuration
sets directly taken or derived from the training data. Ac-
cordingly, the process of de-identification of confidential
data (for medical application, cf. e.g. Meystre et al. (2014))
is by no means not made obsolete by our solution. Indeed,
all person names, dates and addresses in FRAMED have
been altered to block recognizability of patients.
In the context of this work, we are mainly confronted with
ML algorithms based on Maximum Entropy (ME) and Con-
ditional Random Fields (CRFs). The ME approach as well
as CRFs are parametric approaches that model the data by
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means of weighted feature functions where the specific fea-
ture instances are derived from training data and weights
are chosen to fit the model to the data. CRFs addition-
ally create a state-transition-graph where the states corre-
spond to the possible labels in the data, e.g. POS tags. The
crucial part for both types of models are the feature func-
tions. Those functions capture information about the actual
data to base the classification decision on. One of the most
important features for classifier performance is the lexical
identity of a classification unit, for example in POS tag-
ging. Thus, ME or CRF models can be used to generate
an enumeration of token strings observed in the training
data, resulting in a set of unigrams. Fortunately, for the
use case at hand, no sequence data on the observation level
(i.e. words) are stored in these models. Only a label tran-
sition model for CRFs is available. Thus, the only direct
information that can be derived about the original corpus is
which words are included in it.
More critical given these concerns is the NLTK sentence
detector which stores the set of identified abbreviations and
collocations as a main part of the model. Thus, the most
frequent bi-grams are stored as collocations within the sen-
tence detector model. Numbers are masked by the expres-
sion ##number## for generalization purposes. The dis-
closure of such collocation patterns should also not reveal
any sensitive information.
While we judge the disclosed information about FRAMED
to be generally uncritical, this discussion shows that caution
must guide the decision which ML algorithms to use taking
into account the de-compilation capabilities inherent to any
of the models being used.

6. Conclusion
We propose a new way to by-pass the restricted access to
corpora containing sensitive, usually confidential, and thus
often protected textual data. The solution we propose is
based on the idea to distribute models computationally de-
rived from such data, rather than the original, i.e. textual
raw data. The models we generate are based on (train-
able) software provided by well-known NLP portals such
as OPENNLP or NLTK. In addition, we offer a version for
our text analytics pipeline, JCORE, which is UIMA based.
As an example of access-restricted copora, we here deal
with FRAMED, a textual language resource composed
mainly of clinical documents. We currently make avail-
able models for sentence and token segmentation, as well
as POS tagging, yet plan to cover syntactic and semantic
models in the future.
We claim that our approach bears a great potential for
paving the way to or, at least, improving text analytics ca-
pabilities in fields where access to raw corpus data is highly
regulated, if not excluded. The free distribution of trained
models (from our website) and the lack of distribution re-
strictions, e.g. by appropriate GPL licenses, are additional
organizational means to foster software reusability under
heavily restricted conditions of corpus accessibility in sen-
sitive, often strictly confidential domains.
Still an open legal issue our work might raise is how
“derivative” models are relative to the raw data. The no-
tion of derivability is key for licensing categories formu-

lated, e.g. under the Creative Commons (CC) framework,
relating, in particular to the CC-ND (no derivative use) cat-
egory. Such concerns are crucial, e.g. for processing lots of
social media data (Facebook, Twitter, etc.) the majority of
which are, e.g. under the CC-ND constraint.
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