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Abstract
In this paper, we propose a method that combines the principles of automatic term recognition and the distributional hypothesis
to identify technology terms from a corpus of scientific publications. We employ the random indexing technique to model terms’
surrounding words, which we call the context window, in a vector space at reduced dimension. The constructed vector space and a set
of reference vectors, which represents manually annotated technology terms, in a k-nearest-neighbour voting classification scheme are
used for term classification. In this paper, we examine a number of parameters that influence the obtained results. First, we inspect
several context configurations, i.e. the effect of the context window size, the direction in which co-occurrence counts are collected, and
information about the order of words within the context windows. Second, in the k-nearest-neighbour voting scheme, we study the
role that neighbourhood size selection plays, i.e. the value of k. The obtained results are similar to word space models. The performed
experiments suggest the best performing context are small (i.e. not wider than 3 words), are extended in both directions and encode the
word order information. Moreover, the accomplished experiments suggest that the obtained results, to a great extent, are independent of
the value of k.
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1. Introduction
Successful identification of terms that correspond to tech-
nology concepts is a primarily step towards gaining knowl-
edge about new technological developments and innova-
tions that are continuously reported in the scientific liter-
ature. In this paper, we propose technology term recogni-
tion (TTR) to identify these terms. TTR can be viewed as a
kind of automatic term recognition (ATR). ATR is the task
of identification of domain-specific terms. The main goal of
ATR is to determine whether a word or phrase is a term that
characterizes a target domain (Frantzi et al., 1998). TTR,
however, targets a subset of terms that characterizes tech-
nologies in a target domain. If Ttech is the set of all the tech-
nology terms in a domain extracted by a TTR system, and
Tterm is the set of all the terms in a domain that are recog-
nized by an ATR system, then we expect that Ttech ⊂ Tterm

(Figure 1). For instance, in computational linguistics liter-
ature both language resources and natural language pro-
cessing are valid terms; however, TTR must only recognize
the latter as a valid technology term.

Output of Automatic Term Recognition

Output of Technology Term Recognition

Figure 1: Comparison of ATR and TTR outputs.

Defining technology – and subsequently finding its corre-
sponding terms – is a complex task and has been the sub-
ject of study in a number of disciplines such as philoso-
phy of science (Mitcham and Briggle, 2012). In this paper,
we avoid searching for an analytical answer to the ques-
tion: “what technology is”. Instead of relying on a formal
definition for technology, we exploit the context of terms
in order to identify technology terms among them. We

trust that technology terms tend to appear in similar lin-
guistic contexts and by extending Harris’s (1954) Distribu-
tional Hypothesis, we claim that the context of (previously)
known technology terms can be modelled and used in order
to identify new unknown technology terms.
The proposed method for TTR is realized as a term classi-
fication task on top of a generic ATR framework. The algo-
rithms for ATR are usually in the form of a two-step pro-
cedure: (a) candidate term extraction followed by (b) term
scoring and ranking (Nakagawa, 2001). The candidate term
extraction deals with the term formation and the extrac-
tion of term candidates. The subsequent scoring procedure,
however, can be seen as a semantic weighting mechanism.
As Figure 2 suggests, in order to indicate how likely it is
that a candidate term is a term we would like to extract, the
scoring procedure assigns a weight to each of the extracted
candidate terms, usually as a combination of scores known
as termhood and unithood (Kageura and Umino, 1996).

Candidate Term Extraction

Scoring and Ranking

Input Text

Extracted Terms

Termhood
Measurement

Unithood 
Measurement

Figure 2: General architecture of an ATR system.

Following the extraction of candidate terms and allocating
scores, TTR employs the contextual similarity of terms in
order to measure their relevance to technology concepts.
We assume that the association of a term to a technology
concept is a kind of paradigmatic relation that can be char-
acterized using the syntagmatic relations of the term and
its surrounding words. The major research question to be
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answered here, therefore, is the definition of terms’ con-
texts and the examination of their distributional properties.
We suggest that the co-occurrence of a term and words in a
window of text around the term’s appearances in the corpus
defines the contexts for the described paradigmatic relation.
The major parameters to be examined for such a context are
thus the size of the co-occurrence region, the position of the
term in the context window and the direction in which the
neighbourhood is extended (Lenci, 2008).
In this paper, the context windows surrounding candidate
terms are represented using vector space models (VSMs).
A k-nearest-neighbour (k-nn) voting classification frame-
work is then employed to identify the technology terms. We
construct the VSMs at reduced dimension using the random
indexing (RI) technique (Sahlgren, 2005). Context win-
dows are configured using various sizes and directions, as
well as the words’ order information. Each configuration is
represented by a VSM. In order to suggest the best context
window configuration for the TTR task, the performance
of each of the constructed VSMs in the k-nn classification
framework is examined and reported.
In the remaining sections, we briefly introduce the RI tech-
nique in Section 2. The term recognition and classification
framework is described in Section 3. Section 4 explains the
evaluation framework and metrics and reports the obtained
results. We conclude this paper in Section 5.

2. Random Indexing
For a corpus of a relatively small size, the context of terms
may be defined and examined efficiently using a conven-
tional method of vector space construction, presumably fol-
lowed by a method of dimensionality reduction. In such
methods, a new context is appended to a VSM by increas-
ing the dimension of the VSM, i.e. by adding a new element
to the standard basis of the VSM. As the corpus grows,
however, due to the power-law distribution of contexts over
terms, the number of contexts that represent terms bursts.
The result is a VSM of a very high dimension – on the or-
ders of hundreds of thousands or more. The high dimension
of the VSM precipitates low computational performance
in the subsequent processes such as dimension reduction
and similarity measurements. RI alleviates this problem by
combining the construction of the vector space and the di-
mension reduction process.
The RI method, introduced by Kanerva et al. (2000), con-
structs a VSM at reduced dimension without requiring prior
construction of the VSM at its original high dimension. Us-
ing the Johnson and Lindenstrauss (1984) lemma and basic
properties of matrix arithmetic, it can be verified that RI
is a dimension reduction technique that employs a sparse
random projection. The RI method maps p vectors in an
n-dimensional VSM to an m ≥ m0 = log(p/ε2) dimen-
sional subspace, for n � m, while it preserves pairwise
Euclidean distances between vectors by the small error fac-
tor of 1± ε and a high probability.
Sahlgren (2005) delineates the RI technique as a two-step
procedure: (a) the creation of index vectors and (b) the
construction of context vectors.
In the first step, each context is uniquely assigned to an
index vector, i.e. a randomly generated high-dimensional

vector where most of the elements of the vectors are set to
0 and only a few to 1 and −1. Following the proofs given
by Li et al. (2006), we suggest random index vectors with
i.i.d. entries ri such that

rij =
√
s


−1 with probability 1

2s

0 with probability 1− 1
s

1 with probability 1
2s

(1)

for s =
√
n, where n is the number of employed contexts

for the construction of the VSM.
In the second step, each target entity, which is a term candi-
date in our experiment, is assigned to a vector, called a con-
text vector. The context vector has the same dimension as
index vectors have, and all of its elements, initially, are set
to 0. For each co-occurrence of an entity and a context, e.g.
through a sequential scan of the corpus, the context vector
ve that represents the entity is accumulated by the index
vector ri that represents the context, i.e. ve = ve+ ri. The
procedure results in a VSM that represents entities using
the employed contexts, however, at reduced dimension.
The RI method offers a number of benefits compared to a
classic vector space construction method that is followed
by a data-sensitive dimension reduction technique such as
truncated singular value decomposition (SVD). At least, the
RI eliminates the need for the dimension reduction that re-
quires a process of a computational complexity not better
than O(nm).
As suggested earlier, the RI method is justified by math-
ematical principles. In addition, several empirical experi-
ments prove its viability. In an earlier reported experiment,
in a document similarity measurement application, Bing-
ham and Mannila (2001) show that dimension reduction us-
ing a sparse random projection, which is comparable to the
RI technique, provides similar results to the truncated SVD.
In addition, a growing amount of research in diverse appli-
cation domains has successfully employed the RI method
for the construction of VSMs at reduced dimension (see
e.g. Baroni et al., 2007; Sahlgren and Karlgren, 2009; Co-
hen et al., 2010; Jurgens and Stevens, 2010; Yannakoudakis
and Briscoe, 2012).

3. Term Recognition and Classification
We design our method for technology term recognition on
top of a generic automatic term recognition (ATR) process.
In the first step of the process, we employ linguistic filters
in the form of part-of-speech (PoS) tag sequence patterns to
extract candidate terms. The employed method is similar to
the one proposed by Justeson and Katz (1995); however, we
restrict the length of candidate terms to up to six constituent
words and allow for 44 different PoS patterns. In addition,
in order to lessen the effect of erroneous automatic PoS tag-
ging, similar to the proposed method by Ittoo et al. (2010),
we formulate the PoS patterns by observing the actual out-
put of the employed PoS tagger and allowing the patterns
that contain erroneous PoS tags.
Following the extraction of candidate terms, we employ the
c-value algorithm to assign scores to the terms. For each
candidate term t, the c-value score of t, c-value(t), is calcu-
lated using four criteria (Frantzi et al., 1998): the frequency
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of t in the corpus; the frequency of t when it appears nested
in other terms longer than t; the number of those longer
terms shown by Tt; and the number of the constituent words
of t shown by |t|. The c-value score is given by

c-value(t) =

{
log2 |t|f (t) if t /∈ nested
log2 |t| (f (t)− 1

|Tt|
∑
b∈Tt

f (b)) otherwise
,

where Tt denotes the set of all the terms that contain t and
are longer than t, and f(s) denotes the frequency of an ar-
bitary term s in the corpus.
Following to ATR, we employ a k-nn voting scheme to
approximate the association of terms to technology con-
cepts. We employ the random indexing technique to con-
struct context vectors for the candidate terms. We calculate
the cosine similarity of the context vector vt of a target term
t to a set of reference vectorsRs. Valid technology terms in
the Rs – terms that correspond to a technological concept
– are manually marked by an expert prior to the similarity
calculations. After the similarity calculation, vectors in the
Rs are sorted in descending order by their similarity to vt.
We count the number of valid technology terms, which is
shown by |Ttech|, in the top k terms of this sorted list. The
weight w(t) = |Ttech|/k is then considered as a measurement
of the technology-term class membership for t.
To get the final ranking score of a candidate term in the
corpus, we combine its assigned c-value score and the
technology-term class membership weight. Terms are first
ranked and sorted in descending order by their assigned
technology-term class membership weight. Terms with
equal class membership weight are then sorted in descend-
ing order by their c-value scores. Although other combina-
tions of the c-value score and the classification weight can
enhance the ranking, e.g. a linear combination as suggested
in Maynard and Ananiadou (2000), the proposed ranking
technique provides an immaculate framework to evaluate
the role that contexts plays in the classification task.

4. Evaluation Framework
4.1. Benchmark Data and Baseline
We have created a benchmark dataset to evaluate the task
of terminology extraction and classification. The dataset is
a spin-off from the ACL anthology reference corpus (ACL
ARC). The ACL ARC is a frozen canonicalized corpus of
scholarly publications for bibliographic research in compu-
tational linguistics (Bird et al., 2008). In order to prepare
the benchmark data, the ACL ARC corpus is first converted
to raw text files.1 We further employ the SectLabel module
of the ParsCit tool to identify logical sections in the raw text
files and remove irrelevant sections such as bibliography
and acknowledgements from the text that is being analyzed
(Luong et al., 2010).2 The sectioning process is followed by
the segmentation of text using the OpenNLP sentence split-
ter3 and the Stanford tokenizer and part-of-speech tagger

1The raw text files are extracted using Apache PDFBox
(http://pdfbox.apache.org/), release version 1.7.1.

2Release version 110505.
3Release version 1.5.2 (http://opennlp.apache.

org/).

(Toutanova et al., 2003).4 Afterwards, the candidate terms
are extracted from the processed corpus. The process is fi-
nalized by assigning unique identifiers to the extracted lin-
guistic units such as words, sentences, and candidate terms.
The statistics of the resulting data are given in Table 1.

Type Token Sentence Paragraph Section Can-term

704,085 36,729,513 1,564,430 510,366 92,935 1,339,773

Table 1: Summary statistics of the benchmark dataset: each
column shows the number of linguistic units in the bench-
mark dataset extracted from the 10,922 publications in the
ACL ARC corpus. The last column, which is marked as
Can-term, shows the number of extracted candidate terms.

The described procedure of term recognition and classifi-
cation in Section 3 is applied to the extracted candidate
terms. In each experiment, candidate terms are sorted
in descending order by their assigned weights. The top
1000 terms are manually annotated as valid and invalid
terms. Valid terms are additionally categorized as tech-
nology and non-technology terms by the authors of the pa-
per. The proportion of valid technology terms to the num-
ber of all candidate terms in the list of the top n terms
(n = 100, 250, 1000) as well as the proportion of valid
terms in the list are reported for the comparison of the eval-
uated contexts. As for the baseline, the above numbers are
also reported for the list of candidate terms sorted in de-
scending order by their c-value score.

4.2. Reference Vector Space Formation
The set of the reference vectors Rs is made by the man-
ual annotation of a subset of candidate terms. Those terms
that terminate or collocate with the lemmas technology and
technique are chosen as reference terms. The selected terms
are manually annotated as valid and invalid technology
terms. In each evaluation scenario, the relevant context vec-
tors of these terms define the Rs. This procedure results
in 3490 terms, including 1596 terms that are annotated as
valid technology terms.

4.3. Evaluated Contexts
The context vectors of candidate terms are made using the
part-of-speech tagged words in their neighbourhood in the
whole corpus – which we will call context window from
now on.. We evaluate our proposed method for term clas-
sification using context windows that are configured with
three elements: direction, size and order. The first element
distinguishes context windows according to the direction
in which they are expanded to collect the co-occurrence
counts.
The context window of a term is expanded (a) to the left-
hand side of the term to count the co-occurrences of the
term with its preceding words in each sentence of the cor-
pus, (b) to the right-hand side to collect co-occurrences
with the succeeding words or (c) around the term, i.e. in
both left and right directions.
The context windows are also configured by their size, i.e.
the extent of terms’ neighbourhood for counting the co-
occurrences. As restated by Sahlgren (2008), optimum size

4Release date 9 July 2012.

4029



of context window can only be established through exper-
iments. However, he also indicates that narrower context
windows are more suitable to capture a paradigmatic rela-
tion such as the term classification task proposed here. For
this reason, in our experiments we limit the size of context
windows to n ∈ {1, 2, 3, 4, 5}. For the context windows
that expand around a term, we extend the context region
symmetrically in both directions.
Jones and Mewhort (2007) state that the sequential order
of words expresses information about lexical classes and
grammatical behaviour and, therefore, is important in the
development of a comprehensive distributional semantic
space. On the other hand, Landauer (2002) argues that 80%
of the potential information in language is carried by the
word choice regardless of the order in which they appear.
Landauer thus concludes that word order can be neglected
in order to simplify the construction of VSMs and their sub-
sequent computations. We investigate the impact of word
order information on the performance of the suggested task
using the permutation technique (Sahlgren et al., 2008).
In the permutation technique, the order of words in a con-
text window is captured by shuffling their index vectors via
a permutation function. The permutation function is de-
fined using the location of the context words in the contex
window. The main idea is that a permutation of randomly
created index vectors also creates new random vectors that
can be used to represent context words at specific locations
in the context windows. In our implementation, a circu-
lar shift function serves as the permutation function. If t is
the number of tokens after/before a target term and a con-
text word, then the index vector of context word is shifted
t times circularly to the right/left before its addition to the
target term’s context vector.

4.4. Other Evaluation Parameters
In addition to various configurations of context windows,
we investigate the effect of the neighbourhood size selec-
tion, i.e. the value of k, on the performance of the pro-
posed k-nn voting classification scheme. In this frame-
work, a small value for k leads to over-fitting, while a large
neighbourhood estimation may reduce the discriminatory
power of the classifier. Therefore, the optimal value of k is
usually obtained by an experimental method. Yang (1999)
suggests that the performance of k-nn is relatively stable
for a large range of k. Accordingly, in this case study, the
size of neighbourhood is defined to be k = bp|Rs|c where
p ∈ {0.001, 0.005, 0.01, 0.10, 0.20} and |Rs| is the num-
ber of reference vectors, i.e., as described in Section 4.2,
|Rs| = 3490. We are interested to see if the choice of k
affects our choice for the best performing context window.
We performed our evaluation by setting the dimension of
the random indices, thus the VSM, to 1800, which should
be high enough to embed 1 339 773 vectors that represent
candidate terms. The effective number of context words in
our experiment is counted to be less than 634 294, i.e. the
number of unique part-of-speech tagged words that appear
adjacent to candidate terms. We set the value of s in Equa-
tion 1 to 225, which is less than

√
634 294 = 796 and thus

a safe choice for the constructed VSMs in our experiments.
We employ the cosine measure to calculate similarity be-

Context Top 100 Top 250 Top 1000
Type Size TTerm VTerm TTerm VTerm TTerm VTerm

Le
ft

1 0.600 0.720 0.632 0.728 0.514 0.608
2 0.570 0.700 0.532 0.664 0.419 0.540
3 0.500 0.680 0.512 0.636 0.374 0.486
4 0.430 0.540 0.404 0.504 0.379 0.492
5 0.400 0.500 0.416 0.496 0.380 0.486

R
ig

ht

1 0.830 0.850 0.660 0.772 0.520 0.633
2 0.650 0.740 0.536 0.620 0.375 0.499
3 0.610 0.670 0.344 0.460 0.239 0.366
4 0.530 0.650 0.424 0.572 0.345 0.482
5 0.460 0.620 0.336 0.472 0.278 0.401

A
ro

un
d

1 0.860 0.920 0.692 0.784 0.524 0.650
2 0.740 0.810 0.620 0.720 0.472 0.585
3 0.830 0.860 0.656 0.720 0.491 0.587
4 0.800 0.850 0.588 0.660 0.448 0.550
5 0.670 0.730 0.428 0.496 0.399 0.494

Le
ft∏

2 0.650 0.740 0.584 0.692 0.479 0.611
3 0.570 0.650 0.580 0.704 0.481 0.624
4 0.560 0.660 0.572 0.652 0.481 0.606
5 0.610 0.690 0.524 0.616 0.480 0.600

R
ig

ht
∏ 2 0.840 0.860 0.712 0.756 0.452 0.562

3 0.720 0.760 0.592 0.684 0.399 0.557
4 0.520 0.660 0.512 0.664 0.353 0.507
5 0.510 0.630 0.420 0.568 0.316 0.474

A
ro

un
d∏ 1 0.760 0.890 0.748 0.916 0.618 0.786

2 0.850 0.940 0.784 0.904 0.638 0.773
3 0.910 0.950 0.780 0.896 0.630 0.748
4 0.890 0.940 0.732 0.832 0.615 0.731
5 0.860 0.920 0.688 0.808 0.591 0.702

c-value 0.300 0.760 0.252 0.732 0.202 0.564

Table 2: The observed results in the performed evaluations
for various context windows. ∏ denotes context types that
capture the word order information using the permutation
technique. The best observed results for TTerm and VTerm
are marked respectively by an ellipse and rectangle around
them. The last row of the table reports these numbers for
the baseline measure, i.e. the c-value score.

tween vectors. In the reported results, we do not employ a
weigh normalization process.

4.5. Results
Table 2 shows the results obtained from our experiments. In
this table, TTerm shows the proportion of the number of valid
technology terms to the top n terms from the list of candi-
dates that are sorted in descending order by their assigned
weights for n ∈ 100, 250, 1000. Similarly, TTerm shows the
proportion of valid terms in this list. In this experiment,
the weights are obtained when k in the k-nn classification
scheme is set to k = b|Rs|/100c = 34.
Figure 3 plots the results obtained for each context win-
dow size. As can be seen, the Around∏ context window,
which extends around candidate terms and incorporates
word order information, consistently shows better perfor-
mance than other context types. As expected, for the con-
text type Around∏, the best choice of context size is 2 or
3 words around the terms. However, for the other context
window types, surprisingly, the context windows that ex-
tend only to 1 word around, after or before a term show
better performance than context windows of larger size 2
or 3, even when the word order is included in the model.
In all the experiments, the observed results are consistently
above the baseline with a large margin.
As can be inferred from Figure 3, choosing the best per-
forming context by looking at the list of top n terms is sub-
ject to the value of n. We expect that the larger values of n
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Figure 3: Comparison of the performance of context win-
dows of various size. This visualizes the numbers reported
numbers in Table 2.

give a more realistic measure of the performance than the
smaller values of n; however, inspecting large numbers of
n terms requires substantial manual annotations, which is
cumbersome. In this experiment, we observe that the per-
formance of context windows with respect to each other is
nearly constant when n ≥ 250. As a result, in the next ex-
periment, the performance of the k-nn for different values
of k is assessed by looking at the top 250 terms.

Table 3 shows the observed results in the classification task
when k is set to various percentages of the size of refer-
ence vector size, as explained in Section 4.4. It is impor-
tant to note that except for very small or large values of k,
i.e. when p ≤ 0.001 or p ≥ 0.20, the various sizes of the
Around∏ context outperforms other context types. There-
fore, although the overall performance of the classification
task is subject to the value of k, we conclude that the most
discriminative context type can be decided independent of
the value of k. For this context type, it seems that the larger
values of k tend to give better results for the smaller context
sizes.

4.6. Replicating the Experiments

The processed corpus and the annotation files can be ob-
tained from the European Language Resources Association
(ELRA), catalogue reference ELRA-T0375, the ACL RD-
TEC: A Reference Dataset for Terminology Extraction and
Classification Research in Computational Linguistics. The
dataset comprises 67 641 annotated candidate terms, where
19 223 are valid terms, including 13 010 technology terms.

Context Value of p in k = bp|Rs|c
Type Size 0.001 0.005 0.01 0.10 0.20

Le
ft

1 0.580 0.596 0.632 0.412 0.352
2 0.516 0.560 0.532 0.428 0.216
3 0.548 0.500 0.512 0.364 0.268
4 0.556 0.496 0.404 0.356 0.212
5 0.572 0.456 0.416 0.272 0.212

R
ig

ht

1 0.472 0.588 0.660 0.500 0.184
2 0.588 0.588 0.536 0.292 0.224
3 0.584 0.524 0.344 0.236 0.136
4 0.608 0.500 0.424 0.224 0.164
5 0.544 0.488 0.336 0.256 0.200

A
ro

un
d

1 0.584 0.716 0.692 0.408 0.384
2 0.612 0.752 0.620 0.372 0.216
3 0.628 0.700 0.656 0.356 0.232
4 0.124 0.688 0.588 0.256 0.208
5 0.168 0.572 0.428 0.240 0.184

Le
ft∏

2 0.548 0.552 0.584 0.404 0.320
3 0.528 0.628 0.580 0.312 0.272
4 0.540 0.584 0.572 0.272 0.176
5 0.548 0.568 0.524 0.280 0.160

R
ig

ht
∏ 2 0.652 0.628 0.712 0.212 0.096

3 0.592 0.412 0.592 0.196 0.168
4 0.604 0.428 0.512 0.144 0.160
5 0.560 0.440 0.420 0.140 0.104

A
ro

un
d∏ 1 0.600 0.816 0.748 0.652 0.448

2 0.588 0.820 0.784 0.560 0.340
3 0.580 0.820 0.780 0.556 0.324
4 0.592 0.840 0.732 0.416 0.248
5 0.612 0.804 0.688 0.400 0.204

Table 3: Evaluation of the neighbourhood size selection
in the performance of the proposed k-nn classification
scheme. The employed values of k are represented as a
proportion p of the number of reference vectors |Rs|. The
best performing context type and size is marked by a rect-
angle.

5. Conclusions

We examined different context types of various sizes in or-
der to find the most discriminative model in a term clas-
sification task. We employed the random indexing tech-
nique to construct vector space models at reduced dimen-
sion. The term classification task is performed using a k-
nearest neighbour voting framework. In our experiment,
models that are induced from the co-occurrences of terms
in context windows that extend to both sides of the terms
and encode the order of words outperform other evaluated
contexts. In addition, our experiment suggests that the most
discriminative context can be identified, to a large extent,
independent of the neighbourhood size k in the classifica-
tion task.

The presented research can be extended in several ways.
We did not apply any weighting process prior to the simi-
larity measurements, which can affect the obtained results
and performances. The employed cosine similarity can be
compared with the Euclidean distance when the vectors are
normalized using various weighting techniques. In addi-
tion, the binary voting scheme for the classification task
can be replaced by the weighted sum of similarities. Al-
ternatively, machine learning techniques other than k-nn,
e.g. support vector machines, may be employed to classify
terms. Last but not least, the effect of the changes in the set
of reference vectors, e.g. its size, on the performance of the
classification task can be assessed in future work.
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