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Abstract
This paper discusses an extension of the V-measure (Rosenberg and Hirschberg, 2007), an entropy-based cluster evaluation metric. While
the original work focused on evaluating hard clusterings, we introduce the Fuzzy V-measure which can be used on data that is inherently
ambiguous. We perform multiple analyses varying the sizes and ambiguity rates and show that while entropy-based measures in general
tend to suffer when ambiguity increases, a measure with desirable properties can be derived from these in a straightforward manner.
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1. Motivation
Ambiguity is ubiquitous in language and thus methods for
dealing with ambiguous data are essential for robust sys-
tems and accurate representations in natural language pro-
cessing. Many well-developed machine learning methods
employ clustering as a main or pre-processing step. While
simple clustering methods are often directly applied to un-
ambiguous data (e.g. in computer vision), ambiguous data
poses a problem in that in general, multiple labels will ap-
ply to a single data point. One common workaround is to
simply assume the data can be represented unambiguously
and to assign simple labels, e.g. in the case of verb clas-
sification (Merlo and Stevenson, 2001; Schulte im Walde,
2006). On our view, soft clustering techniques represent the
most natural strategy for representing ambiguous data.
An important issue for such an investigation using soft clus-
tering approaches, is the necessity of suitable evaluations of
the soft cluster analyses, which are less developed and have
not seen widespread acceptance so far. A standard evalua-
tion method such as purity,

pur(C) =
1

N
·
∑
j

maxk|cj ∩ gk| (1)

which computes the average overlap of a cluster with any
group, does not intuitively fit a situation in which most class
members belong to multiple classes.
Our work aims to fill this gap. We propose to extend the
V-measure (Rosenberg and Hirschberg, 2007), which is
an entropy-based measure developed for unlabeled cluster
evaluation to handle ambiguous data, i.e. data which be-
longs to multiple classes in the gold standard.
The structure of the paper is as follows: Section 2 discusses
the intuitions underlying the V-measure. Section 3 then ex-
pands on these intuitions defining the more general fuzzy V-
measure. An analysis of the fuzzy V-measure is presented
in Section 4. In Section 5, we further address the issues
underlying all evaluations based on contingency tables and
present a possible solution. Section 6 concludes the paper.

2. Entropy-based measure: V-Measure
Besides V-measure, there exist other information-based
measures – e.g., Variance of Information (VI) (Meilă,

2007), with variants suggested by (Vinh et al., 2010) – how-
ever, we consider the intuitions and computational simplic-
ity of V-measure, i.e. entropy gain and loss, to be useful.
In addition to the standard evaluation of a cluster analy-
sis against a gold standard set of classes, the V-measure
also allows for the comparison of two completely indepen-
dent clusterings – with no restrictions in their similarity,
the number of data points, or the number of clusters. In this
paper we will adopt the terminology of clusters being com-
pared against classes, assuming we have a gold standard
classification of our data.
v(C), the V-measure of a clustering C, of a set of data
points is defined as a weighted mean of two complemen-
tary properties of the two partitionings of the data set. Each
of these two constitute a particular desirable property for a
clustering. The first is termed homogeneity,

hom(C) =

{
1 if H(C,G) = 0;

1− H(C|G)
H(C,G)

else (2)

which gives a measure of how homogeneous the clusters
in the clustering are. Here, H is the standard entropy:
H(C|G) denotes the conditional entropy of C given G and
quantifies the amount of additional information contained
in C with respect to G. The joint entropy, H(C,G), is used
for normalization. The second measure, completeness (cf.
Equation 3), captures how intact the gold standard classes
remain with respect to the clustering:

com(C) =

{
1 if H(G,C) = 0

1− H(G|C)
H(G,C)

else (3)

Homogeneity. In effect, homogeneity can be viewed as
a generalization of the purity measure, which is a normal-
ized measure (by the number of points N ) to which de-
gree each cluster cj contains only members of one class gk.
For hom this corresponds to the amount of information the
cluster contains about the class, which is high if the condi-
tional entropy of the gold classes given the clustering, i.e.
H(G|C), is low. If each cluster contains only objects from
one gold-standard class, then the entropy is at its minimum,
H(G|C) = 0. This represents a maximally homogeneous
clustering.

581

[uttjn|riestesa|koepermn|schulte]@ims.uni-stuttgart.de


Completeness. Similar to the definition of homogeneity,
completeness measures how well the classes map clusters
within a cluster analysis. In the case where each gold-
standard class maps only to one cluster, the clustering adds
no additional information, H(C|G) and is at its minimum.
This represents a maximally complete clustering, in that
each gold-standard class is completely covered by a partic-
ular cluster.1 The final V-measure value is then computed
as a weighted harmonic mean of the two homogeneity and
completeness values:

vβ(C) =
(1 + β) · hom(C) · com(C)

β · hom(C) + com(C)
(4)

In this paper, we give homogeneity and completeness equal
weight (β = 1),

v(C) =
2 · hom(C) · com(C)

hom(C) + com(C)
(5)

but this can be freely chosen for a particular task depending
on which measure is to be given priority.
It should be noted that in the final calculation step for hom
and com, the polarity is reversed, i.e. when the respective
conditional entropies are small, then the measure is at its
maximum value 1, and 0 in the opposite case, that is, when
there is no shared information and the conditional entropies
equal the joint entropy.
In order to calculate these entropy values, we must de-
fine the joint and conditional probabilities across clusters
and gold-standard classes. In (Rosenberg and Hirschberg,
2007), the joint probability of a cluster c and a gold-
standard class g was estimated as

p̂(c, g) =
|c ∩ g|
N

, (6)

where |c ∩ g| is the number of data points shared by c and
g, and N is the total number of data points. This represents
a problem in the case of ambiguous data, however, as there
are more class memberships than data points. We will now
illustrate this issue with an example.

3. Fuzzy V-Measure
Example with ambiguous data. Suppose we have a data
set with four points: p1, p2, p3, p4. These points belong to
four different gold-standard classes g1, g2, g3, g4 as shown
in Figure 1. That is g1 and g4 each contain two mem-
bers p1, p2 and p2, p4, respectively; g2 has three members,
namely p1, p3, p4 and g3 contains both p2 and p3.
Due to the ambiguity of our data, there are data points
which belong to multiple classes, i.e. they are fuzzy. In
order to calculate the probability as for the traditional V-
measure, we would have to use a different normalizing con-
stant, as the intersections of the different clusters are not
disjoint, i.e.

∑
j,k |cj ∩gk| > N . At the same time, such an

approach would give too much weight to highly ambiguous
objects such as p2. E.g. we would assign the same joint

1Note that Equations 2 and 3 differ from those in (Rosenberg
and Hirschberg, 2007) in the denominators of the else condition
because there were typos in the definitions (personal communica-
tion with Andrew Rosenberg).

p1 p2

p3 p4

g1

g2 g3 g4

Figure 1: Distribution of ambiguous data.

g1 g2 g3 g4

p1 .5 .5 0 0
p2 .33 0 .33 .33
p3 0 .5 .5 0
p4 0 .5 0 .5

Table 1: Distribution of data points in gold standard.

probability to the pair p2 and g4 as to p4 and g4. Obviously,
this is unrealistic: p4 belongs to only two classes while, p2
belongs to three. We should thus give p2 less weight as
evidence for a particular class. Our approach is straight-
forward: we assign each point a total mass of 1 which is
then evenly distributed among its classes, cf. Table 1. As
this explicitly deals with fuzzy data, we term the resulting
metric the fuzzy V-measure.
We thus generalize the counting of the original V-measure
to a mass function µ:

p̂(c, g) =
µ(c ∩ g)
M

, (7)

where µ(c ∩ g) is the total mass of the objects in the data
shared by c and g, and M is the total mass of the cluster-
ing. Note that M will only be equal to N if each data point
belongs to exactly as many classes as clusters. Using the
cluster analysis shown in Figure 2, we can perform the cal-
culation of V-measure on this data set. We see that cluster
c1 contains p1, and p2, and c2 contains p1, p3 and p4. Using
the new gold standard mass distributions given in Table 2,
we can build the contingency for clusters c1, c2 in Table 2.
In this table, we see the masses for each intersection as ex-
plained above, i.e. cell i, j contains µ(ci ∩ gj). This then
serves to compute the joint and conditional probabilities.

p1 p2

p3 p4

c1

c2

Figure 2: Clustering of ambiguous data.
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g1 g2 g3 g4
∑

c1 .83 .5 .33 .33 = 2
c2 .5 1.5 .5 .5 = 3

Table 2: Contingency table containing mutual evidence be-
tween classes and clusters.

Now we can clearly see the advantage of our approach:
While both c1 and c2 each share two points with the gold-
standard classes g1 and g2 respectively, the higher ambigu-
ity of p2 in the first case means there is less evidence for
c1 given g1 than c2 given g2, namely: p̂(c1|g1) = .83/2 <
1/2 = 1.5/3 = p̂(c2|g2). Using these probabilities, we can
easily compute the entropy values necessary for the calcu-
lation of the V-measure. This constitutes the fuzzy calcula-
tion of V-measure for a soft clustering. While the traditional
V-measure .014 the fuzzy V score is .047. Both scores are
small, but this is because all data points are ambiguous.
It should be noted that the fuzzy V-measure proposed here
is applicable not only when data is ambiguous with respect
to the gold standard classes themselves, but it also allows
for the application to soft clusterings. We have already
implemented and applied this measure (Springorum et al.,
2013) to soft clusterings of highly ambiguous data, namely
German prepositions. In such cases, the data points may be
present in multiple clusters and simply add their respective
mass to the cells in the contingency table.
The following section investigates the performance of fuzzy
V when applied to clusterings and gold standards of varying
sizes and across multiple rates of ambiguity.

4. Analysis of Fuzzy-V
The above example gives a general notion of distributing
a data point’s mass across classes in the contingency table
resulting in a higher evaluation score. In this section, we
apply the two V measures in different settings to test the
stability of this result.

4.1. Experiment 1
As basis for our investigations, we build artificial data, by
approximating the ambiguity rates as exhibited in actual
linguistic data. The ambiguity rate in a data set is the dis-
tribution of class memberships – i.e. ambiguities – over all
data points. In the example above, the ambiguity rate would
be 2, 2, 2, 3, as three points have an ambiguity of 2, and
one point an ambiguity of 3. Figure 3 shows the ambigu-
ity rates across parts of speech in WordNet 3.0 (Fellbaum,
1998). The automatically constructed ambiguity rates for
our experiment were designed to give realistic ambiguity
rates independent of data size, while being easy to con-
struct and interpret: In the first step half of the data points
are assigned an ambiguity rate of 1, i.e. they are unambigu-
ous. Then, successively, the remaining data set is split in
two halves, the first half is assigned an ambiguity rate one
higher than the previous half. E.g., for 7 points, the auto-
matically generated ambiguity rates would be 1, 1, 1, 1, 2,

% of total data points
%

 o
f m
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bi

gu
ity

noun (gen.)
noun
verb
adverb
adjective
automatic

5% 10% 20% 50% 100%

10
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80
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60
%

40
%

20
%

0%
Figure 3: Ambiguity rates across parts of speech in Word-
Net 3.0. Data points are ordered left to right from less
ambiguous to most ambiguous. Noun generalizations are
taken from CoreLex (Buitelaar, 1998).

2, 3. In this experiment, we keep the ambiguity rate of the
data set constant, while varying its size.

Data. We construct data sets with sizes ranging from 2
to approximately 1000 such that the ambiguity rates of the
data points lie on the line in Figure 3. For each set of data
points with their corresponding ambiguity rates, we ran-
domly generate 100 gold standard classifications. These
are selected uniformly from the 2|G|×|C| possible assign-
ments for all classes (G) and clusters (C) for the given data
points. We assume a perfect clustering for each data set,
i.e. the clusters contain the same items as the classes in the
gold standard. In such cases we would like to have scores
close or equal to 1.

Evaluation. For each gold standard, together with its
identical clustering, we evaluate the clustering using the
traditional V measure as well as with our fuzzy V across
the different assignments. As fuzzy V explicitly allows the
assignment of multiple items to different classes (or clus-
ters), we expect fuzzy V to reliably yield higher scores than
traditional V.

Result. As can be seen in Figure 4, none of the measures
reach the maximum of value 1, though the clusters are per-
fect in that they represent the same partitioning of the data
set as the gold classes. However, our hypothesis is con-
firmed in such a way as that the values for fuzzy V are con-
sistently higher than for V. The figures also show that with
increasing data sizes, the variation for both fuzzy V and V
decreases, while the overall variance of fuzzy V is a greater
than for traditional V.
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Figure 4: Impact of the number of datapoints

4.2. Experiment 2
While in the first experiment we assumed a perfect cluster-
ing, we now turn to arbitrary clusterings of the data.

Data. To show how well the measures capture the varia-
tion in matching the clusters to the classes, two clusterings
with random object assignments are evaluated against each
other, keeping the ambiguity rate constant, across the dif-
ferent data sizes. In total we compare 499 different assign-
ments, starting from an assignment with only two elements
and ending with an assignment containing 500 elements.

50 100 150 200 250 300 350 400 450

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

Cluster size

FuzzyV
TradV

Figure 5: Experiments with unequal assignments

Results. Figure 5 shows that independent of how well the
clustering maps to the gold classes, fuzzy V is less sensitive
to the ambiguity than traditional V.2

4.3. Experiment 3
The goal of this experiment is to determine the effect of
how ‘hard’ or ‘soft’ the clustering is on the resulting scores,

2It is important to note that there is no simple relationship be-
tween the two measures, e.g. by a constant factor, as tested in
an additional experiment. Both heavily depend on the properties
of the data, in particular the ambiguity rates, as will be shown in
Experiment 3.

i.e. how the number of ambiguous assignments impact both
V measures. While the preceding experiment compared
contrasting clusterings, while maintaining the data points’
ambiguity rates in the clustering, this experiment will vary
the ambiguity rates in the clusters, i.e. the number of cluster
assignments for each data point, among the test clusterings.
The assignment of clusters to the gold standard classes is
kept stable.

Setup. We begin with a hard clustered data set, where
each data point is assigned to only one cluster and each
cluster is correctly associated with one gold standard class.
This cluster is evaluated against the gold standard contain-
ing many ambiguous elements. Then we incrementally add
a new cluster assignment, according to the gold standard,
until we get the ‘perfect’ soft clustering, i.e. identical with
the gold standard. This experiment compares the behavior
of the fuzzy V to the traditional V measure with a step-
wise increase of the ambiguity rate. The gold standard for
this purpose comprises 500 clusters for a total of 500 ele-
ments, where 250 elements are assigned to more than one
gold standard class. In each step, the new, softer cluster-
ing is evaluated against the original gold standard. At each
step, the assignments can be considered correct in the sense
that they are assigned to one correct cluster (according to
the gold standard); however, the spectrum of assignments
each point’s polysemy would allow for, is captured incom-
pletely.

Result. Figure 6 shows that with each clustering closer to
the fuzzy gold standard, both values decrease. In the case
of perfect clustering, again, both V measures yield smaller
results compared to the previously less soft clustering. At
first glance, this is a surprising outcome. However, it can
readily be explained: As both measures are computed di-
rectly from entropies, the increased spread of mass in the
contingency table due to ambiguity, leads to an increase in
the overall uncertainty in the correspondence between clus-
ters and classes.
If such soft clusterings are to be assigned a perfect score of
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Figure 6: The impact of an increasing number of polyse-
mous elements

1, the measures must be extended.In Section 5 we propose
one possible extension of V measure which is able to solve
this issue.

5. Beyond Entropy
As seen in the previous section, cluster evaluations carried
out on partitions containing ambiguous elements are not as-
signed the desired maximum score of 1. So far, this is the
case for both traditional V measure and the proposed fuzzy
V. This section explains the underlying reasons for this be-
havior and introduces a method to extend evaluation met-
rics based on contingency tables, such as the fuzzy V and
V measures, to mitigate this effect. The reason for this un-
favorable behavior, is grounded in the construction of the
contingency table. Such a traditional contingency table is
in fact more consistent with a hard classification.
Assuming a perfect hard clustering where each column and
each row of the contingency table yields only one value
greater than zero, as in Figures 7a and 7b. In contrast,
Figure 7c shows a contingency table in the case of a perfect
clustering containing one ambiguous element.


g1 g2 g3

c1 2 0 0
c2 0 2 0
c2 0 0 2


(a)


g1 g2 g3

c1 0 2 0
c2 0 0 2
c2 2 0 0


(b)


g1 g2 g3

c1 1 2 0
c2 2 1 0
c2 0 0 2


(c)

Figure 7: Example contingency tables

The gold classes g1 and g2 share one ambiguous element.

This element leads to similarity between them and thus to
double entries between several cluster/gold-class pairings
(c1:g1,g2 and c2:g1,g2), which leads to a score less than 1.
As seen previously, while fuzzy V is able to smooth this
behavior it still does not provide the optimal score.

5.1. Dissimilarity
The previously explained problems are mainly caused by
the way traditional contingency tables are constructed. This
construction must, however, be extended to solve the issues
encountered above, making the scoring based on such ta-
bles more reliable for soft clusterings. We introduce two
additional steps:

1. Force a one-to-one mapping between cluster and gold-
classes cx → gx. This pairing should prefer combina-
tions providing a high similarity and a low dissimilar-
ity within the pair.

2. Penalize other mappings by uniformly distributing the
remaining error mass (ex), where ex is defined as the
dissimilarity between the best mapping cx and gx.

It is necessary to keep track of not only this similarity be-
tween classes and clusters, i.e., their shared elements’ mass,
but also of their dissimilarity, namely the missing and re-
maining elements between all cluster/class combinations.
For any combination, a good mapping should lead to a high
similarity and low dissimilarity. The difference between
similarity and dissimilarity would then represent a more
clear representation of the quality each cluster/class com-
bination. Based on this score, the highest value determines
the mapping between cluster and gold class. This informa-
tion is enough to modify the contingency table. In a first
step, we set all entries in all cells to zero, except for the
best mapping entries. The cell containing the best mapping
keeps the value of the traditional scoring scheme, i.e. its
similarity. This step can be seen as removing unnecessary
similarity, caused by ambiguous elements.
So far we have been optimistic because the contingency ta-
ble includes only correct decisions, namely the score for the
best mapping. To allow a complete cluster evaluation it is
also necessary to punish wrong decisions. This is done by
distributing error mass among the zero-entries in the con-
tingency table. Error mass should include wrong decisions,
such as missing elements or additional elements. This in-
formation is already captured in the previously calculated
dissimilarity. Since the mapping for each cluster/class is al-
ready assigned, we only have to distribute the dissimilarity
from that specific mapping. Note that this value is always
zero in cases of perfect clustering.

Example. Consider the following example with three el-
ements: p1, p2, p3 where p1 is ambiguous between two
classes. The clustering corresponds exactly with the gold
standard, as shown in Fig 8. The resulting contingency
tables for both cases (hard and soft) are provided in Fig-
ures 8b and 8c.
The corresponding dissimilarity values are shown in Fig 9.
The final mapping between clusters and gold classes is then
simply via the highest score, where the score ( Fig 10a and
Fig 10b) is defined as the difference between similarity and
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g1

g2

p1 p2

p3

p1 p2

p3

c1

c2

(a) Gold classes and clustering

sim =

( g1 g2

c1 2 1
c2 1 2

)
(b) ‘Hard’ contingency table

sim =

( g1 g2

c1 1.5 0.5
c2 0.5 1.5

)
(c) ‘Soft’ contingency table

Figure 8: Example: Clustering identical to gold classes

dissimilarity. In the example, this will lead to the mapping
c1 → g1 and c2 → g2.

diss =

( g1 g2

c1 0 1
c2 1 0

)

(a) Hard dissimilarity matrix

diss =

( g1 g2

c1 0 0.5
c2 0.5 0

)

(b) Soft dissimilarity matrix

Figure 9: Dissimilarity tables for hard and soft clustering

The error mass is defined as the dissimilarity value for the
best mapping. In this case this value is 0. In cases where
the error mass is greater than 0, the error mass is distributed
equally among the non-zero entries in each row. As seen in
experiments 4.1., this addition can be used to extend both
fuzzy V and traditional V measure.

score =

( g1 g2

c1 2 0
c2 0 2

)

(a) hard score

score =

( g1 g2

c1 1.5 0
c2 0. 1.5

)

(b) soft score

Figure 10: The scores determine the mapping

Figure 11 shows the performance of the dissimilarity en-
hancement applied to the same experimental setup as in
Figure 6 of Section 4.3. We can now see that the measures
both converge toward the desired score of 1 for perfect soft
clusterings.

6. Conclusion
As expected, fuzzy V consistently yields higher scores than
traditional V in cases where it is to be anticipated. How-
ever, while it captures and correctly treats the ambiguous
nature of the tested data, fuzzy V still suffers from the is-
sues which emerge from calculating entropies from a stan-
dard contingency table.

100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

Iterations

FuzzyV
TradV

FuzzyV with Dissimilarity
TradV with Dissimilarity

Figure 11: The impact of an increasing number of polyse-
mous elements and the usage of dissimilarity

These findings illustrate the limits of such a purely on
entropy-based measure. The complexity of the general un-
certainty of ambiguous objects cannot be captured using
only these methods. Thus, the addition of a further disam-
biguation step – namely on the level of class/cluster assign-
ment – is required to better assess the quality of the clus-
tering. This is similar to the calculation of purity, which
uses the maximum intersection size between a cluster and
the classes, which can be viewed as an implicit class-cluster
assignment.
We have proposed a natural extension of the entropy-based
V measure, the fuzzy V measure, which can handle better
the evaluation of soft clusterings of ambiguous data. In ad-
dition, we highlighted the inherent drawbacks of entropy-
based evaluation metrics of ambiguous classifications and
have shown that these can be further improved upon using
dissimilarity tables. As unlabeled ambiguous data is perva-
sive in NLP (e.g. in semantic classification, topic labeling),
we feel this is a valuable addition to the evaluation tech-
niques in this field.
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