
UnixMan Corpus: A Resource for Language Learning in the Unix Domain

Kyle Richardson, Jonas Kuhn
Institute for Natural Language Processing

University of Stuttgart
{kyle,jonas.kuhn}@ims.uni-stuttgart.de

Abstract
We present a new resource, the UnixMan Corpus, for studying language learning it the domain of Unix utility manuals. The corpus is
built by mining Unix (and other Unix related) man pages for parallel example entries, consisting of English textual descriptions with
corresponding command examples. The commands provide a grounded and ambiguous semantics for the textual descriptions, making
the corpus of interest to work on Semantic Parsing and Grounded Language Learning. In contrast to standard resources for Semantic
Parsing, which tend to be restricted to a small number of concepts and relations, the UnixMan Corpus spans a wide variety of utility
genres and topics, and consists of hundreds of command and domain entity types. The semi-structured nature of the manuals also makes
it easy to exploit other types of relevant information for Grounded Language Learning. We describe the details of the corpus and provide
preliminary classification results.

Keywords: Language Resources, Semantics, Grounded Learning,Semantic Parsing

1. Introduction
Recent work on Semantic Parsing has focused on using
non-traditional forms of data supervision, such as struc-
tured meaning representations, to jointly learn language
syntax and semantics. A variety of corpora had been devel-
oped for these studies, often centering on a particular do-
main such as Sports, Geography, Navigation Instructions,
among others (for a review and examples, see (Mooney, R.
, 2007)). Such corpora consist of parallel text and mean-
ing pairs, and the ultimate goal is to learn how to translate
unseen text examples to correct structured meaning repre-
sentations. A large number of tools have been used to study
this problem, often taking insights from statistical Machine
Translation (Andreas al., 1990; Wong, Y., et al, 2006), and
statistical parsing (Zettlemoyer, L., et al, 2007). Particu-
larly impressive has been the high accuracy that many sys-
tems achieve on benchmark datasets since such datasets
tend to be small, with training sets numbering in the hun-
dreds of sentences.
One salient research direction within this community looks
at learning with weak supervision, where the target mean-
ing representations are non-linguistic and grounded some-
how in the domain being modeled. Examples include learn-
ing to parse high-level temporal expressions from raw date
stamps (Angeli et al., 20012), learning about navigation
instructions from grounded map cues and features (Chen,
D., R. Mooney, 2011; Artzi et al., 20012) and interpreting
sportscaster commentary based on automatically acquired
streams of event sequences from a simulated sports game
(Chen, D., R. Mooney, 2008). In the latter study, for ex-
ample, the exact semantic label for each comment is un-
certain, in that comments in the training phase are paired
with all events in the game occurring around the time of the
commentary, making the annotation mirror the underlying
ambiguous perceptual context. In such a case, the computer
must learn with ambiguous supervision, a task strongly ad-
vocated in (Mooney, R. , 2008). In this experimental set-
ting, little to no manual annotation effort is required, since
the annotation is extracted from (possibly noisy) grounded

features that are independent of the related text. There has
also been a strong emphasis on extrinsically evaluating the
resulting systems on actual down-stream tasks (e.g. execut-
ing real navigation instructions).
Despite the encouraging results achieved in Semantic
Parsing, the available datasets have many shortcomings,
chiefly related to their small size and limited scope. The
Sportscaster Corpus (Chen, D., R. Mooney, 2008) men-
tioned above is limited to 9 types of relations and a few
dozen entity types, and GeoQuery (Zelle, J., et al, 1996),
another benchmark dataset, is limited to around 38 predi-
cate types. More challenging datasets have been introduced
(Chen, D., R. Mooney, 2011), even for doing large-scale
open domain Semantic Parsing (Cai Q. , 2013), but these
are still fairly scarce. In addition, the annotations in such
datasets encode very little knowledge, making it hard to
learn interesting generalizations about target concepts and
relations, or other forms of world knowledge.
We believe that there is strong justification for developing
new resources for Grounded Language Learning and Se-
mantic Parsing. As part of this effort, this paper presents the
UnixMan corpus, a resource built semi-automatically by
mining Unix (and other Unix related)1 utility manuals for
example entries consisting of user generated English tex-
tual descriptions with corresponding code examples. These
code examples provide an ambiguous and grounded mean-
ing representation for the associated text. The grounded
nature of the representations make it ultimately possible
to execute the target commands from natural language in-
put. Unlike in other related datasets, the corpus ranges over
many different genres and topics, making the set of com-
mand and entity types quite large. Along with the parallel
examples, we also extract surrounding information about
the example code syntax, in addition to information about

1the Unix man pages can be viewed here:
http://www.liv.ac.uk/Unixhelp/alphabetical/. In addition to
the core Unix utilities, other types of manuals are included for
utilities usually distributed with Unix (e.g. posgreSQL and C
manuals)

2985

FILENAME: reindexdb.txt
NAME: reindexdb
DESCRIPTION: reindex a PostgreSQL database
SYNOPSIS: // Specification of the command’s syntax and argument types

reindexdb [connection-option...] [--table | -t table][--index | -i index] [dbname]
reindexdb [connection-option...] [--all | -a]
reindexdb [connection-option...] [--system | -s] [dbname]

EXAMPLES // English descriptions with typed command sequences

To reindex the database test

reindexdb=reindexdb dbname=test

To reindex the table foo and the index bar in a database named abcd:

reindexdb=reindexdb --table=--table table=foo --index=--index index=bar dbname=abcd

SEE ALSO REINDEX, // Functionally related utilities

Figure 1: Example extraction from the man page for reindexdb. DESCRIPTION provides a high-level description of the
overall utility. SYNOPSIS gives a syntactic definition of how to use the command, and also specifies the types of switches or
options the command takes. EXAMPLES contain pairs of text descriptions with example commands, which are segmented
and marked according to the types given (if available) in the synopsis (shown in bold=, original example code shown to
the right of ”=”). reindexdb in this case refers to the main command name, whereas other parts of the command constitute
particular options/switches or arguments. SEE ALSO gives a pointer to related utilities.

relations between different types of utilities.
In what follows, we describe the details of the corpus. We
also describe a pilot study on classifying command types,
and show how surrounding semi-structured information can
be used in classification.

2. UnixMan Corpus
2.1. Corpus Creation
Figure 1 provides an example extracted from the man page
for the reindexdb utility. Using a initial collection of around
11,000 raw man pages, a small subset was automatically
extracted based on whether each file contained a set of de-
sired fields, including a text description, synopsis, and set
of example entries (see Figure 1 for details). Since the man
pages are not uniformly formatted, this small subset (in-
cluding 1,585 files) was then manually reviewed in order
to organize the different sections and verify that the con-
tent was relevant. For example, several files contained the
text To be added.. (and several variations thereof) in the
EXAMPLES field, without any actual entries. We also ex-
tracted SEE ALSO sections from pages that have this sec-
tion, which indicate relations between related types of util-
ities.
For each page, the SYNOPSIS section is used to type and
segment the command sequences inside the example en-
tries, which consist of a command (e.g. reindenxdb) along
with zero or more arguments (i.e. flags, switches or exter-
nal files). This was done by manually matching parts of
the given command sequences to the types assigned in one
or more of the synopses. In cases where the synopses are

underspecified or ambiguous (e.g. if not all types of argu-
ments are explicitly provided), the type other or option was
assigned to an unknown term. In a few cases, when the type
of a unknown constituent is obvious from the context (e.g.
a pathname or file), a new type is generated and matched
to that item. In the end, the typed examples were automat-
ically matched against the synopses once more, in order to
check for errors. In general, the typing procedure could
have been done entirely automatically, but given the noisy
nature of the man pages, we decided to do it manually in
order to avoid subtle mistakes.
As summarized in Figure 2, this process resulted in 327
command types, and 605 types of unique command argu-
ments. Although we have mainly focused on matching the
example sequences with the synopses as closely as possi-
ble, it is possible to either refine or further abstract the rep-
resentations. For example, many of the original man pages
include a DESCRIPTION section where certain switches or
options are further classified and defined, and one could use
this information to arrive at a more fine-grained represen-
tation. Similarly, using the SEE ALSO sections, it is possi-
ble to underspecify command types by grouping them into
clusters, which is further discussed below. In addition to
our corpus, we are also releasing parts of the original man
pages, which can be linked to particular command entries
for extracting additional information.

2.2. Example Entries
Our main interest is in the EXAMPLES section entries,
which contain high-level text descriptions with example
commands. In a Grounded Learning setting, the commands

2986

English Text Entries Command Entries
Sentences # Tokens # Single Tokens # Commands # Options (Average/Comm) Avg. Sen/Com

330 Unix Pages 914 2282 1182 (51%) 327 605 (3.37) 2.76
GeoQuery 880 282 80 (28%) 38 (# Preds) — 129 (Sen/Pred)
Sportscaster 1872 427 151 (35%) 9 (# Rels) 2.20 (avg. MRs/sentence) —

Figure 2: Some details of the UnixMan Corpus (top) compared with other benchmark datasets (below, both English):
SportsCaster (Chen, D., R. Mooney, 2008) and GeoQuery (Zelle, J., et al, 1996). The column #Single Tokens refers to the
number of tokens that occur only once in the overall dataset. Column #Options shows the number of unique command
options/modifiers over all command types, whereas Average/Comm refers to the average number of command options
associated with a command. Column Avg. Sen/Com refers to the average number of sentences per command type. Numbers
for the other dat sets were computed by the first author, and in the Sportscaster case were computed after fixing small errors.
See text for more details.

Commands in a SEE ALSO class # Equivalence Classes

206 (62%) 55

Example Command Classes:

{slapauth,slapdn,slapcat,slapadd,
slapindex,slapacl,slaptest,slapd}

{authopen,unzip,ditto,lsbom,
pax,open,drutil,funzip,ls,
zip,hdid,hdiutil,raidutil,
tar,zipinfo}

{git-pull,git-fetch,git-merge,...}

{iotop,iosnoop,iopattern,iopending}

{lam,cut,paste}

{CREATE_INDEX,REINDEX,
DROP_INDEX,ALTER_INDEX}

{ALTER_FOREIGN_DATA_WRAPPER,
DROP_FOREIGN_DATA_WRAPPER,
CREATE_FOREIGN_DATA_WRAPPER}

{crl,x509,req,pkcs7,crl2pkcs7}

{rcsmerge,rlog,ci,rcsdiff,rcsclean}

Table 1: Information about the number of commands from
the total that appear in a SEE ALSO class, either by hav-
ing this field in their man page, or by occurring in different
man page under this section. These sets of commands were
then organized into equivalence classes. Sample equiva-
lence classes are shown above.

constitute the meaning of the associated text. In the exam-
ple in Figure 1, the reindex command can be thought of
as a relation that predicates over a number of option argu-
ments, including table name, index name, and dbname (in
the second example in Figure 1). Learning the meaning of
unseen texts, in this context, can be done by learning corre-

spondences between text phrases and command fragments,
which is the goal of most Semantic Parsing learning algo-
rithms.
In contrast to other corpora for Semantic Parsing, how-
ever, the UnixMan Corpus contains many more entities and
predicate types. As detailed in Figure 2, there are 327
types of command relations, and around 605 command ar-
guments, with the number of arguments per command rang-
ing from zero to 18. Figure 2 provides a comparison with
the benchmark datasets discussed above, which are more
constrained. It is particularly striking to compare the aver-
age number of sentences per command type, shown in the
Avg.Sen/Com section, with the same number for the Geo-
Query corpus. As a consequence, standard Semantic Pars-
ing algorithm might not perform well on the UnixMan cor-
pus since there are much less training instances per com-
mand and the corpus has a much larger vocabulary (com-
pare # Tokens and # Single Tokens).
Since the relevance of each command argument option
is not annotated, a major challenge for learning is figur-
ing out which options, if any, are being described in the
text, and detecting general patterns among different op-
tion types. This challenge is comparable to the problem
of learning with ambiguous supervision encountered in the
SportsCaster corpus, where each text example has a num-
ber of possible representations (see comparison in Figure
2). For example, flags like –table and –index in Figure 1
often do not have an obvious mapping to parts of the related
text, and are instead provided by convention or used to dis-
tinguish different arguments in the command sequence. In
addition, the flag –index in one utility might have a different
meaning in a different utility. In this sense, the transforma-
tion from language to the commands is highly ambiguous
and noisy.

2.3. Surrounding Structure
In addition to the example entries, other (semi-structured)
information in the extractions can be used for learning. As
discussed in detail above, information in the SYNOPSIS
makes it easy to segment and type command constituents
in the examples. Bracketing is often used inside synopses
to show dependencies between command arguments (e.g.
there is a bracketing in Figure 1 showing a dependency be-
tween –table and table), and this could be used for structur-
ing the provided command sequences. The DESCRIPTION

2987

Training Sentences # Testing Sentences
(#Labels) Accuracy

original (no preprocessing) 575 214 (214) 0.420
original with preproc. 575 214 (214) 0.467

original with descriptions 902 327 (327) 0.428

original with cluster classes 575 214 (136) 0.532
preproc. with cluster classes 575 214 (136) 0.537

Table 2: Results of the classification study. Accuracy refers to the overall accuracy. See text for a description of the different conditions.

section provides an additional textual description of each
command, which might be used as additional training data
for learning a lexicon. Though not all commands contain
a SEE ALSO field, this can similarly be used for clustering
commands based on their similar functionality. In Table
1, we provide information about the clusters that emerge
when we use this information, and we use this clustering
information in the classification study below.

3. Pilot Studies
3.1. Classifying Commands
To test the difficulty of the dataset, we performed a pilot
classification study looking at classifying command types.
We broke the dataset into a testing and training set by tak-
ing all commands that have more than one text example,
and removed a random sentence from this set for testing.
The training set was used to train the Stanford Max-Entropy
classifier (Manning, 2003), using n-grams features (uni-
grams through trigrams, plus prefix and suffix n-grams).
We then evaluated to see if the classifier could predict the
command type of each unseen sentence. Although we are
ultimately interested in parsing sentences to full and exe-
cutable commands sequences, testing the classification of
commands type seems like a reasonable first step, and is
seemingly not trivial given the large number of command
labels.
As detailed in Table 2, several variations of the overall
dataset were evaluated. The original set is created by tak-
ing commands that have more than one sentence/command
pair and leaving out one random sentence for evaluation.
The set includes a total of 575 sentences, out of a total 914,
and covers 214 label or command types. Since the test-
ing set has exactly one example for each label/command,
a random-guess baseline (i.e. choosing the same random
command for every training instance) would be somewhere
around 0.0046. This original set was also varied in terms
of whether preprocessing was done, which included word
stemming, and abstraction of directory token types to a nor-
malized label. We also created a set, original with descrip-
tions, in which the overall text descriptions from each man
page (see Figure 1 and DESCRIPTION) was added to the
training sets as additional evidence. This set allowed us
to evaluate the entire dataset, since every command with
the description text makes it have at least two text descrip-
tions. Finally, in order to test the effect of using equivalence
classes from SEE ALSO fields, we labelled the sentences in
original that fit into the equivalence class with the same la-

bel, which reduced the number of labels from 214 to 136
(referred in Table 2 as cluster classes).
Preprocessing helped raise the accuracy, as seen by com-
paring the original non-preprocessed set with the original
preprocessed. This was to be expected, because this re-
duces the total number of words (by removing basic inflec-
tion, ect.), perhaps making it easier to learn generalizations.
Classifying sentences based on cluster classes also signif-
icantly increased the results, showing that the information
extracted from SEE ALSO is useful, and seems to properly
categorize not only the command types but their respective
sentence examples. Including the descriptions in training
resulted in low accuracy, although it is hard to know its ex-
act effect since the set of classes is larger.

3.2. Towards Semantic Parsing
Although the basic classification study only partially solves
the interesting problems related to the dataset, it seems to
indicate that the data is fairly controlled. In future work we
will concentrate on trying to learn full command sequences,
which is well beyond the scope of simple classification. By
using some of the cluster information, and other surround-
ing semi-structured information, we expect it to be possible
to automatically create training labels that allow to extract
generalizations about how to express commands, filenames,
etc.. As discussed above, a major difficulty for applying
standard Semantic Parsing methods will be dealing with the
small number of training instances and relatively large vo-
cabulary.
One general question is whether the weak supervision pro-
vided by the command sequences can be used to learn more
complex linguistic generalizations, for example related to
quantifier scope and negation. To our knowledge, this topic
has not received much discussion in the Semantic Parsing
literature.

4. Conclusions
We presented a new resource for studies on Semantic Pars-
ing and Grounded Language Learning, which we believe
raises new challenges and overcomes some of the short-
comings in other standard datasets. We performed initial
classification study on the dataset to investigate its diffi-
culty, which indicates that it is relatively controlled. Fu-
ture work will focus on applying Semantic Parsing tech-
niques in order to learn more generalizations, and ulti-
mately the grounded mappings from language to com-
mands sequences.

2988

5. Acknowledgements
This work was funded by the Deutsche Forschungsgemein-
schaft (DFG) on the project SFB 732, ”Incremental Speci-
cation in Context”. We thank Christian Scheible for pro-
viding helpful comments and suggestions.

6. References
Andreas,. J., Vlanchos, A. and Clark, S. 2013. Semantic

Parsing as Machine Translation In Proceedings of ACL,
pages 47–52, Sofia, Bulgaria.

Angeli,G., Manning, C. and Jurafsky, D. 2012. Parsing
Time: Learning to Interpret Time Expressions. in Proc.
of NAACL, pages 446–455, Montreal, Canada.

Artzi,Y. and Zettlemoyer, L. 2013. Weakly Supervised
Learning of Semantic Parsers for Mapping Instructions
to Actions. in Transactions of the Association for Com-
putational Linguistics, (1):29-62

Cai,Q. and Yates, A. 2013. Semantic Parsing Freebase:
Towards Open-domain Semantic Parsing. in Proc. of
*SEM, pages 328-338, Atlanta, Georgia.

Chen, D. and Mooney, R. 2008. Learning to Sportscase:
A Test of Grounded Language Acquisition. in Proc. of
ICML, pages 128-135, Helsinki, Finland.

Chen, D. and Mooney, R. 2011. Learning to Interpret
Natural Language Navigation Instructions from Obser-
vations. in Proc. of AAAI, pages 859-865. San Francisco,
California.

Manning,C. and Klein,D. 2003. Optimization, maxent
models, and conditional estimation without magic. in
Proc. of NAACL-Tutorials

Mooney, R. 2007. Learning for Semantic Parsing. in Proc.
of CICLing, pages 311-324. Mexico City, Mexico.

Mooney, R. 2008. Learning to Connect Language and Per-
ception. in Proc. of AAAI, pages 1598-1601. Chicago,
Illinois.

Wong, Y. and Mooney, R. 2008. Learning for Semantic
Parsing with Statistical Machine Translation. in Proc. of
HLT-NAACL, pages 439-446, New York City, New York.

Zelle, J. and Mooney,. R 1996. Learning to Parse Database
Queries Using Inductive Logic Programming. in Proc.
of AAAI, pages 1050-1055. Portland, Oregon.

Zettlemoyer, L. and Collins, M. 2007. Online learning of
relaxed CCG grammars for parsing to logical form. in
Proc. of EMNLP-CoNLL, pages 678-687, Prague, Czech
Repubic.

2989

