
Heuristic Hyper-minimization of Finite State Lexicons

Senka Drobac∗, Krister Lindén∗, Tommi A Pirinen†, Miikka Silfverberg∗

∗University of Helsinki
Department of Modern Languages, PO Box 24

†University of Helsinki
Department of Speech Sciences, PO Box 9

senka.drobac, krister.linden, tommi.pirinen, miikka.silfverberg@helsinki.fi

Abstract
Flag diacritics, which are special multi-character symbols executed at runtime, enable optimising finite-state networks
by combining identical sub-graphs of its transition graph. Traditionally, the feature has required linguists to devise the
optimisations to the graph by hand alongside the morphological description. In this paper, we present a novel method
for discovering flag positions in morphological lexicons automatically, based on the morpheme structure implicit in
the language description. With this approach, we have gained significant decrease in the size of finite-state networks
while maintaining reasonable application speed. The algorithm can be applied to any language description, where the
biggest achievements are expected in large and complex morphologies. The most noticeable reduction in size we got
with a morphological transducer for Greenlandic, whose original size is on average about 15 times larger than other
morphologies. With the presented hyper-minimization method, the transducer is reduced to 10,1% of the original size,
with lookup speed decreased only by 9,5%.

Keywords: hyper-minimization, lexicon, FST

1. Introduction
Finite-state transducers are an established way of en-
coding morphological analysers for natural languages.
Nevertheless, full-scale morphological analysers can of-
ten grow to be too large for use cases like spell checkers,
speech processing and shallow parsing, which should
have a moderate memory footprint. Large transducers
can be optimised by preserving the sub-lexicon struc-
ture with special symbols called flag diacritics, which
prevents combinatorial blow ups in determinization.
Until now, applying flag diacritics has required a lin-
guist to provide the lexicon compiler with their posi-
tions. However, there are two major problems with
this kind of approach: Firstly, linguists often do not
have a very good understanding of the structure of
the finite-state networks built from lexicographical-
morphological descriptions; Secondly, the addition of
flag diacritics to these descriptions makes them un-
readable and unmanageable since the amount of non-
linguistic data in the linguistic description increases.
One of the reasons why flag diacritics have been so
cumbersome from the linguist’s point of view, is their
two-fold nature. On the one hand, they are there
to optimise the finite-state automaton structure, e.g.
in (Karttunen, 2006). On the other hand, they are the
primary method of describing non-contiguous morpho-
logical constraints (Beesley, 1998). If they are spuri-
ously applied to restrict separated morphotactic de-
pendencies, the effect on optimisation is at best hap-
hazard, and the resulting description may be neither
linguistically motivated nor maintainable from a com-
putational view-point.
This article seeks to address problems associated with
flag diacritics by using an algorithm for inducing flag

positions from the linguistic morpheme structure, im-
plicitly present in lexical descriptions.

2. Background
Finite state morphology (Beesley and Karttunen,
2003) is the state-of-the-art in writing morphologi-
cal analysers for natural languages of a whole range
of typologically varying morphological features. The
finite-state approach is built around two practical con-
cepts: constructing lexicographical descriptions of the
language using a tool called lexc and expressing mor-
phophonological variations as regular expression rules.
In this paper, we study the use of the lexicographical
structure as framed by lexc.
Lexc supports a simple right-linear morphosyntactic
grammar formalism. In linguistic terms, this means
approximately the following: we have collections of lex-
icons, which are lists of morphemes. Each morpheme
in a lexicon has continuation lexicons, which in turn
determine the set of morphemes that can succeed the
morpheme.
Consider for example Finnish morphology. Nominal
inflection can be constructed neatly from left to right.
In Figure 3, there is a lexc representation of the Finnish
words talo ‘house’, asu ‘clothing’ and kärry ‘cart’, and
nominal suffixes n (singular genitive), l le (singular alla-
tive) and ksi (singular translative). Derivation of word-
forms starts from the Root lexicon. Each of the nouns
in the root set of morphemes continues rightwards to
the NOUNCASES set of morphemes, and each case mor-
pheme continues towards the special # lexicon signify-
ing the end of a word-form.
Finnish was used as an example in Karttunen’s pa-
per on flag diacritics on optimisation (2006). In that

3319

Figure 1: Simplified part of Finnish lexc grammar description with automatic flags

Figure 2: Simplified part of Greenlandic lexc grammar description with automatic flags

LEXICON Root
talo NOUNCASES ;
asu NOUNCASES ;
kärry NOUNCASES ;

LEXICON NOUNCASES
n # ;
lle # ;
ksi # ;

Figure 3: Simplified part of Finnish lexc grammar de-
scription

paper, he showed that the optimisation quality of
wisely selected flag diacritics can be substantial; from
a 20,498 state automaton to a 1,946 state one. The
article describes Finnish numerals, which have the fea-
ture of requiring agreeing inflection in free compound-
ing. This can be achieved by allowing all compounds
and restricting the combinations by flags, instead of by
lexicon structure. Unfortunately, the article does not
show examples or re-producible description of the lexi-
cographical data, but according to our experience there
are no available morphologies that show similar com-
pression quality, so it can be considered towards the
upper bounds of what such compression can achieve.

3. Flag diacritics
Flag diacritics are special multi-character symbols
which are interpreted during runtime. They can be
used to optimize large transducers to couple entrance

points of the sub-graphs with the correct exit points.
Their special syntax is: @operator.feature.value@,
where operator is one of the available operators (P,
U, R, D, N, C), feature is the name of a feature set by
the user and value can be any value held in a feature,
also provisionally defined. For additional information
on the semantics of flag diacritic operators, see Beesley
and Karttunen (2003).
In this paper, we will use only two types of flag diacrit-
ics: positive setting (@P.feature.value@) and require
test (@R.feature.value@). While positive setting flag
only sets the feature to its value, the require test
flag invokes testing whether the feature is set to the
designated value. For example, @P.LEXNAME.Root@
will set feature LEXNAME to value Root. If later
in the path there is an R flag that requires test
@R.LEXNAME.Root@, the invoked test will succeed and
that path will be considered valid.

4. Methods
Our algorithm is based on the idea that adjacent
morph combinatorics can be expressed with finite-state
flags like this:
Every rightward continuation is replaced with a pos-
itive setting flag with feature called LEXNAME and a
value corresponding to the continuation lexicon. For
example, the lexicon in Figure 3 has one continua-
tion lexicon: NOUNCASES, which is represented using
the positive setting @P.LEXNAME.NOUNCASES@@. Cor-
respondingly, a require test @R.LEXNAME.NOUNCASES@
is inserted in the beginning of the NOUNCASES continu-
ation lexicon.
Additionally, every morphological description starts

3320

with Root, which is represented using the pair of
flags @P.LEXNAME.Root@@R.LEXNAME.Root@ and ends
with #, which is represented using the pair of flags
@P.LEXNAME.#@@R.LEXNAME.#@.
The transducer built from the morphological descrip-
tion in Figure 3 is shown in Figure 1.

4.1. Composition

Lexicons that contain flag diacritics can be composed
with other transducers which also contain flag dia-
critics without worrying about flag collisions. This is
achieved by renaming flag diacritics in both argument
transducers in such a way that collisions become im-
possible and then inserting flag diacritics freely from
each argument to the other.
Consider for example the composition of a lexicon L
with a rule R. If both transducers contain flag di-
acritics for feature FEATURE, then allfeatures F are
renamed F1 in L and F2 in R. 1 All flag diacrit-
ics (like @P.F.True@) are renamed correspondingly (to
@P.F1.True@ in L and @P.F2.True@ in R) and a new
lexicon L′ and rule R′ are created by inserting freely
all flag diacritics from R to L and from L to R, respec-
tively.
The transducers L′ and R′ can be composed and it is
easy to prove that the result satisfies the property that,
if flag diacritics are compiled out, then the resulting
transducer without flag diacritics will accept exactly
the same strings as the composition of the transducers
that are obtained by compiling out flag diacritics from
the original lexicon L and the original rule R.

4.2. Pruning invalid paths

When a lexicon is compiled into a transducer, a single
state becomes the point where all continuation lexi-
cons begin with a require test and end with positive
settings. We call this state a flag diacritic hub. The
initial hub is shown in Figure 2 in state 4. Various P
flags are transitions leading to the state and matching
R flags are transitions leading out of the state. When
lexical transducers with those flag-diacritic hubs are
composed with grammar rule transducers, unnecessary
paths may occur. They are the result of combining
non-matching P and R flags. Since an R invokes a re-
quire test, a path will not be valid unless a matching P
flag feature was previously set. Therefore, such paths
do not change the language, but increase the trans-
ducer size.
In order to remove all those paths, path pruning is
needed. Checking that in every hub state for every
outgoing R flag there is a matching incoming P flag. In
case the P flag is not preceding the R flag, the whole
path is proclaimed invalid and removed from the trans-
ducer.

Step 1:

P.LEXNAME.sublex_i -> JOINER.sublex_i
R.LEXNAME.sublex_i -> JOINER.sublex_i

Step 2:
transducer - filter

.o.
P.LEXNAME.Root Σ∗

.o.
Σ∗ R.LEXNAME.#

Where transducer is the lexicon composed with
rules (with ? as any symbol and Σ∗ as
universal language) and filter is:

Σ∗ [(?-JOINER.sublex_i) | ?:?]
JOINER.sublex_i

[(?-JOINER.sublex_i) | ?:?] Σ∗

Step 3:
JOINER.sublex_i -> epsilon

Figure 4: Removal of flag diacritics

Operation Name
a b concatenation
a | b disjunction
a : b cross product
a .o. b composition

* Kleene star

Table 1: List of operators

4.3. Removing flag diacritics
Since real-world morphological descriptions may con-
tain empty, or nearly empty, continuation lexicons, in-
serting flags in those cases only increase the size of the
transducer, without gaining any benefits. Therefore,
those continuation lexicons need to be recognized and
corresponding flag diacritics removed. Additionally,
rule composition with a flagged lexicon usually results
in dramatical size increase. In order to reduce the final
transducer size, it is important to recognize which flag
diacritics should be removed from the lexicon before
composing it with rules.
Removal of flag diacritics is usually done with the com-
mand remove-flag-FEATURE, which removes all flags
with the given FEATURE. However, our flags all have the
same feature, called LEXNAME, and values correspond-
ing to sub-lexicon names. Therefore, if we want to
remove just flags for a certain sub-lexicon SUBLEX, we
use the algorithm shown in Figure 4, with operators
explained in Table 1:

1It is not sufficient to rename only flag diacritics with
common features, because that might clash with existing
feature names.

3321

LEXICON Root
r1 A;
r2 A;
r3 B;

LEXICON A
a1 A;
a2 B;

LEXICON B
b2 #;

Figure 5: Example of flag removal measurement T

First, P.LEXNAME.SUBLEX and R.LEXNAME.SUBLEX
transitions are substituted with an arbitrary special
symbol, ie. $JOINER.SUBLEX$ in the entire transducer.
Then, from the original transducer we subtract all the
paths that do not have two identical joiners next to
each other. We also filter all paths that do not start
with P.LEXNAME.Root and end with R.LEXNAME.#
and finally substitute all $JOINER.SUBLEX$ transitions
with epsilon transition.

4.4. Choosing flag-diacritics for removal
We have experimented with removing different flags
and flags combinations from the lexical transducer to
get an optimal transducer size after the composition
with rules, although the flag removal usually increases
lexical transducer size. For the Greenlandic lexicon, we
have counted for each sub-lexicon how many morphs
there are (w), how many unique continuations come
from it (c) and how many times it was mentioned as
a continuation in other sub-lexicons (m). In Figure 5
is an example lexicon with three sub-lexicons: Root,
A and B. Sub-lexicon Root has three morphs r1, r2
and r3. From Root there are two unique continuations
A and B and the sub-lexicon itself wasn’t mentioned
anywhere as a continuation in the entire lexicon.
Similarly, sub-lexicon A has 2 morphs, two continua-
tions and was mentioned totally 3 times in the lexicon
- two times as continuations from the Root sub-lexicon
and once from itself. Sub-lexicon B has only one word,
one continuation and was mentioned 2 times.
After that, we calculated T which is product of those
3 counts:

T = w ∗ c ∗m (1)

The complete calculation for this small example lexi-
con is shown in Table 2.
After calculating T for all the sub-lexicons in the
Greenlandic lexicon and sorting values, we got data
that seems to fit an exponential function. We experi-
mented removing one flag diacritic at a time and the
sizes we got for the lexicon transducer itself and the
one with grammar rules composed is shown in Figure 6.
On the x-axis are sub-lexicons, while the y-axis shows
sizes in megabytes and the right y-axis the T-measure.

Lexicon w c m T
Root 3 2 0 6
A 2 2 3 12
B 1 1 2 2

Table 2: Counting number of morphs (w), continua-
tions (c) and mentions (m) in each sub-lexicon

The dotted line shows sizes of the lexicon transducer
with flag diacritics removed for one sub-lexicon at a
time. Each new removal is done to the previous result
transducer. The solid dot line shows sizes of the same
lexicon transducers with the rules composed to them.
The dashed line shows the T measure (with values on
the right y-axis).
It is interesting to see that the relations of the T mea-
sure and transducer sizes after flag removal are some-
what proportional. Additionally, the point where the
transducer size with the applied rules is the smallest
is just after the place where the T measure starts to
grow rapidly.
In Table 3, we show sizes of language transducers com-
posed with grammar rules. First, there are sizes of
original transducers, then transducers compiled with
our new method that inserts all flag diacritics and fi-
nally flagged transducers after removing some of the
flags, as described in Section 4.3.

5. Data
We measure the success of our algorithm using real-
world, large-scale language descriptions. For this pur-
pose we have acquired freely available, open source lan-
guage descriptions from the language repository of the
University of Tromsa (Moshagen et al., 2013).2 The
languages selected are Greenlandic (kal), North Saami
(sme), Erzya (myv), Finnish (fin) and Lule Sami (smj).
All operations with transducers were performed using
Helsinki Finite State Technology tools (Lindén et al.,
2011).

6. Discussion
The results of this study show that large-scale language
descriptions can be compiled into smaller transducers
using automatically inserted flags. The effect is es-
pecially pronounced for language descriptions which
repeat morphemes in many different places, like the
morphological analyzer for Greenlandic. Since flag di-
acritics themselves take space in the transducer graph,
this method did not offer improvements for descrip-
tions where the original transducer was small.
While requiring R flag diacritics will always occur only
once for every continuation lexicon, the data shows
that, for certain right continuations, P flag diacritics
occur hundreds of times. This happens every time
when in the same sublexicon there are words which
have the same beginning. For example, Figure 2 shows
how two morphemes maagar and maagarnar have the

2https://victorio.uit.no/langtech, revision 73836

3322

Figure 6: Connection between T measure and transducer sizes with flag-diacritics being removed one by one

Language Original With all flags After optimization %
Greenlandic 168 M 185 M 17 M 10,1%
North Saami 12 M 14 M 5,7 M 47,5%
Finnish 17 M 17 M 16 M 94,1%
Lule Saami 5 M 19 M 3 M 60,0%
Erzya 3,7 M 16 M 5,3 M 143,2%

Table 3: Sizes of transducers without and with automatic flags (in megabytes); Percentage shows size of the
flagged transducer after optimization, in comparison with the original

Language Original With flags %
Greenlandic 2 770 w/s 2 507 w/s 90,5%
North Saami 30 714 w/s 8 775 w/s 28,6%
Finnish 84 415 w/s 27 420 w/s 32,5%

Table 4: Look-up speed of transducers without and
with automatic flags; Percentage shows speed of the
flagged transducer in comparison with the original

same continuation flag @P.LEXNAME.IV@, but they can-
not collapse into one path. In future work, it should be
checked if removing flags for those paths would further
reduce the size of transition graphs.

7. Conclusion
In this article we showed that by using morphologi-
cally motivated flags we can dramatically improve the
size of large lexical transducers. Automatically in-
serted flag diacritics can make manual size optimiza-
tion preformed by linguists unnecessary, which may
result in more readable and easier to maintain linguis-
tic descriptions.

8. Acknowledgements
The research leading to these results has received fund-
ing from FIN-CLARIN, Langnet and the European
Commission’s 7th Framework Program under grant
agreement n° 238405 (CLARA).

9. References
Beesley, Kenneth R and Karttunen, Lauri. (2003). Fi-

nite state morphology, volume 18. CSLI publications
Stanford.

Beesley, Kenneth R. (1998). Constraining separated
morphotactic dependencies in finite-state grammars.
In Proceedings of the International Workshop on Fi-
nite State Methods in Natural Language Processing,
pages 118–127. Association for Computational Lin-
guistics.

Karttunen, Lauri. (2006). Numbers and finnish nu-
merals. SKY Journal of Linguistics, 19:407–421.

Lindén, Krister, Axelson, Erik, Hardwick, Sam, Piri-
nen, Tommi A, and Silfverberg, Miikka. (2011).
Hfst—framework for compiling and applying mor-
phologies. In Mahlow, Cerstin and Piotrowski,
Michael, editors, Systems and Frameworks for Com-

3323

putational Morphology, volume 100 of Communica-
tions in Computer and Information Science, pages
67–85. Springer Berlin Heidelberg.

Moshagen, Sjur, Pirinen, Tommi A, and Trosterud,
Trond. (2013). Building an open-source de-
velopment infrastructure for language technology
projects. In Proceedings of Nodalida 2013.

3324

