Rule-based Reordering Space in Statistical Machine Translation

Nicolas Pécheux, Alexandre Allauzen, Francois Yvon

LIMSI/CNRS, B.P. 133, 91403 Orsay, France
Université Paris-Sud, 91403 Orsay, France

{pecheux, allauzen,yvon}@limsi.fr

Abstract

In Statistical Machine Translation (SMT), the constraints on word reorderings have a great impact on the set of potential translations
that are explored. Notwithstanding computationnal issues, the reordering space of a SMT system needs to be designed with great care:
if a larger search space is likely to yield better translations, it may also lead to more decoding errors, because of the added ambiguity
and the interaction with the pruning strategy. In this paper, we study this trade-off using a state-of-the art translation system, where
all reorderings are represented in a word lattice prior to decoding. This allows us to directly explore and compare different reordering
spaces. We study in detail a rule-based preordering system, varying the length or number of rules, the tagset used, as well as contrasting
with oracle settings and purely combinatorial subsets of permutations. We focus on two language pairs: English-French, a close
language pair and English-German, known to be a more challenging reordering pair.

Keywords: Reordering Contraints, Empirical Analysis, Statistical Machine Translation

1. Introduction

Reordering is still a critical issue for statistical machine
translation, and the reordering complexity for a language
pair can be considered as a relevant indicator of the
difficulty to automatically translate from one into the
other (Birch et al., 2008). Reordering is problematic since
the factorial space of permutations cannot be fully explored.
Moreover, even if we could, this space would contain too
much ambiguity and permutations that are linguistically
meaningless. Therefore we must rely on methods that can
restrict the space of possible reorderings. Various con-
straints on admissible permutations have been proposed in
the past including IBM (Berger et al., 1996), MJ (Kumar
and Byrne, 2005) or ITG (Wu, 1997). Those constraints
have been compared in terms of performance (Zens and
Ney, 2003; Zens et al., 2004) or in oracle settings (Dreyer
et al., 2007; Wisniewski and Yvon, 2013). Other ap-
proaches include linguistically motivated rules that are au-
tomatically learned (Crego and Marifio, 2006; Niehues and
Kolss, 2009; Popovic and Ney, 2006). To the best of our
knowledge, these two families of approaches have not been
compared yet.

In the phrase-based approach, sentences are first segmented
into variable length segments or phrases, then reordered.
Word reorderings can be divided in two tighly intertwined
parts: local reorderings that take place within phrases; and
longer reorderings of those phrases. Moreover, a recent
trend has been to consider preordering methods, where
source sentences are reordered in a pre-processing step to
match the target word order and then fed into the standard
Phrase-Based pipeline (Xia and McCord, 2004; Collins et
al., 2005; Tromble and Eisner, 2009). This further com-
plexifies the analysis of the word reorderings that are actu-
ally considered in translation. Finally, because of the prun-
ing strategy, only a restricted part of the search space is
effectively explored.

In this paper, we use a state-of-the-art n-gram SMT sys-
tem (Crego et al., 2011), described in Section 2., that splits

reordering and decoding into two separate steps. Reorder-
ings of the source sentence are compactly encoded in a per-
mutation lattice, the reordering space, that is then trans-
lated in a monotonic fashion. This allows us to study the
reordering space that is explored and then to assess its im-
pact on the whole translation process. Indeed, in addition
to computationnal issues, there is a tradeoff when building
the reordering space of a machine translation system. On
the one hand, a larger space is more likely to contain a per-
mutation that can yield a relevant translation. On the other
hand, it may also cause more decoding errors, because of
both the ambiguity of natural languages and the necessary
pruning of the search space.

The main contribution of this work is to evaluate the impact
of the reordering space on translation performance by ex-
ploring various experimental conditions (Section 3.). We
study different methods to generate the reordering space
by varying the word classes that are used by the reorder-
ing rules. Evaluation is carried out on two language pairs
(French-English and German-English in both directions)
that greatly differ by the range of the involved reorderings.
The results in Section 4. show that our SMT system is not
able to fully benefit from an accurate reordering space.

2. The n-gram Based Approach for SMT

For all our experiments, we use NCODE, an open source
n-gram SMT toolkit', which achieved state-of-the-art per-
formance in recent WMT evaluations (Callison-Burch et
al., 2012; Bojar et al., 2013). NCODE implements the
bilingual n-gram approach to SMT (Casacuberta and Vidal,
2004; Marifio et al., 2006; Crego and Marifio, 2006) that
is closely related to the standard phrase-based approach.
However, in this framework, the translation is divided into
two steps: a source reordering step and a (monotonic) trans-
lation step. Since the translation step is monotonic, the
translation model relies on the n-gram assumption to de-

"http://ncode.limsi.fr
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Figure 1: Reordering rules extraction from word alignment.
This figure is borowed from (Crego and Mariiio, 2000).

compose the joint probability of a sentence pair in a se-
quence of bilingual units called fuples.

In addition to the translation model, NCODE uses a set of
feature functions embedded in a log-linear model (Och and
Ney, 2002) that is similar to standard phrase-based sys-
tems (see Crego et al. (2011) for details). The models that
have an impact on the selected reordering are the monolin-
gual and bilingual n-gram models, the lexicalized reorder-
ing models (Tillmann, 2004; Crego et al., 2011) that aim at
predicting the orientation of the next translation unit and a
“weak” distance-based distortion model.

During training, source sentences are first reordered so as
to match the target word order by unfolding the word align-
ments, producing here called unfolded reorderings (see fig-
ure 1). Tuples are then extracted in such a way that a unique
segmentation of the bilingual corpus is achieved. A n-gram
translation model is finally estimated over the training cor-
pus composed of tuple sequences using modified Knesser-
Ney Smoothing (Chen and Goodman, 1998).

During decoding, a source sentence is represented in the
form of a word lattice, so as to reproduce a set of possi-
ble word order modifications introduced during the tuple
extraction process. This lattice represents the reordering
space that is then searched for the best possible candidate
translation. As exhaustive search is intractable, NCODE
uses a beam search strategy based on stacks. As futur
cost estimation is problematic for multiple n-gram mod-
els, NCODE uses one stack per hypothesis translating the
same input words, in contrast to the same number of words
as in standart Phrase-Based systems. Thus the complexity
depends on the number of nodes in the reordering lattice.

3. Generation of Reordering Lattices

In NCODE source reordering is based on a set of rewriting
rules that non-deterministically reorder the input words. In
this section, we explain in more details the reordering lat-
tice mechanism used in NCODE, as well as variants consid-
ered in our experiments.

3.1. Reordering Rules Extraction

Reordering rules are automatically learned during the un-
folding procedure as depicted in Figure 1. Let w =
wyiws. . .w, be a source sentence and t = t1t5...t, an
associated tags sequence. Let w, = Wy, Wo,. Wy, be
the reordered sentence obtained by the unfolding procedure
where 0 = o3...0, is a permutation, o € &,, the set of
permutations of {1,...,n}. A reordering rule is extracted
for any subsequence o7;.;) = 05...0; of o with |j —i[ > 1
such as
i<k<j = i<o,<j

and that is minimal under this property. Rules have the fol-
lowing form:
bizj] = Ofizg)

where y;.5) is the induced permutation in &;_;; ob-
tained by renumbering oy;.;. Spans w;.; correspond to
the smallest (non trivial) ones to be reordered in order to
recover w. One could also extract all rules t;.;; — G7;.5
for any span |j — i| > 1, but previous experiments showed
a slight drop in performance.

To filter out alignment noise and to limit the size of the
reordering space, rules may be pruned according to a max-
imum cost threshold (by default 4):

count(t — o)

cost(t > o) =—1lo
(= 0) & Yores), count(t — o)

where t is any tag subsequence, o € ¢ a permution and
the counts are computed on the training data. Since this cost
is the negative logarithm of a conditional ratio, a coarser
tagset might be more heavily pruned, resulting in a smaller
set of extracted rules.

Rules may be also pruned according to their length (by de-
fault 10). Previous experiments show that further increas-
ing this length hardly makes any difference. In fact, long
rules are too sparse to possibly generalize beyond the train-
ing set. Long range reorderings are thus explicitly excluded
from the model.

3.2. Reordering Lattices Generation

For any sentence w with tags t we start with a lattice con-
taining the monotonic path w. For each segment wy;.; and
each rule t};.;; — o we add the subpath o (wy;.;) to the lat-
tice. Note this is done in a parallel fashion so that rewriting
rules do not interfere with each other. Applying the reord-
ing rules finally results in a finite-state graph that represents
the reordering space.

3.3. Alternative Tagsets

Rewriting rules are built using Part-of-speech (POS), rather
than surface word forms (Crego and Marifio, 2006) to in-
crease their generalization power. However, any word fac-
tor may be possibly used. To investigate different levels of
generalization and the relevance of syntactic word factors,
different tagsets are introduced.

o Simplified POS (spos): The tagset is reduced to 12
simple language-independent categories, in an attempt
to limit the sparsity of the extracted rules. This tagset
has been designed independenlty, but turn out to be
very close to the universal POS tagset described in
(Petrov et al., 2012). For under resourced languages,
universal POS can be projected by cross-lingual trans-
fer or learned from weak annotations (Li et al., 2012;
Tackstrom et al., 2013), thereby relaxing the need for
a POS tagger.

e Enhanced POS (e50pos): The POS tags are lexical-
ized for the 50 most frequent words, resulting in more
specific rules. Enhanced tags are closely related to lex-
icalized rules (Huang and Pendus, 2013).
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the meeting was announced by the president’s spokesman Radim Ochvat

c’ est le porte-parole présidentiel Radim Ochvat qui a informé de la réunion

la réunion a été annoncée par le président porte-parole Radim Ochvat

la réunion a été annoncée par le porte-parole du président Radim Ochvat

le porte-parole du président Radim a été annoncée par la réunion Ochvat

de la réunion a informé de la c’ est le porte-parole présidentiel Radim Ochvat qui

Figure 2: Translations of a source sentence (s) from newstest2010, along with the reference translation (r), contrasting
monotone (m) lattice based (1) and unfolded reordering (u) constraints, as well as oracle decoding (o) in the lattice

reordering space.

e Brown classes (classes): Statistical word classes were
found to be a good approximation for Part-of-Speech
tags when a POS tagger is not available. In (Ra-
manathan and Visweswariah, 2012), word clusters
perform worse than POS, but still reasonably well, in
a preordering setting. In this work, we compute the
statistical word classes using the methods of Brown et
al. (1992).

34. MJ-

In principle, one can design any kind of permutation con-
straints and encode them in a lattice. In practice, the num-
ber of nodes in the lattice must remain reasonable (polyno-
mial) in the number of words in the sentence.

To assess whether constraining the reorderings to those ob-
served in the data is appropriate, we contrast rule-based
approaches with MaxJump (MJ) constraints (Kumar and
Byrne, 2005). In MJ-¢, a word move cannot exceed ¢ po-
sitions. This is equivalent to using a rule-based system,
where all possible rules up to size ¢ + 1 are considered.

3.5. Metrics and Unfolded Reorderings

Given our assumptions, the reordering space should con-
tain the unfolded reordering as defined in Section 2. For un-
seen data, this oracle can be derived from forced alignments
between source sentences and their associated references.
Therefore, as a quality measure on reordering constraints,
we define the coverage on some test set as the number of
time the reordering space contains the reference reorder-
ing. We also compute the size of the reordering space as
the number of paths” and edges in the reordering lattice.’
In that sense, the best reordering constraints should be the
ones that generate lattices containing the unfolded reorder-
ing as only alternative. We refer to this oracle-like con-
straint as unfolded reordering constraint.

4. Experimental Results
4.1. Data and System Description

We considered two different tasks: 1) the French-English
Basic Traveling Expression Corpus (BTEC) (Paul et al.,
2010), using trainl0, devel03 and test09 for training,
tuning and testing, respectively; 2) The English-French
and English-German training data of NEWSCOMMENTARY
provided by organizers of WMT’ 12 (Callison-Burch et al.,

2Computed efficiently using the counting semiring.
3The number of edges closely relates to the decoding complex-
ity.

2012), with newstest2009 and newstest2010 for tuning and
for testing, respectively.

All data is preprocessed as described in (Allauzen et al.,
2013). For each task, a 4-gram language model is esti-
mated using the target side of the training data and 50 word
classes* derived using MKCLS.> We used NCODE with the
default setting and an additional a POS-POS bilingual fac-
tor model.® Beam size was set to 25 during the tuning step
and to 50 when decoding, as this showed some gains in
previous experiments. Oracles are computed using lattice
minumum Bayes-risk decoding with linear corpus BLEU
as described in Tromble et al. (2008) using unigram preci-
sion and recall values of 0.8. All results are averaged over
5 runs of MERT to control for optimizer instability (Clark
et al., 2011). Approximate randomization tests for multi-
ple optimizer samples to assess statistical significance are
carried out using MULTEVAL.”

4.2. From monotone to Oracle Reorderings

Table 1 shows BLEU scores on test data for the BTEC
and NEWSCOMMENTARY task, for three different reorder-
ing spaces of increasing “quality”. The first reordering
space only considers the original source sentence order
(monotone). The second uses our rule-based approach to
create the reordering lattice. The last and most specific
one considers exactly the reordering that match the target
order (forced unfolded reordering). An example of sen-
tence translation for those configurations is shown in Fig-
ure 2. Monotone translation does not succeed in inverting
president’ s and spokesman, thus resulting in a mis-
translation (meaning “by the president, spokesman, Radim
Ochvat”).

We can observe BLEU improvement from monotone to lat-
tice reordering, as one would expect. For French-English,
the increase may be as high as 3 BLEU points. However
for English-German, the gain is much lower, especially for
en — de direction (only about a half BLEU point). This
could suggest that our reordering system does not succeed
in predicting German word order.

Although direct comparison of BLEU scores on different
corpora is unfair, scores for en — de are always worst,
indicating a more challenging language direction. German
is a morphologically rich language that exhibits long range

*Out-of-vocabulary are mapped to class 1.

Shttp://code.google.com/p/giza—pp/

®Note that this is independent of the choice of tags used in the
reordering rules.

"nttps://github.com/jhclark/multeval
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BTEC task

NEWSCOMMENTARY task

tun. dec. en—fr fr—en en—fr fr—en en—>de de—en
(m) (m) 434104  46.8+04 20.3+0. 20.9+ 0. 12.7+00 17.4+0.
ncode (D) D 46.8:02 49.1+04 233101 23.0x01 13210 18.5+ 01
(ll) (u) 48.7+ 03 51.6+06 254101 27.0+01 15.9+ 00 22.3+00
(m) 88.6 86.4 70.3 70.5 55.7 64.0
oracle @ 964 95.2 84.3 84.3 64.6 74.0
(w) 98.8 99.7 92.7 94.7 81.9 92.7
ncode (u) o 434156 458127 23.1x0s  21.7+15  13.0+00 18.1+02
1)) (w) 487102 522105 254101 269+01  159+00 223101

Table 1: BLEU scores on test data obtained by NCODE system and oracle decoding, when no reorderings are allowed
(monotone (m)), using our lattice reordering space (1) and when given exactly the unfolded reordering (u), during tuning
phase on development data (tun.) and when decoding the test (dec.). Reported BLEU scores are averages across 5 runs of
MERT along with standart deviation across runs shown in script size.

maxcost BLEU ncode BLEU oracle #rules size coverage (%)
0 19.6* + 0 70.3 0 2771 19
en — fr 2 22.6% £ 81.3 20k 34 /40 40
4 22.8+0. 84.6 30k 49 /10* 50
8 22.3% x02 87.9 42k 217/10% 62
0 20.2% + 04 70.5 0 30/1 16
fr—en 2 21.9% + 00 77.2 19k 35/11 25
4 22540 84.4 3k 69/107 40
8 22.2% 401 89.6 49k 397/10% 60
0 12.7* £ 04 55.7 0 2711 16
en — de 2 12.7% 1 01 57.0 61k 30/2.1 17
4 13.1<0. 64.6 83k  65/10* 25
8 12.9% 10 70.0 99k  250/10* 33
0 17.6%+ o 64.1 0 28/1 15
de = en 2 17.9% 104 66.3 63k 33/3.5 17
4 18.7+0: 74.1 86k 67/10° 25
8 18.7+01 79.8 103k 264/10% 33

Table 2: Impact of rule filtering strategy (maxcost) in NEWSCOMMENTARY task on: BLEU scores obtained by NCODE
system and oracle decoding; the number of reordering rules (#rules); the size of the lattice reordering space (averaged
number of arcs / average number of paths); and on the coverage (see section 3.5.). Reported BLEU scores are averages
across 3 runs of MERT along with standart deviation ac ross runs shown in script size. A statistical significance (p < 0.005)
difference from the maxcost = 4 baseline is indicated by * symbol.

reorderings when translating from English.

All language directions also benefit from being given the
unfolded reordering. Note however that a better BLEU
does not always result in a better translation. In the example
in Figure 2, the lattice translation is perfectly valid although
different from the reference. However, the translation in the
unfolded reordering condition is mistranslated as the ini-
tial sentence is in the passive voice (the translated sentence
means “President Radim’s spokesman has been announced
by the Ochvat meeting”). This example shows that artificial
reorderings may sometimes lead to poor translations. Yet,
an improvement up to 4 BLEU points when translating to-
ward English shows that there is a room for improvement.
However the improvement for en — de is not so clear. In

other words, “solving” the reordering problem at decoding
time has only a slight effect on performance for this lan-
guage direction. Therefore the reordering constraints might
currently not be the main limitation for our system. It is
worth noticing that the reordering length is limitless in the
unfolded reordering case, hence the lack of long range re-
orderings in our model can not be the main explanation.

Table 1 also shows best possible BLEU scores (oracle) for
the three conditions. We can observe a positive correlation
between oracle BLEU scores and the one obtained by the
system. These high oracle BLEU scores also suggest that
a larger gain may be expected from improving the transla-
tion models rather than by increasing the reordering space.
It is worth noticing that oracle BLEU scores are highly op-
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en — fr fr—en en — de de — en
BLEU size BLEU BLEU size BLEU size

maxlen=2  22.4+01  34/102 219400  40/10° 12.8400  34/10? 17.6+ 0. 34 /30

MIJ-1 22.1%*x01  74/10" 219100 84/10'7  12.8+00  74/10%  17.8*+0>  19/10'9
maxlen=3  22.6+00  40/10% 222100  47/10° 12.9+01  42/10° 18.0+01  41/10°

MJ-2 22.3%101  209/10%%  22.2:01  239/10%28 129401 209/10%3  18.0+01 223/103!
maxlen=4 22.9:0.  43/10* 22310, 56 /106 13.0+0. 50/10* 18.3 0. 50/10%

MIJ-3 22.4%* 01 T715/10%°  22.1*+00 824/10%6 12.8%100 715/1030 17.8% 10> 768/ 100

Table 3: Comparison between rule-based reordering with a length rule limit (maxlen) and purely combinatorial MaxJump
constraints (MJ-i) for NEWSCOMMENTARY task. Reported BLEU scores are averages across 3 runs of MERT along with
standart deviation across runs shown in script size. A statistical significance (p < 0.005) difference between maxlen = i

and MJ-(i — 1) is indicated by * symbol.

timistic and a large part of the gain may result from over-
fitting the BLEU metric. An illustration is provided in Fig-
ure 2 with the mumbo-jumbo oracle translation.

We also explored the importance of the reordering space
during the tuning step. Table 1 shows that when tuning
with unfolded reorderings instead of a lattice, we observe
a small drop for all directions when decoding on a lattice
along with a dramatic increase in the optimizer variance.
This means that the reordering features do benefit to see
the whole reordering space during tuning.

4.3. Reordering Space Trade-off

Table 2 shows reordering space size, coverage, oracle and
decoding scores for various constraints (results for the
BTEC task are omitted for brievty). We observe that while
the number of rules is almost twice for en — de than for
en — fr, the generated reordering spaces are comparable
in sizes, but with a much lower coverage for en — de.

By relaxing the rules pruning, we see large increases in re-
ordering space size, in coverage and in oracle BLEU. How-
ever, in regular test condition, we observe a degradation of
the BLEU scores, when the size of the reordering space
drastically increases. This shows the importance of the
trade-off regarding the design of the reordering space.

4.4. Alternative Tagsets

en—fr fr—en en-—>de de—en
baseline 22.8+01 22.5+01 13.1+01 18.7+ 01
Spos 22.T+01 225402 13.1+00 18.7+0.
eS0pos  22.8+101 225101 13.1xo0s 18.3% o
classes 22.8+0.1 22.6+0.1 12.9% + 04 18.2%+02

Table 4: Comparison of different tagsets for NEWSCOM-
MENTARY task. Reported BLEU scores are averages
across 5 runs of MERT along with standart deviation across
runs shown in script size. A statistical significance (p <
0.005) difference from the baseline is indicated by * sym-
bol.

From Table 4 we observe that the tagset has limited in-
fluence on BLEU scores. Oracle scores, spaces size, and

coverage were also very similar. Moreover, the competi-
tive results obtained with the coarse grained tagset and the
automatic word classes show that they can be used as a
workaround for under resourced language.

4.5. Comparison with MJ-:

Table 3 provides a head to head comparison between MJ-¢
constraints and the rule based approach. The MJ reorder-
ing spaces are several orders of magnitude larger than their
ruled-based counterpart but yield to significanlty lower re-
sults. This justifies the use of linguistically motivated rules,
instead of allowing all local permutations and corroborate
the trade-off discussed earlier. Training time is also an issue
here: for en — fr, the tuning step with MJ-3 constraints
takes four times as long than mazlen = 4.

5. Conclusions

In this work, we have compared the reordering space gener-
ated by different reordering rules as well as local permuta-
tion constraints. We use a n-gram SMT tool that separates
reordering and decoding, but our approach is more general
as soon as the reordering space may be encoded in a lat-
tice prior to decoding. We compare the different reordering
constraints from an oracle point of view, but also taking into
account the trade-off between expressivity and size, explor-
ing the interaction with a pruned decoding.
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