
Thomas Aquinas in the TüNDRA:
Integrating the Index Thomisticus Treebank into CLARIN-D

Scott Martens1, Marco Passarotti2

1Eberhard Karls Universität Tübingen
Seminar für Sprachwissenschaft, Wilhelmstr. 19-23, Tübingen, Germany

2Università Cattolica del Sacro Cuore
CIRCSE Research Centre, Largo Gemelli 1, Milan, Italy

E-mail: scott.martens@uni-tuebingen.de, marco.passarotti@unicatt.it

Abstract
This paper describes the integration of the Index Thomisticus Treebank (IT-TB) into the web-based treebank search and visualization
application TüNDRA (Tübingen aNnotated Data Retrieval & Analysis). TüNDRA was originally designed to provide access via the
Internet to constituency treebanks and to tools for searching and visualizing them, as well as tabulating statistics about their contents.
TüNDRA has now been extended to also provide full support for dependency treebanks with non-projective dependencies, in order to
integrate the IT-TB and future treebanks with similar properties. These treebanks are queried using an adapted form of the TIGERSearch
query language, which can search both hierarchical and sequential information in treebanks in a single query. As a web application,
making the IT-TB accessible via TüNDRA makes the treebank and the tools to use of it available to a large community without having
to distribute software and show users how to install it.

Keywords: treebank, dependency, web

1. Introduction
TüNDRA (Tübingen aNnotated Data Retrieval & Analy-
sis) is a web-based treebank search and visualization plat-
form. Integrating the Index Thomisticus Treebank (IT-TB)
into TüNDRA has been a challenging task, because the IT-
TB has features that require special consideration for search
and visualization and that were not supported in the first
release of TüNDRA (Martens, 2012). Specifically, the IT-
TB uses a dependency-based annotation incompatible with
TüNDRA’s initial constituency approach. TüNDRA has
been adapted to fully support dependency annotation, with-
out making assumptions about projectivity.

2. The Index Thomisticus Treebank
The Index Thomisticus Treebank (McGillivray et al., 2009)
is a Latin language treebank drawn from the contents of the
Index Thomisticus (Busa, 1980). Presently, the size of the
IT-TB is approximately 200,000 words (more than 11,000
sentences).

Begun in 1949, the Index Thomisticus was one of the
first large corpus projects in computational linguistics and
contains around 11 million tokens representing the com-
plete works of Thomas Aquinas as well as texts by other
authors related to Aquinas. The corpus has been morpho-
logically tagged, lemmatized and manually corrected. The
morphosyntactic disambiguation and syntactic annotation
of the Index Thomisticus is the goal of the IT-TB, which is
part of the wider Lessico Tomistico Biculturale, whose goal
is the development of a lexicon of the works of Aquinas.

Latin is a highly inflected language with a broadly free
word order. This means that equivalent syntactic struc-
tures may involve any of a number of word orders. For
instance, the order of the words in a sentence like ergo

Figure 1: The dependencies of the phrase intellectus enim
noster non potest as represented in the IT-TB. Arrows indi-
cate the direction of the dependency (from head to depen-
dent), and the arc labels are dependency types described in
the IT-TB style guide (Bamman et al., 2007).

corrumpitur forma (“form is thus corruputed1”) could be
changed into ergo forma corrumpitur, or forma ergo cor-
rumpitur, without affecting the syntactic relations between
its components.

Furthermore, phrases in Latin and many similar lan-
guages are often non-projective (or discontinuous), i.e. not
all the words between the first word in the phrase and the
last form a part of that phrase (Marcus, 1965). For exam-
ple, in the sentence intellectus enim noster non potest una
conceptione diversos modos perfectionis accipere (“for our
intellect cannot accept the concept of different kinds of per-
fection2”), the nominal phrase intellectus noster (“our intel-

1Scriptum super Sententiis, Liber 4, Distinctio 3, Quaestio 1,
Articulus 2, Argumentum 2.

2Scriptum super Sententiis, Liber 1, Distinctio 2, Quaestio 1,
Articulus 3, Solutio.

767



Figure 2: A non-projective hybrid constituency tree from the German language TüBa-D/Z: Die Feinde sieht er, wie viele
Aquarianer, anderswo. (“He sees enemies, like many Aquarians, elsewhere”). The phrase wie viele Aquarianer (“like
many Aquarians”) is a non-projective element in this analysis of the sentence, coming in the middle of a phrase that does
not dominate it.

lect”) is discontinuous, as can be seen in Figure 1. Note that
the arcs that indicate dependencies in this phrase cross, in
contrast to constituency grammar which discourages or, in
some linguistic theories and treebanks, forbids such cross-
ing arcs.

This non-projectivity is an important property of depen-
dency treebanks. The number of non-projective edges in
dependency treebanks varies dramatically depending on the
language and style of the underlying text. They are very
rare in some languages: Havelka (2007) identifies 1.37%
of edges in a Portuguese treebank as non-projective and
5.9% for a Dutch one. Other languages have very high rates
- 15.15% of all edges are non-projective in one treebank
of Ancient Greek texts (Mambrini and Passarotti, 2013).
In Latin, non-projectivity appears to vary significantly de-
pending on the author and time period of the text, from
3.24% in the IT-TB to 6.65% in the Latin Dependency Tree-
bank, which includes around 55,000 words from Classical
era texts (Passarotti and Ruffolo, 2010).

To encode these considerations into a treebank, the IT-
TB uses a dependency grammar formalism, similar to that
of the Prague Dependency Treebank of Czech (Hajič et
al., 1999), that does not require projective syntactic rela-
tions. The IT-TB shares this formalism with other Latin
treebanks, particularly those developed by the Perseus Dig-
ital Library (Bamman et al., 2007)3.

3. Tools for constituency and projective
treebanks

Free word order and non-projectivity pose a number of
problems for treebank users and software developers. Al-
though the roots of constituency treebanks are in genera-
tive grammar, where a non-projective tree would make lit-
tle sense, projectivity and constituency are not necessar-

3http://www.perseus.tufts.edu/.

Figure 3: A projective constituency analysis of the sentence
“Sincerity may frighten the boy”. This analysis is taken
from Chomsky (1965) and is representative of the early
generative grammar tradition.

ily synonymous. Some treebanks, for example the TüBA-
D/Z treebank of German (see Figure 2), have a broadly
constituency structure but are nonetheless non-projective.
These kinds of treebanks are often labelled as hybrid tree-
banks to distance themselves from the association of strict
projectivity with constituency.

Search technologies that are effective for searching se-
quential information lend themselves much better to tree-
banks with purely projective tree structures, like the one in
Figure 3 than to ones where search terms may appear in
multiple orders. For example, non-treebank corpus search
programs that are well-adapted to queries on sequences of
annotated tokens, such as CQP (Christ and Schulze, 1995),
can only search treebanks using the orders of tokens and
constituents. It could be used to find appearances of noster
intellectus from the example in Figure 1, or even noster fol-
lowed by intellectus with some words or classes of words in
between them, but would require an entirely separate query

768



Figure 4: The same Latin phrase as Figure 1 restructured to
match the Tgrep2 approach to tree data. Note that the order
of the words is lost wherever it does not match the strictly
projective tree structure, and the original sequence cannot
be queried or retrieved.

to find instances of intellectus noster. There is no intuitive
way, using those kinds of techniques, to only identify ap-
pearances of those two words with some specific syntactic
dependency between them.

Tgrep2 (Rohde, 2005) has been designed to search pro-
jective constituency trees like the one in Figure 3. It does
have the means to search hierarchical syntactic structures,
but only where those structures are projective.

Tgrep2 could in principle be used to identify instances
of noster intellectus and intellectus noster where they have
a specific dependency. However, it can only do so by im-
posing projectivity on the elements of the sentence in a way
that reorders the words. Figure 4 is an example of the kind
of restructuring necessary to shoehorn a non-projective de-
pendency structure into the kind of format Tgrep2 requires.
For Latin and similar languages, this kind of restructuring
necessarily means losing key information about the sequen-
tial structure of the underlying sentences.

Furthermore, because of its origins in searching con-
stituency tree structures in which edges are unlabelled,
Tgrep2 has no intuitive means of querying dependencies
by their type. The information encoded in the edges of a
dependency treebank can be forced into a constituency tree
by adding extra tree nodes, as Figure 4 shows. Although
this representation is formally equivalent to labelled edges,
it is counter-intuitive and cluttered.

Similar problems with the formal assumptions underly-
ing treebanks undermine the ability of software designed
with constituency grammar assumptions to search and dis-
play treebanks like the IT-TB.

TIGERSearch (Lezius, 2002) is a widely used software
suite for hybrid constituency treebanks and has support
for both viewing and searching non-projective trees. Hy-

Figure 5: The same Latin phrase as Figure 1 restructured
to match the TIGERSearch approach to tree data (similar
for Figure 2). For every word with dependents, a dummy
constituent (labelled P in this example) is inserted in its
place, with the word reinserted as its head (marked with the
edge label HD).

brid treebanks may have labelled and non-projective edges.
Non-projective dependency trees can be converted into
non-projective constituency trees of exactly the kind that
TIGERSearch supports by assuming that each token with
descendants is the head of a phrase of some kind, as dis-
played in Figure 5. While this kind of transformation is triv-
ial enough from a formal standpoint, it is counter-intuitive
for users familiar with dependency formalisms and draw-
ing styles and adds superfluous information and unneces-
sary complexity to visualizations and queries. Furthermore,
forcing users to introduce constituents into their treebanks
defeats much of the purpose of doing dependency grammar.
Good software should not impose unneeded structures on
users’s data.

4. Tools for non-projective dependency
treebanks

There are some tools that explicitly support non-projective
dependency grammars.

ANNIS2 (Chiarcos et al., 2009) supports visualization
and querying for dependency and constituency treebanks,
as well as other annotated language data, via a web inter-
face. However, users need to download and install ANNIS2
on their own servers, and convert their treebank data to its
preferred format before using it.

The TrEd editor and its associated query language PML
Tree Query, developed in the context of the Prague Depen-
dency Treebank, supports dependency formalisms as well
as other kinds of treebanks (Pajas and Štěpánek, 2009).
PML Tree Query supports treebanks stored in formats com-
patible with the Prague Markup Language (PML), provid-
ing both textual and graphical representation of the queries.

TrEd can also be used as a web-based application. How-
ever, the graphical query interface is only available as a
plug-in to the desktop version of TrEd, while the web in-
terface only supports textual queries.

INESS (Rosén et al., 2012) is a web-based application
that fully supports dependency treebanks both for visual-
ization and querying, as well allowing users to visualize
parallel treebanks, something that is currently not a feature
of TüNDRA.

769



5. TüNDRA as a web application
TüNDRA is a web application developed as part of the
CLARIN-D project4 and accessible using CLARIN’s single
sign-on infrastructure. Academic users at participating uni-
versities are able to log into and use TüNDRA5 with their
existing institutional login credentials, and other academic
users can request accounts from CLARIN6.

Offering treebanks access via a web application is an
application of the Software as a Service paradigm (SIIA,
2001) and has a number of advantages over traditional
desktop software:

• A web application is accessible from any compatible
browser, on any computer with an adequate Internet
connection. There is no particular technical expertise
required.

• New features, changes, and bug fixes are available to
users as soon as they are implemented. Tools made
available as web applications can be in a constant
state of improvement without interfering with users
and their activities.

• Treebank size and access speeds are not bounded by
the limited memory and storage of desktop computers.

• Users do not have to import treebanks from various
treebank data formats, and problems of software com-
patibility should never arise for treebanks available via
TüNDRA, since developers must resolve any incom-
patibility before making the treebank publicly avail-
able.

This last point in particular distinguishes TüNDRA
from other treebank software projects. TüNDRA is not just
a service for the users of treebanks, but also for treebank
developers. Introducing a new treebank into TüNDRA in-
volves CLARIN-D taking charge of the treebank and mak-
ing sure it is correctly processed and displayed, regardless
of its formal assumptions or encoding format.

The Software as a Service paradigm has come under
criticism, however, for the way that it takes control over
data and its presentation away from users and data owners7.
TüNDRA’s service model is unlike that of stand-alone soft-
ware: it is primarily a digital publishing platform for tree-
banks, and users do not have the autonomy to install any
treebank they like and use it with TüNDRA. The user ex-
perience is more tightly controlled by the service provider,
who bears the burden of responding to user interests and
needs.

TüNDRA is integrated with CLARIN-Ds WebLicht lan-
guage tool chaining environment (Hinrichs et al., 2010), en-
abling users to create treebanks from texts using a variety
of automated parsing tools. Integration with WebLicht pro-
vides users with a limited ability to upload small to mod-

4http://de.clarin.eu/.
5Accessible with CLARIN login at:

https://weblicht.sfs.uni-tuebingen.de/
Tundra/

6https://user.clarin.eu/user.
7See Stallman (2010) for one well-known example.

erate sized treebanks in WebLicht’s internal XML data for-
mat8 and use them immediately in TüNDRA.

Web applications also pose digital rights management
problems. While the IT-TB is available under a very lib-
eral Creative Commons license, other widely used tree-
banks with very restrictive licensing provisions may be
completely incompatible with a web publishing model.
TüNDRA’s integration with the CLARIN-D user authen-
tication infrastructure makes it possible to restrict access to
treebanks to authorized users, but installing into TüNDRA
a corpus with a restrictive license still requires special per-
mission from treebank providers. Site-licensed treebanks
are only compatible with locally operated software.

However, the largest single benefit for web application
development is the ability to introduce entirely new areas
of functionality into TüNDRA without having to distribute
software or interfere with the existing user base. TüNDRA
required new functionality to support dependency tree-
banks, a development motivated by a request to support
the IT-TB. This new functionality was rolled out simulta-
neously with the IT-TB, as soon as it was ready for users.

6. TüNDRA functionality
TüNDRA allows users to view each sentence in an installed
treebank, and to move from one sentence to the next or
jump to a sentence by its number in the treebank. Figure 6
shows a sentence from the IT-TB as displayed in TüNDRA:
sed forma est creatura (“but form is a creature9”). The on-
screen controls provide display and navigation functions:
moving to the next or previous tree, jumping to other parts
of the treebank, zooming, shrinking and panning the tree
display, as well as downloading rendered trees in SVG,
PNG and JPEG formats for reuse in other contexts.

Multiple visualization formats are available, providing
different perspectives on individual trees and correspond-
ing to different traditions in tree drawing. This is in contrast
to ANNIS and INESS, which also provide browser visual-
izations of treebanks, but do not give users a choice of vi-
sualization style. TrEd allows users to define visualizations
using stylesheet specifications described in its documenta-
tion.

Searching in treebanks is available by typing a query
into the input box on the main TüNDRA page, at the top left
of Figure 6. TüNDRA uses a query language adapted from
the widely used TIGERSearch software (Lezius, 2002).
TIGERSearch query language separates searching on se-
quential relationships in treebanks from hierarchical rela-
tionships, allowing queries that contain both. It is there-
fore well-suited to non-projective treebanks and has been
adapted for INESS and ANNIS as well. Query results are
displayed by highlighting the treebank elements that match
the query. Users can browse within query results.

TüNDRA also provides consolidated statistics for query
results, a feature not currently available in INESS or AN-
NIS. These consolidated results are not customizable, as

8http://weblicht.sfs.uni-tuebingen.de/
weblichtwiki/index.php/The_TCF_Format.

9Scriptum super Sententiis, Liber 1, Distinctio 8, Quaestio 5,
Articulus 1, Argumentum 1.

770



Figure 6: A short sentence from the IT-TB displayed in TüNDRA, using a Word Grammar style visualization.

they are in TrEd, but users can download the raw result
data for further analysis in spreadsheets or other software
of their own.

For more detailed information about the current func-
tioning of TüNDRA, see Martens (2013) and the TüNDRA
website.

7. Adapting TüNDRA to Dependency
Treebanks

Adding support for the IT-TB involved interventions in two
areas:

• Tree visualisations that are natural for dependency
treebanks.

• Adapting TüNDRA’s existing query engine to depen-
dency grammars.

In both cases, the existing software and framework were
extended to provide for the IT-TB. TüNDRA uses a num-
ber of standard protocols and off-the-shelf development li-
braries to simplify the development process.

Treebanks are stored in an extensible XML format de-
vised for TüNDRA, and managed using an adapted version
of the open source BaseX XML database software10. De-
pendency treebanks are encoded using a schema developed
specifically for them.

All tree visualizations use W3C standard Scalable Vec-
tor Graphics (SVG), which are supported by all major in-
ternet browsers. Adding new visualizations for dependency

10http://basex.org.

Figure 7: The same sentence as Figure 6, but using a TrEd-
style rendering.

treebanks was primarily a matter of developing new rou-
tines for transforming TüNDRA’s XML tree format into the
desired SVG form.

Since the TIGERSearch query language already sup-
ports non-projective trees, adapting the query language it-
self to dependency treebanks was not very complicated.

Internally, on the TüNDRA server, queries are trans-
lated into XQuery, a W3C standard for interacting with
XML documents. XQuery is supported in BaseX, which
executes the translated query against the stored treebank in
XML form.

TüNDRA offers full Unicode support through the use of
treebank-specific webfonts, another W3C standard technol-

771



Figure 8: A query match for ”forma simplex”.
Figure 9: A query match where sequence and hierarchy
do not match.

Figure 10: Dependency where word order is reversed. Figure 11: Dependency with an intervening word.

ogy. Even when a user’s desktop system is not configured to
support a particular language, TüNDRA provides the user
with a font to correctly display texts.

7.1. Dependency tree visualization
TüNDRA provides two visualization styles for dependency
trees. The first, shown in Figure 6, draws on the visualiza-
tion style most associated with Word Grammar (Hudson,
1984). Words are ordered linearly, like on a page, and de-
pendencies are represented as arcs above the words. Fig-
ure 7 shows an alternative visualization, based on the ap-
proach used in TrEd. The nodes of the tree are arranged
horizontally according to surface word order, but their verti-
cal placement reflects their place in the dependency hierar-
chy. In both visualizations, lemmas and parts-of-speech are
shown to users while the full set of morphological features
is obscured to prevent screen clutter, but can be optionally
viewed by clicking the blue arrow beneath each token.

7.2. Searching dependency treebanks
TüNDRA’s adapted TIGERSearch query language already
supports the separation of hierarchical and sequential re-
lations necessary to query dependency trees, and has been
adapted to support the requirements of the IT-TB and sim-

ilar treebanks. The query language does not assume, as it
would for a constituency treebank, that all tokens are termi-
nal nodes in the tree.

To search for the token sequence forma simplex (“sim-
ple form”) in the IT-TB, enter the following query into the
query window (upper left of Figure 6):

[token="forma"] . [token="simplex"]

This matches any node in the treebank with a token at-
tribute matching the string forma when followed in surface
word order (indicated by “.”) by a node with a token at-
tribute matching the string simplex. The result is a tree with
the relevant elements highlighted in red, as in Figure 8.

This query will only match instances of forma simplex
and will exclude any instance of simplex forma, formae
simplices, or any other ordering or inflection. It will, how-
ever, match all instances where the words forma simplex
happen to be adjacent, even when there is no direct syntac-
tic dependency between them, as in Figure 911.

To query for any appearance of forma followed by

11In Figure 9, the word simplex does not depend directly on
forma because the former is part of a coordinated construction
(simplex et immaterialis, “simple and immaterial”). According to

772



Figure 12: A right-headed well-nested subtree from the IT-TB: vult ergo dicere hilarius, quod... (“hence, Hilarius wishes
to say that...”), from Scriptum super Sententiis, Liber 1, Distinctio 5, Quaestio 3, Articulus 1, Expositio.

simplex regardless of declension, users can query for
lemmas directly:

[lemma="forma"] . [lemma="simplex"]

Users can query for any combination of node features
by joining them inside square brackets with AND (&) and
OR (|) operators.

To query for any instance of forma with the word
simplex as a direct dependent, use the “>” operator:

[token="forma"] > [token="simplex"]

This query will find forma and simplex only where
joined by a hierarchical dependency, without regard for
surface word order or proximity in the sentence, matching
trees like the ones in Figures 10 and 11.

By separating hierarchy and surface order entirely, it
is also possible to query for trees that satisfy particular
hierarchical structures and orders at the same time. To
find trees where any declension of simplex is dependent on
any declension of forma, but where simplex immediately
precedes forma, variable labels (indicated by the # sign)
must be introduced into the query:

#1:[lemma="forma"] > #2:[lemma="simplex"]
& #2 . #1

Queries may specify any number of nodes and variable
labels in any relation. Relations can query over hierarchi-
cal or sequential relations at any distance. Unicode regular
expression matching is supported on all feature labels, and
a node can have any number of features expressible as Uni-
code strings.

7.3. Identifying well-nested structures
Since handling non-projectivity is such an essential practi-
cal element of dependency treebank tool development, it is
important to highlight the ability to perform searches that
specifically target this phenomenon. For example, the no-
tion of well-nestedness is a relaxed notion of syntactic pro-
jectivity relevant to languages with relatively free word or-

the annotation style of the IT-TB, there is no direct dependency in
this context, but other approaches differ.

der. A tree or subtree12 is said to be well-nested if, for any
pair of edges that cross, the parent node of one of the two
edges dominates the parent of the other13.

The following query searches for non-projective, right-
headed, well-nested subtrees in the IT-TB using TüNDRA:

#1 .* #2 .* #3 .* #4

& #1 > #3 & #2 > #4

& #1 >* #2

Figure 12 is an example of a match for this query as dis-
played in TüNDRA. Note that TüNDRA displays which to-
kens match which variable names in order to simplify visual
inspection and interpretation. The edge from #2 (dicere)
to #4 (quod) crosses the edge from #1 (vult) to #3 (hilar-
ius), making the subtree rooted in #1 (vult) clearly non-
projective. It is nonetheless well-nested because the root
of one of the two edges (#1) dominates the root of the other
(#2), and it is right-headed because the rightmost of the two
roots (#2) is dominated by the leftmost (#1).

This query identifies exactly such subtrees because:

1. The term #1 .* #2 .* #3 .* #4 searches for four
distinct nodes in a sequence that may or may not in-
clude intervening nodes.

2. The term #1 > #3 & #2 > #4 restricts the search
to instances where the first node directly domi-
nates the third and the second node directly domi-
nates the fourth, ensuring that their edges cross non-
projectively.

3. The term #1 >* #2 further restricts the search to in-
stances where the first node dominates the second, al-
though possibly not directly.

This kind of search is interesting only for dependency
treebanks and highlights the importance of tools adapted
specifically for them. The ability to separately query node
sequence and node hierarchy, and then join them in one
query, makes this possible.

12A subtree is defined as the entire set of nodes and edges de-
scending from some specific node, i.e. a bottom-up subtree in the
terminology of Luccio et al. (2001).

13This definition follows Dubusmann & Kuhlmann (2010)
and Havelka (2007), but note the slightly different definition in
Bodirsky et al. (2005).

773



8. Conclusion
TüNDRA offers a web application solution to visualiz-
ing and searching in treebanks, including dependency tree-
banks with complex morphologies and non-projective tree
structures. Integrating the IT-TB into TüNDRA makes
it much more accessible to researchers, and adapting
TüNDRA to the IT-TB has been very productive in ex-
panding its functionality for future treebank projects in-
volving dependency formalisms and classical languages.
This adaptation makes TüNDRA an accessible platform for
other treebanks with problems similar to those of the IT-TB:
non-projectivity, free word order and complex morphology.
Although unnecessary for support of the IT-TB, TüNDRA’s
use of server-provided fonts also makes it a solution for
treebanks with writing schemes that may be difficult to dis-
play using other solutions, like many historical treebanks
and resources for less widely supported languages.

A key element of dependency treebank support is the
ability to encode, display and query non-projective trees in
a transparent way. TüNDRA supports two approaches to
displaying these kinds of trees, based on already existing
traditions in drawing them, and queries them by separating
hierarchical relations from sequential ones. As the example
of well-nestedness in Section 7.3. shows, this ability makes
it possible to identify structures where hierarchical and se-
quential information interact in productive ways.

9. References
D. Bamman, M. Passarotti, G. Crane, and Raynaud S.

2007. Guidelines for the Syntactic Annotation of Latin
Treebanks. Tufts University Digital Library. URL:
http://hdl.handle.net/10427/42683.

M. Bodirsky, M. Kuhlmann, and M. Möhl. 2005. Well-
nested drawings as models of syntactic structure. In Pro-
ceedings of the 10th Conference on Formal Grammar
and 9th Meeting on Mathematics of Language, pages
195–203, Stanford, CA, USA. CSLI Publications.

R. Busa. 1980. Index Thomisticus. Frommann-Holzboog,
Stuttgart.

C. Chiarcos, S. Dipper, M. Götze, U. Leser, A. Lüdeling,
J. Ritz, and M. Stede. 2009. A flexible framework for
integrating annotations from different tools and tagsets.
Traitement Automatique des Langues, 49(2).

N. Chomsky. 1965. Aspects of the theory of syntax. MIT
Press.

O. Christ and B. Schulze, 1995. Ein flexibles und mod-
ulares Anfragesystem für Textcorpora, pages 121–133.
Niemeyer, Tübingen.

R. Debusmann and M. Kuhlmann, 2010. Dependency
grammar: Classification and exploration, pages 365–
388. Springer, Berlin and Heidelberg.

J. Hajič, J. Panevová, E. Buráňová, Z. Urešová,
and A. Bémová. 1999. Annotations at Analytical
Level - Instructions for annotators. Charles Uni-
versity, Institute of Formal and Applied Linguistics.
URL: http://ufal.mff. cuni. cz/pdt2.0/doc/manuals/en/a-
layer/pdf/a-man-en.pdf.

J. Havelka. 2007. Beyond projectivity: Multilingual evalu-
ation of constraints and measures on nonprojective struc-
tures. In Proceedings of the 45th Annual Meeting of the

Association of Computational Linguistics, pages 608–
615, Prague.

E. Hinrichs, M. Hinrichs, and T. Zastrow. 2010. Weblicht:
web-based lrt services for german. In Proceedings of
the ACL 2010 System Demonstrations (ACLDemos 1́0),
pages 25–29, Stroudsburg, PA, USA.

R. Hudson. 1984. Word grammar. Blackwell, Oxford.
W. Lezius. 2002. Tigersearch - ein suchwerkzeug für

baumbanken. In Proceedings der 6. Konferenz zur
Verarbeitung natürlicher Sprache (KONVENS 2002),
Saarbrücken.

F. Luccio, A. Enriquez, P. Rieumont, and L. Pagli. 2001.
Exact rooted subtree matching in sublinear time. Tech-
nical Report TR-01-14, Università di Pisa.

F. Mambrini and M. Passarotti. 2013. Non-projectivity in
the ancient greek dependency treebank. In Proceedings
of the Second International Conference on Dependency
Linguistics (DepLing 2013), pages 177–186, Prague.

S. Marcus. 1965. Sur la notion de projectivité. Mathemat-
ical Logic Quarterly, 11(2):181–192.

S. Martens. 2012. Tündra: Tigersearch-style treebank
querying as an xquery-based web service. In Proceed-
ings of the joint CLARIN-D/DARIAH Workshop ’Service-
oriented Architectures (SOAs) for the Humanities: Solu-
tions and Impacts’, Digital Humanities 2012, Hamburg.

S. Martens. 2013. Tündra: A web application for tree-
bank search and visualization. In Proceedings of The
Twelfth Workshop on Treebanks and Linguistic Theories
(TLT12), Sofia.

B. McGillivray, M. Passarotti, and P. Ruffolo. 2009. The
index thomisticus treebank project: Annotation, pars-
ing and valency lexicon. Traitement Automatique des
Langues, 50(2).

P. Pajas and J. Štěpánek. 2009. System for querying syn-
tactically annotated corpora. In Proceedings of the ACL-
IJCNLP 2009 Software Demonstrations, Singapore.

M. Passarotti and P. Ruffolo. 2010. Parsing the index
thomisticus treebank – some preliminary results. In
Latin Linguistics Today. Akten des 15. Internationalen
Kolloquiums zur Lateinischen Linguistik, pages 714–
725, Innsbruck. Innsbrucker Beiträge zur Sprachwis-
senschaft.

D. Rohde. 2005. TGrep2 User Manual v. 1.15. MIT. URL:
http://tedlab.mit.edu/ dr/Tgrep2/tgrep2.pdf.

V. Rosén, K. De Smedt, P. Meurer, and Helge Dyvik. 2012.
An open infrastructure for advanced treebanking. In Pro-
ceedings of the META-RESEARCH Workshop on Ad-
vanced Treebanking at LREC 2012, pages 22–29, Istan-
bul.

SIIA. 2001. Software as a service: Strategic back-
grounder. Technical report, Software & Informa-
tion Industry Association, Washington, DC. URL:
http://www.siia.net/estore/pubs/SSB-01.pdf.

R. Stallman. 2010. What does that server really
serve? Boston Review, March. Online review.
URL: http://www.bostonreview.net/richard-stallman-
free-software-DRM.

774


