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Abstract
Natural language analysis of patents holds promise for the development of tools designed to assist analysts in the monitoring of emerging
technologies. One component of such tools is the identification of technology terms. We describe an approach to the discovery of
technology terms using supervised machine learning and evaluate its performance on subsets of patents in three languages: English,

German, and Chinese.
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1. Introduction

The timely detection of emerging technologies and the
monitoring of their worldwide evolution pose daunting
challenges for analysts (PICMET, 2012). Not only do these
tasks demand constantly expanding domain expertise but
the rate of scientific publication is growing fast (Sharma
et al., 2002; Larsen and Ins, 2010).

Patent filings represent a leading indicator of the maturation
of technologies and their introduction into the marketplace.
As semi-structured documents, they offer many opportuni-
ties for data mining of natural language content. For ex-
ample, citations and references to prior art reflect the intel-
lectual development of a technology while the appearance
of novel terminology in a cluster of patents suggests the
emergence of a new subfield. Previous research on patents
has applied natural language processing for the purpose of
summarization and clustering (Tseng et al., 2007), infringe-
ment analysis (Indukuri et al., 2007), and computer-assisted
categorization (Fall et al., 2003). Numerous techniques for
the automatic extraction of terms and phrases in support of
these tasks have been proposed. However, such efforts have
rarely made a distinction between terms that denote tech-
nologies and other classes of terms. In this paper, we seek
to automate the identification of technology terms within
patents in order to make this constantly-growing technical
vocabulary available for the construction of higher level an-
alytical tools. This work was developed in the context of
an automated system that processes very large collections
of patents and scientific publications in order to detect and
track scientific emergence within diverse science and tech-
nology communities (Brock et al., 2012; Babko-Malaya
et al., 2013a; Thomas et al., 2013; Babko-Malaya et al.,
2013b).

Our approach to technology term detection follows from
the successful application of supervised learning in in-
formation extraction tasks such as named-entity detection
(Nadeau and Sekine, 2007) and medical concept extraction
from clinical records (Uzuner et al., 2011). The general
methodology involves using a large set of human anno-
tated examples of the target class(es) along with their tex-
tual contexts to serve as training examples for generating
a machine learned model which exploits features extracted

from the labeled terms and their contexts. However, un-
like the well-defined entity types in those domains (e.g.,
company names, geographical locations, medical symp-
toms and treatments), the imprecise definition and im-
mense scope of technical terminology present unique chal-
lenges. Consider, for example, the definitions of “technol-
ogy” provided by the American Heritage Science Dictio-
nary (Kleinedler and Spitz, 2005):

1. The use of scientific knowledge to solve practical
problems, especially in industry and commerce.

2. The specific methods, materials, and devices used to
solve practical problems.

The range of terms that fit the second definition above is
quite broad, running the gamut from esoteric devices like
magnetometers and nanotubes to everyday artifacts like ar-
ticles of clothing or furniture. Examples from WIPOs Inter-
national Patent Classification!, a large multi-level hierarchy
designed to support the assignment of patents to categories,
follow:

1. Apparatus for the destruction of unwanted vegetation,
e.g. weeds (biocides, plant growth regulators)

2. Fittings or trimmings for hats, e.g. hat-bands

3. Geodesic lenses or integrated gratings

For our purposes, then, we define a technology term
broadly as a lexical phrase denoting an artifact, process, or
field of study (further nuances of this definition are elabo-
rated below).

Since technology development is a global phenomenon,
monitoring the life cycle of technologies requires analysts
to track literature in many languages. Thus, it is critical that
the methodology for technology term extraction generalize
readily to multiple languages. To test the generalizability
of our approach, we apply and evaluate the methodology
on English, German and Chinese patents.

The paper is organized as follows. We first provide an
overview of the full system, describing the extraction of
candidate technology terms from text, annotation strategy,

Thttp://www.wipo.int/classifications/ipc/en/
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generation of training instances, construction of a technol-
ogy term classifier, and use of the trained model to produce
a technology ontology. We then present the results of an
evaluation on a subset of English patents, followed by re-
sults for German and Chinese. We conclude with a discus-
sion of these findings and opportunities for future work.

2. System Description

New technologies often demand the creation of new sub-
languages, while standardization of a vocabulary over time
tends to indicate the maturing of a new field. Thus, tem-
poral fluctuations and trends in terminology can assist ana-
lysts in their detection and assessment of technology emer-
gence, especially when used in conjunction with other
actor-network indicators (Latour et al., 2010). Our goal is
the construction of a comprehensive and extensible lexical
ontology of technical terms that can serve the needs of text-
based analytical tools across multiple languages.

Given the vast number of artifacts and processes described
in patents, we opted for a supervised machine learning ap-
proach to technical term detection. The feasibility of this
approach depends upon both the existence of discriminative
contextual features and sufficient training data to enable ap-
propriate feature weights to be learned from examples. To
simplify the task, we preprocessed the text using shallow
linguistic processing rules to select candidate words and
noun phrases; then supervised machine learning was em-
ployed to classify these candidates as technology terms or
not. The diagram in Figure 1 presents the overall architec-
ture of the system.

2.1. Pre-processing and candidate selection

The patent data used for building the system consisted of
small collections of xml-formatted patents randomly se-
lected from LexisNexis’ English, German, and Chinese
patent databases. Each subset contained 500 documents
and spanned the years between 1980 and 2012. Each patent
was parsed with respect to its xml document structure to
identify relevant sections (title, abstract, first claim, back-
ground, etcetera). Then the Stanford tagger’> was run over
the text to detect sentence boundaries, extract tokens (a task
requiring word segmentation in Chinese) and assign each
token a part-of-speech tag.

Next, a language-specific chunker was used to scan to-
ken sequences greedily for the longest sequences matching
simple noun phrase patterns. In English, most candidate
phrases are of the form (ADJ? N* N). Each part-of-speech
tag in a pattern may have an associated list of noise words
that are to be excluded from the matched patterns. These
serve primarily to eliminate many non-substantive modi-
fiers from the greedy phrase matcher. For example, the
leading adjectives “first”, ”’specific”, or “following” would
be considered noise words and excluded from any match-
ing candidate phrase while substantive adjective modifiers
like electronic or radioactive would be retained. The out-
put of the chunker is a list of candidate noun phrases along
with associated sets of contextual features (e.g., surround-
ing words and n-grams) which serve as features for ma-

*http://nlp.stanford.edu/software/tagger.shtml

chine learning. Similar chunking rules perform the equiva-
lent function in German and Chinese.

2.2. Manual annotation of terms

Supervised learning requires a gold set of manually anno-
tated instances that label terms according to a set of pre-
defined classification criteria. For the purposes of annotat-
ing technologies, we defined a technology term as a phrase
matching any of the following criteria:

e Artifact — a man-made object produced as the result of
a scientific manufacturing process (e.g., electron mi-
croscope, computer keyboard)

e Process/technique — the name of a method or process
for creating an artifact or doing technical work (e.g.,
duty cycle control, electron microscopy)

e Field — the name of a discipline or scientific area re-
lating to the production of artifacts or processing (e.g.,
biotechnology, construction engineering)

In some cases, interpreting phrases using these criteria
alone proved problematic. For example, many natural kinds
are produced by artificial means, such as smooth muscle
cells produced by cell culture or an amino acid sequence de-
termined by protein sequencing. In the context of patents,
these typically function as artifacts and hence technology
terms. There are some candidate noun phrases which in-
clude appositive terms, as in ’clock pulse CK” or “clock
pulse cpl”. Since "CK” is a generic way to abbreviate
“clock pulse”, the former phrase was considered a technol-
ogy term whereas the latter, referring to an instance within
the patent, was not. A patent typically makes many refer-
ences to components of an artifact, as in “resist-free back
side”, “rear cross frame member”, and “parent identifier
field”. Unless these terms refer to components that can rea-
sonably be thought of as independent artifacts, they were
not to be considered as denoting technology terms. Also
problematic are broad terms which may refer to a technol-
ogy but in an underspecified manner, such as data or cir-
cuits.

In order to reduce the effort required for manual annotation
and to maximize its effectiveness for training, we made the
simplifying assumption that each phrase (i.e., term “type”)
need only be labeled once, even though some phrase in-
stances might serve different functions in different patents.
This simplification relieved the annotator of labeling multi-
ple instances of the same term, a task which would have re-
quired considerable work, inspecting each context in which
each term appeared within each patent. Instead, the annota-
tor labeled each term within the broader context” of tech-
nology patents as a whole, deciding based on his/her un-
derstanding of a term whether a use of the term would most
likely denote a technology. Assigning a label often required
the annotator to do a web search to understand the meaning
of unfamiliar candidate phrases. (A search for the quoted
phrase, sometimes ANDed with the term “technology” or
’definition” or both, usually produced enough information
in the result set snippets to make a decision.) This approach
to constructing a training set is a form of “distant supervi-
sion” (Mintz et al, 2009) and runs the risk of introducing
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Figure 1: System Diagram

noise. For example, some terms, such as generic single
word terms that have several distinct meanings or phrases
that may refer to both a natural kind and an artifact, are
particularly difficult to classify and indeed may not have a
single dominant interpretation in the corpus. Rather than
force a decision, we gave the annotator the additional op-
tion of labeling a term ”?” whenever the annotator lacked
the confidence to choose a single classification for the term
out of context. Such labeled terms were not included in the
gold set for training the model.

Candidate terms for annotation were generated using the
output of the chunker and sorted by document frequency
so that more common terms were labeled first. More fre-
quently occurring terms would be expected to generate
more training instances when applied to the corpus. For
each language, annotators provided a minimum of 2000 la-
beled terms, for English, extra terms were annotated, result-
ing in a set of 3784 labeled terms. The overall agreement
between the annotators, using Cohen’s Kappa, was 0.52,
suggesting moderate agreement. The annotators were not
experts in the technical areas of the patents.

2.3. Features

To create training instances from the labeled terms, each
term and label were combined with a contextual features
associated with occurrences of the term found within the
document collection. Features fell into the following cate-
gories:

e External local context: ngrams of size 1, 2, and 3 to
the left and right of the term

e External syntactic context: rule-based “dependency”
relationships between the term and preceding nouns,
verbs and adjectives (prev_V, prev_Npr, prev_Jpr,
prev]). These were intended to capture, for ex-
ample, the verb (and any prepositions/articles) for
which the term is the object. prev_Npr captures
a dominating head noun and preposition (e.g., the
phrase “a large reduction in the cpu speed” would
generate the feature prev_Npr=reduction_in for the

term “cpu speed, whereas the ngram context would
create the features prev_nl=the, prev_n2=in_the,
prev_n3=reduction_in_the).

e Internal features: these include number of tokens in
the phrase, first_word, last_word, and suffixes of length
3,4, and 5 characters.

e Document location features: term’s location within the
structure of the patent, broken down by ”1st sentence”
and ”later sentence” within title, abstract, summary,
description, and first claim.

Table 1 shows the total number of potential training in-
stances produced for the 500-document collections in three
languages, as well as the percentages of them covered by
the most frequent N labeled types. The numbers suggest
that a relatively minor annotation effort can generate a sig-
nificant number of training instances. We will discuss the
number of positive and negative examples again in a later
section.

instances 100 1000 2000 5000
English 237,960 10% 29% 36% 48%
Chinese | 133,921 21% 49% 60% 75%
German 87,469 20% 50% 61% T7%

Table 1: Share of N most frequent candidate terms

Since the same term can appear multiple times within a sin-
gle document, there are several approaches to generating
training instances for a classifier. We could treat each sin-
gle term occurrence as a separate instance for training or
else merge features from multiple occurrences within a sin-
gle patent into a single feature vector. While we plan to
compare both approaches in future work, for this study we
opted for the latter approach, as it allows for a model to be
trained directly on the conjunction of features found within
each document. Multiple occurrences of the same feature
were collapsed into a single feature, rather than counted or
weighted. The output of this step, then, was a list of binary
feature vectors, one for each term (type) within a document.
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2.4. Classification

We used the training data from each language collection
to train a maximum entropy classifier using the mallet tool
kit (McCallum, 2002). The resulting models can be ap-
plied to our task in two different ways. A model can be
used dynamically to detect technology terms in a new un-
seen patent. Alternatively, a model can be applied in batch
mode to a large collection to create a global ontology of
technology terms. In this mode, the category scores for
the same term across multiple documents are merged into
a single statistic (e.g., by computing their average, min or
max scores). This approach allows scoring for each term
to be based on a larger sample of patents, which may lead
to more reliable categorization. Building a global ontol-
ogy off-line also allows for terminology detection in new
patents to be done simply and efficiently using dictionary
lookup. However, this approach risks lower recall as the
global ontology lacks knowledge of any previously unseen
terms. A hybrid approach, in which classification scores
are dynamically computed for all candidate terms in a new
document while global ontology scores are used to bias
decisions about previously seen terms may offer the best
solution by combining local (document) and global (col-
lection) information. Since the mallet classifier output in-
cludes probability scores for each class, it is possible to set
arbitrary thresholds for accepting technology terms based
on desired levels of precision and recall.

3. Results and Discussion

To evaluate our system, we divided a randomly selected
500-document English collection into a training set of 490
patents and a test set of the remaining 10 patents. Over
3700 candidate phrases from the training collection and
nearly 1500 from the test set were annotated with ’y” or
”n” labels. Any terms appearing in the test ("gold”) set
were subsequently removed from the training set so that
the two labeled term sets were disjoint. A maximum en-
tropy classifier was trained on labeled instances from the
training collection. The model thus created (named Model
M) was used to generate probability scores for the test set
terms. Using the gold set labels, precision, recall and f-
score were computed for the system-generated results at the
acceptance threshold of 0.5. The results are shown below
in Table 2.

P R Fl1
M; | 0.63 057 0.60

Table 2: Precision, recall and f-score

We examined high and low scoring terms within the evalu-
ation set to better understand the nature of the false pos-
itives and false negatives (Table 3). Among the highest
system scoring terms for which the manual (gold) annota-
tion was negative we find some generic artifact terms (”de-
vice”, “identifier”) which may, under the circumstances,
have qualified as artifacts. This exemplifies the difficulty
of annotating terms for the purpose of classifying artifacts.
There is a large class of highly specialized unambiguous
terms (such as the true positives shown in the table). At

the same time, there is a large class of common terms for
which the “correct label” is less well-defined. To some ex-
tent, these terms are not particularly interesting, given that
analysts will be interested only in the specialized terms, not
the general ones. However, labeled general terms in the
training data (and in the evaluation) will impact both the ac-
tual performance (and evaluation) of the system. Similar is-
sues arise for some of the negatively labeled terms: “storage
system unit” and ”long extended conductor device” are ar-
guably “descriptions” of artifacts rather than terms directly
denoting artifacts, but nonetheless the labels used for train-
ing purposes could have a direct impact on the effectiveness
of training data, given that the contextual features for arti-
fact descriptions are likely to be the same as for artifact
terms. This suggests a need for further refinement of our
annotation guidelines, particularly concerning the proper
labeling of generic terms and descriptive phrases.

Low scoring terms with positive gold labels (false nega-
tives) include many single word terms that are unambigu-
ously artifacts: “database”, ”cpu” and “solvents”. While it
is possible that their roles in the particular patents used for
evaluation may have been minor enough to lack sufficient
contextual clues to identify them as such, their scores are
more likely a symptom related to the class of single word
terms.

y 0.988578 graphics processor

y 0.986901 communications system

y 0.986115 computer vision system

y 0.983682 luminescent nanoparticles
y 0.981159 spatial analysis

n 0.933401 long extended conductor device
n 0.892993 coronary artery

n 0.892514 device

n 0.892496 light source

n 0.880899 identifier

n 0.000000 lowered position

n 0.000000 interior

n 0.000000 hook-like part

n 0.000000 highest position

n 0.000000 guide walls

y 0.026642 algorithm

y 0.017968 cpu

y 0.017956 solvents

y 0.017776 pixels

y 0.014474  polymerization

Table 3: High and low scoring terms with their gold labels.
Groupings capture true positives, false positives, true nega-
tives, and false negatives, respectively. The table shows the
gold label, the system score and the term.

Such observations raised a number of questions about our
system design, ranging from the efficacy of specific fea-
ture types to the consequences of the distant supervision
approach. In particular, we were interested in the following
questions:

e Since we are using a large set of labeled ”seed terms”
to create training instances through distant supervision
rather than annotating each term in context, how is
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performance affected by the mix of tokens and types
appearing in the generated training instances? As the
size of the training instance set generated from the
seed terms grows, more frequently occurring labeled
terms may gain greater representation in the training
set. However, the most frequently occurring terms are
also the terms most likely to have ambiguous interpre-
tations, which could introduce noise into the training
data. Would there be any benefit to setting thresholds
for the contributions of frequent types when building
the training data?

e What is the relative importance of external contextual
features vs. internal information about the term itself
(e.g., head word and suffix features)?

e Given the apparent importance of term internal in-
formation (head words and suffixes) for classifying
phrases and the fact that the vast majority of terms are
multiword phrases, how are single word terms (that
lack these clues) impacted? Would it be more appro-
priate to train separate models for single words and
phrases?

e Training instances are constructed by joining in a sin-
gle vector all features related to all occurrences of a
term within a document. Would there be an advantage
to weighting the feature vector by feature occurrence
counts, vs. treating it as a binary (presence/absense)
vector?

e Are a term’s locations within a patent related to its
likelihood to be an artifact? What is the contribution
of including location information as features?

e Are the n-gram features preceding the term redundant
with or more or less important than the dependency
based features? Do both sets of features make inde-
pendent contributions to the performance?

We conducted experiments to investigate some of these
questions. Regarding the issue of transfer of labeled terms
from one patent collection to another, we had focused our
annotation effort on labeling the most frequent terms in our
source collection in order to maximize transfer. However,
patents contain many rare and specialized terms and a sig-
nificant overlap of terms from one set to another, especially
across domains, is not guaranteed. To test the effect of train-
ing using a set of patents different from those from which
our original annotations were drawn, we randomly assem-
bled a different collection of 500 patents, generated training
instances from it and tested the resulting model on our eval-
vation data. The original model M; had 3,808 positive in-
stances and 40,589 negative instance, distributed over 1,949
positive types and 1,778 negative types. Building the new
model M resulted in 2,880 positive instances and 37,480
negative instance, distributed over 389 positive types and
1,070 negative types. The results are shown in Table 4. As
expected, there is a drop in performance, due, most likely,
to the decrease in the number of training types generated
from this collection.

P R F1
My | 0.63 057 0.60
My | 059 0.55 0.57

Table 4: Precision, recall and f-score for two models of the
same size

In an attempt to overcome the performance deficit, we ex-
perimented with enlarging the patent collections used as
a source of training instances, noting the number of term
tokens and types that appeared in the training data as the
source collection size was increased. This resulted in a
new model M3 with an optimal size of 10,000 documents,
which yielded 58,306 positive instances and 755,156 nega-
tive instances, distributed over 689 positive types and 1,437
negative types (which is still significantly fewer than in our
original model). Table 5 shows that the larger model does
not help increase the precision over the smaller models M;
and Mo, but that recall increases significantly. Creating
models over 20,000 and 50,000 patents showed no increase
in precision or recall.

P R F1
My | 0.63 057 0.60
Ms | 057 0.77 0.65

Table 5: Increasing the size of the model

We hypothesized that the large numbers of instances asso-
ciated with a few frequent terms may adversely effect the
results, especially for those cases where it is not very clear
whether a term is a technology or not. To investigate this,
we performed two experiments: (1) revising the training
gold data of labeled terms and throwing out some of the
more unclear frequent terms, and (2) taking a much larger
training set of over 350,000 patents and down sample the
number of instances per term to a maximum of 1000. The
first experiment showed some promise with small training
sets, but the effects tailed off for larger training sets and
there was no configuration that displayed the same perfor-
mance as Model M3. The second experiment resulted in a
slightly higher F-score of 0.66.

To gauge the contribution of internal and external features
we took the instances as used for model M3 and built mod-
els with only internal features (1) and only external fea-
tures (M5). Table 6 shows that the overall results are dom-
inated by internal features. Using external features gives a
high precision but an extremely low recall. This seems to
suggest that technologies in general are not characterized
by their linguistic context.

P R F1

Ms | 057 0.77 0.65
My | 055 0.77 0.64
Ms | 073 0.04 0.08

Table 6: Internal and external features

We also looked at the impact on the f-score when remov-
ing each of the features individually. Most features, when
taken out in isolation, did not have much impact on the
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score. The most notable exceptions was the last_word
feature, whose removal reduced the f-score by 0.09. The
phrase length feature plen and the suf fix4 feature both
reduced the f-score by 0.02. Note that these are all internal
features.

The difference in performance between single-token terms
and multi-token terms is shown in Table 7 below. The sys-
tem labels were created with model M3, but evaluation was
partitioned according to the single-token versus multi-token
distinction.

P R F1

all terms 041 0.69 0.52
single-token terms | 0.20 0.08 0.09
multi-token terms | 0.42 0.80 0.55

Table 7: Performance on single-token terms and multi-
token terms

Note that the numbers in the “all terms” row are not the
same as the numbers for model M3 as reported before. This
is because the basic evaluation set was too small to allow
for meaningful metrics for the single-token terms. We in-
creased the size of the evaluation set, but have not yet per-
formed quality control on this new set. Initial inspection
showed a larger percentage of annotation errors that in the
basic set, which is probably the reason that precision and
recall are lower.

What jumps out is the very low recall for single-token
terms. We have not yet determined what exactly is at the
core of this.

Comparing the results for classifiers trained on different
training sets, we note that precision is highest when the
coverage of different terms (types) in the training data is
highest (Table 2). Recall appears to benefit more than preci-
sion from training sets which include more instances of the
same terms. These additional instances provide new con-
textual features which increase opportunities for general-
ization. However, the bulk of these additional contexts may
be coming from a relatively small set of common patent
terms. If even a small number of these common terms are
labeled incorrectly in the gold data (or else have multiple
interpretations and should not have been assigned a y/n la-
bel), these could have an increasingly negative effect as the
number of training instances containing them grows. This
may account for the slight dip in precision for the larger
training set sizes. One way to correct for this might be to
limit the number of instances used for any one term so that
the contribution to feature weights in the learned model is
spread more evenly among different labeled terms.

The growth rate of instances relative to term types as the
number of documents in the training set increases suggests
that getting sufficient coverage of rare terms in the training
data may require very large document sets. Nevertheless,
the precision/recall performance for the initial training set,
which contains instances of 1033 positive terms and 1407
negative terms, is very encouraging and suggests that in-
creasing the coverage of rare terms in the training set could
lead to further improvements in performance.

4. Multilingual Processing

The overall process was essentially the same for Chinese
and German, although each language presented several
problems of its own. The document structure parser needed
some language-specific declarations to deal with useful sec-
tion headers in Chinese like technical field and background
art. German patents on the other hand had little overt doc-
ument structure.

Because Chinese does not separate its words using white
space, a word segmentation step was required prior to part-
of-speech tagging. This was accomplished using a Chinese
word segmenter included with the Stanford University lan-
guage processing toolkit. We used this same toolkit for sen-
tence splitting and part-of-speech tagging for all languages.
Patterns for chunking tagged words into candidate phrases
had to be constructed for each language. Most contex-
tual feature definitions were sharable among the three lan-
guages, with small variations due to syntactic differences.
The main time investment in moving to Chinese or German
was in the manual annotation. For comparison, we anno-
tated 2000 terms in all three languages.

Abstracting away from the effort to add a segmenter, the
time efforts to add Chinese and German versions of the
language-specific components were very similar. In both
cases it took a computational linguist about a week to adapt
the document structure component, integrate the part-of-
speech tagger, write chunker rules, define and adapt fea-
ture extraction rules and manually annotate terms. An ad-
ditional day was needed to prepare the evaluation gold stan-
dard.

4.1. Multilingual Evaluation

Manual annotation occurred in two phases. In a first phase,
which was done for English, Chinese and German, we took
the 2000 most frequent technology candidate terms from
a training set and associated these manually with 'y’ and
‘'n’ labels. There was some revision of guidelines and re-
annotation, but the focus was on quickly generating labeled
instances. In a second phase, which we did for English
only, annotation guidelines were given a closer look and
a new label °?’ was introduced which allowed annotators
to mark terms that should not be used to generate positive
or negative instances. Consequently, the English annota-
tion was completely revised. In addition, extra terms were
added to the English term list. In this section, we compare
an older version of the English system to the Chinese and
German systems, hence, the English results do not match
those reported earlier in the paper. The multilingual results
are presented in Table 8.

P R F1

English | 0.67 044 0.53
Chinese | 0.52 0.21 0.30
German | 0.85 0.36 0.56

Table 8: Precision, recall and f-score for ENglish, Chinese
and German

The Chinese system has better precision than the English
system at the higher MaxEnt thresholds (not pictured in the
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table), but recall and f-score lag English scores consistently
by a large margin. The lower recall may partially be at-
tributable to a lower number of positive training instances
(1286 versus 2496). The German system however has ac-
cess to a similar number of positive labels as the Chinese
system, yet has recall at the level of the English system. We
have not yet explained this anomaly. Even more remarkable
is the extremely high precision of the German system. This
is most likely at least in part the result of a statistical fluke.
The German evaluation set turned out to have many less
terms than the English one (552 versus 1436) and he num-
bers in Table 8 are based on small numbers of true and false
positives.

The generally lower number of positive and negative train-
ing samples for Chinese and German can be explained by
the size of the datasets. The 500 English patents comprise
3.7 million tokens whereas the 500 Chinese and 500 Ger-
man patents contain 1.7 million and 1.3 million tokens re-
spectively.

5. Conclusions

The identification of technology terms within a collection
of patents is a challenging information extraction task due
to the nature of technology terms themselves, which may
be ambiguous or generic and have multiple nuances of in-
terpretation. Initial results using a supervised learning ap-
proach are nonetheless very promising and appear to be
readily extensible to multiple languages. Our study points
to a number of areas for future work, including further re-
finements to our annotation guidelines and annotation strat-
egy, a better understanding of the relative contributions of
additional training terms vs. additional term instances, and
the development of strategies for combining term scores
from multiple documents. We also plan to compare alterna-
tive approaches for the construction of training instances.
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