
Experiences with Parallelisation of an Existing NLP Pipeline: Tagging Hansard

Stephen Wattam1, Paul Rayson1, Marc Alexander2 & Jean Anderson2

School of Computing and Communications1

Lancaster University
{s.wattam, p.rayson}@lancaster.ac.uk

English Language2

University of Glasgow
{marc.alexander, jean.anderson}@glasgow.ac.uk

Abstract
This poster describes experiences processing the two-billion-word Hansard corpus using a fairly standard NLP pipeline on a high per-
formance cluster. Herein we report how we were able to parallelise and apply a “traditional” single-threaded batch-oriented application
to a platform that differs greatly from that for which it was originally designed. We start by discussing the tagging toolchain, its specific
requirements and properties, and its performance characteristics. This is contrasted with a description of the cluster on which it was to
run, and specific limitations are discussed such as the overhead of using SAN-based storage. We then go on to discuss the nature of the
Hansard corpus, and describe which properties of this corpus in particular prove challenging for use on the system architecture used.
The solution for tagging the corpus is then described, along with performance comparisons against a naı̈ve run on commodity hardware.
We discuss the gains and benefits of using high-performance machinery rather than relatively cheap commodity hardware. Our poster
provides a valuable scenario for large scale NLP pipelines and lessons learnt from the experience

Keywords: High-performance Computing, Parallelisation, Tagging

1. Introduction
Requirements for NLP systems now typically include the
need for extremely large scale processing of data derived
either from vast online sources or increasing quantities of
digitised archive material. Whether the scenario is to an-
swer a particular set of research questions or for commer-
cial text analytics, sources such as Twitter provide signifi-
cantly more data than can be processed and ingested in any-
thing like reasonable time. Parallel computation is typically
used to address this bottleneck.
This poster presents the lessons learnt from work which
emerged from two serendipitous events: the need to sup-
port digital humanists in their analysis of the two-billion-
word Hansard data set, and a need for a real case study
for Lancaster University’s High Performance Cluster us-
ing textual rather than numerical data. Large infrastruc-
ture activities such as CLARIN (Tamás Váradi and Kosken-
niemi, 2008) and DARIAH (Constantopoulos et al., 2008)
are providing distributed archives for language resources
but NLP researchers still face local requirements during ex-
perimentation to process very large resources through com-
plex pipelines. Some toolkits, e.g. GATE, can now run
in the cloud (Tablan et al., 2013) to support such activi-
ties. However, many universities have existing high perfor-
mance clusters that may be under–exploited by language
researchers.
The work described here is part of a larger project, Par-
liamentary Discourse1, to include the 200-year corpus of
Hansard texts in Enroller2, an infrastructure to hold and

1http://www.glasgow.ac.uk/hansard
2http://www.glasgow.ac.uk/enroller Enroller

contains five corpora, one dictionary and one thesaurus. The
data sets can be simultaneously searched and the 780,000-entry
Historical Thesaurus of English enables searching of textual
resources by concepts and across time.

cross-search large data sets. The wider aim was to enrich
the Hansard corpus with linguistic annotations and named-
entity markup, cross–link it to the resources within the En-
roller portal and make the resource available for linguistic
and historical research. Our poster provides a valuable sce-
nario for large scale NLP pipelines and lessons learnt from
the experience.

2. Toolchain
The toolchain being used to tag the corpus was a combi-
nation of tools comprising the tag wizard of the Wmatrix
system3. This consists of a number of tagging and analy-
sis tools, each communicating using intermediate files and
managed using a series of shell scripts. The tag wizard
shares a lot of commonalities with standard NLP process-
ing pipelines as it consists of two annotation systems—
CLAWS (Garside and Smith, 1997) and USAS (Rayson et
al., 2004)—plus a frequency profiling and keyness compar-
ison step.

3. High-Performance System
The system used for processing was the Lancaster Univer-
sity High-End Computing cluster (HEC)4. This consists of
a number of compute nodes running Scientific Linux5, con-
nected using the Oracle Grid Engine6. In total the sys-
tem comprises over 2,200 CPU cores, 11TB of memory,
32TB of high performance file storage, and a further 1PB
of medium performance storage.

3http://ucrel.lancs.ac.uk/wmatrix/
4The authors would like to thank Mike Pacey, HPC Manager,

Information Systems Services, Lancaster University for his assis-
tance and patience.

5https://www.scientificlinux.org/
6http://www.oracle.com/us/products/tools/

oracle-grid-engine-075549.html

4093

http://www.glasgow.ac.uk/hansard
http://www.glasgow.ac.uk/enroller
http://ucrel.lancs.ac.uk/wmatrix/
https://www.scientificlinux.org/
http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html

Panasas File System

E
x
e
c
u
ti

o
n
 N

o
d
e
s

Front-end Node

1 2 6

Figure 1: HEC architecture

As shown in Figure 1, the system is reliant on network-
attached shared storage in the form of a Panasas Activescale
Series 8 storage cluster7(Nagle et al., 2004). Further stor-
age is available upon the compute nodes themselves. There
are 262 compute nodes in total, each with two four- or six-
core Intel E5520 CPUs each. Most of these compute nodes
have 24GB of RAM available locally (those that do not
have 96GB). The HEC’s scheduling framework operates
in a batch processing manner, with active jobs competing
for access to compute nodes. This scheduler can be used to
queue up job arrays in large batches, which will then be dis-
tributed to each compute node individually as they become
free. This was the primary mechanism used to distribute
jobs across nodes.

4. Hansard Corpus
Hansard is the official published report of oral and written
UK Parliamentary proceedings. It is an edited verbatim re-
port of speeeches in both the House of Commons and the
House of Lords. Members’ words are recorded by Hansard
reporters and then edited to remove repetitions and obvious
mistakes without changing the meaning. Reports of the lat-
est proceedings are published online and can be read online
back to 19888.
These records are of importance for scholars of the devel-
opment of the English language, of British politics and his-
tory, and are also used by community-focused organisa-
tions. Historic records back to 1803 have been digitized
in XML format and are publically available on the His-
toric Hansard web site created by the Commons and Lords
Libraries and Millbank Systems. There one can search
by word or phrase then filter results by speaker or House
(Lords or Commons). The Hansard corpus is one of the
biggest humanities data sets in the UK but was limited in its

7http://www.panasas.com/products/
activestor-14

8For more information on Hansard and its history
see http://parldisc.jiscinvolve.org/wp/
and http://www.parliament.uk/about/how/
publications/hansard/

use by being tagged only by speaker and date. To provide
greater utility we wanted the speeches to be searchable by
parts of speech (POS) and by topic. This would enhance
this significant public material and expose it to new au-
diences including linguists, discourse analysts, historians,
digital humanists, and cultural scholars.
We downloaded the XML corpus from the Historic Hansard
site and standardised the XML coding in order to prepare it
for the NLP toolchain. As well as POS tagging, we applied
the USAS semantic tagger. Once these annotation steps
were complete, we needed to produce word, POS and se-
mantic frequency lists for each speech as per the standard
Wmatrix tag wizard pipeline. Finally, in order to expose
the key topics of each speech we compared each seman-
tic frequency list to a standard reference corpus, the British
National Corpus spoken sampler (one million words) using
the log-likelihood statistic to find a set of key semantic tags.
The full 200-year collection is 2,271,985,142 words and
32.7GiB of data, including mark-up. The corpus is split
into 7,545,103 XML files, each representing one speech.
These files are organised into a hierarchical directory struc-
ture by house and date, comprising 48,482 folders in total.
A sample of this structure is shown in Figure 2.

Hansard
+-- Commons
| +-- commons 1803-1820
| | \-- commons
| | +-- 1803
| | | +-- dec
| | | | +-- 01
| | | | +-- 02
| | | | +-- 03
| | | | +-- 05
| | | | +-- ...

Figure 2: Sample directory layout

log lesize (b); smoothing bandwidth = 0.026

Percentile 5 25 50 75 95
Words 40 83 147 308 1400

Figure 3: Distribution of log filesizes for all corpus data,
and word counts (without markup) for each file.

Figure 3 shows that filesizes are generally small, exhibit-
ing a largely Zipfian distribution beyond the modal size of

4094

http://www.panasas.com/products/activestor-14
http://www.panasas.com/products/activestor-14
http://parldisc.jiscinvolve.org/wp/
http://www.parliament.uk/about/how/publications/hansard/
http://www.parliament.uk/about/how/publications/hansard/

1.8KB. The median size is just 2.4KB, and the 95th per-
centile is 1.4MB.

5. Method
The Wmatrix tag wizard toolchain was originally designed
and developed to run on commodity computing hardware
in a batch processing fashion. The toolchain thus respects a
number of common limits that apply to desktop computers
(e.g. low memory limits) and attempts to exploit other re-
sources that are available in abundance (fast sequential file
I/O). Many of these properties do not transfer to larger clus-
ters, and a number of changes had to be made in order to
align the processing stages with the resources available on
the HEC system.

File Access The Wmatrix toolchain makes extensive use
of small output and intermediate files during operation.
This incurs a significant performance overhead when used
with filesystems that are typical in high-end distributed
systems, which often use large block sizes, carry meta-
data for versioning and redundancy, or are accessible only
over network links. For this particular process, each input
file causes creation of eleven intermediate and output files.
When parallelised, the number of concurrent I/O opera-
tions performed, along with the organisation of the corpus
(stored as many small files), soon overwhelmed the band-
width limitations of the shared filesystem.
The solution to this effected changes to the whole
toolchain—first, the corpus was restructured to move each
day’s files into a single tar archive. This could then be
copied with a single operation from the shared drive. This
input file was then extracted into a temporary directory on
the local disk of the compute node. Following execution,
output was again archived using tar and copied back to
the shared drive. This process necessitated a further post–
processing stage to extract and validate the output, which
was performed after downloading data from the HEC.

Memory Size Memory provisions on systems have
grown considerably since the toolchain was designed, and
as such it fails to exploit even modern desktop systems. The
toolchain does this by trading time for space in some in-
stances and by caching data on disk, both of which would
have requied significant redevelopment to alter. We thus
elected not to fully exploit each compute node’s relatively
high 24GB of available memory.

Indexing and Co-ordination As work was completed
away from the shared disk, a system was necessary to co-
ordinate compute nodes’ access to data. This was accom-
plished by using a flatfile, centrally stored and accessed
once per batch, that contained a list of input archives and
their corresponding output directories. The numeric ‘job
ID’ environment variable provided by the scheduler was
used to compute an offset, which each job used to split the
input file by line, selecting a batch of input files for a single
job.
The number of input archives tagged per job was chosen to
balance scheduling overheads with the need to ‘smooth out’
file access and ensure that any failures did not affect large
areas of the corpus. Ultimately, each job was run using

20 input archives, chosen to take 30 minutes using average
input files.

Scheduling Overhead The overhead incurred by a
shared scheduling system is significant compared to a typ-
ical process creation task (exacerbated by the need to copy
and extract archives). This overhead was minimised by tag-
ging multiple directories in a single batch: in practice, run-
ning 2230 jobs with a predicted execution time of 30 min-
utes each, this did not prove to be a limiting factor.

Per-node Parallelism Each compute node on the HEC is
furnished with 8-12 processor cores. Wmatrix itself does
not take advantage of this parallelism, and the decision was
made not to introduce the complexity of pipelining into
each job dispatch script. As such, this remains the largest
untapped source of further performance.

6. Performance

5.4 10.9 16.4 21.8 27.3

hTime (h); smoothing bandwidth = 27 minutes

Percentile 5 25 50 75 95
Duration 20m 53m 2.5h 4.5h 7.3h

Figure 4: Distribution of job execution times on the HEC

The distribution of job durations is shown in Figure 4. All
jobs were complete in 3 days, meaning that the system
tagged at a rate of 31.5 million words per hour. Because of
the heterogeniety in task length, this rate was not constant,
decaying towards the end (the final 231) as the queued tasks
ran out and were not replaced. Had we used larger batches,
this effect would have proven more severe as the variance in
job length was liable to increase. Were the corpus particu-
larly large (in the range of hundreds of billions of words), it
would be prudent to model and control for this effect ahead
of time.
Our greatest underutilised resources were memory (jobs
used only 80 to 120MB of memory) and each node’s CPU
power—pipelining on each node would be able to shorten
the time spent tagging by a factor of 8 to just 9 hours.

6.1. Commodity Hardware
In many cases, the alternative to deployment on a HEC
cluster will be use of one or many commodity desktop
machines. In order to compare the performance of the
toolchain, a random sample of 50 jobs was run through the
toolchain using the scheduling scripts described above.
The hardware used was a desktop machine with a single
Intel i5 processor, 15GB of memory, and two 7200rpm me-

4095

chanical hard disks in a RAID-0 configuration. The system
was running Arch Linux9, and, as the system is the first
author’s office machine, work continued on other projects
during the benchmarks. We believe this constitutes a sys-
tem equivalent to many found across offices today.

0 2 4 6 8

0
.0

0
.1

0
.2

0
.3

Job time distribution, HEC vs. Desktop

Time (h); smoothing bandwidth = 33 minutes

D
e

n
s
it
y

desktop

hec

Percentile 5 25 50 75 95
HEC 22m 57m 2.4h 4.1h 5.6h

Desktop 9m 22m 1h 2.3h 2.8h

Figure 5: HEC and Desktop job execution times for a sam-
ple of 50 jobs

As can be seen in Figure 5, the desktop system runs individ-
ual jobs significantly more quickly. Fitting a linear model
indicates that the desktop is able to run jobs approximately
2.1 times faster than a single HEC core. The same model
indicates a 100 second job startup overhead on the HEC
(including copying of files). Had we continued to tag the
corpus in this manner, it would have taken 98 days on the
desktop system, and thus required at least 33 equivalent ma-
chines to achieve the HEC’s performance. It seems unlikely
that manually splitting the data across that many systems
would save time compared to the development overheads
incurred for the HEC tagger.

7. Discussion and conclusion
Two weeks was spent developing and testing the HEC de-
ployment of the toolchain. Of this, a significant portion was
spent adapting the toolchain to run on the scheduler with-
out restriction from the shared filesystem. The problem is
embarrassingly parallel, and the design of many HEC fa-
cilities is well suited to exploit that. It is certainly the case
that, even if we had manually split the data and run it on
(faster) commodity hardware, we would still have incurred
significant overhead in doing so. Assuming development in
that case were simpler and took just a week, we would have
required ten desktop systems in order to achieve the same
overall completion time.
It is worth noting that we did not fully exploit the paral-
lel capacity of the cluster, and modifications such as par-
allelising upon each compute node, or pipelining, would
yield vastly improved execution times. In part this was a re-
sponse to the limitations of the HEC’s design, particularly

9http://archlinux.org

disk access rate and the simplicity of the scheduling sys-
tem. Though these incur further development effort, they
may be worthwhile for many projects, or be used to extend
the lifespan of existing toolchains.
In contrast to manual deployment, there is a benefit to hav-
ing smaller jobs where scheduling is automated and fast,
as they may compete more efficiently for resources (though
this must be balanced with the overheads of any scheduling
itself). For problems where time constraints are less severe,
the toolchain used is particularly specialised, or the data is
less inherently parallel, there may be benefits to the simpler
approach. For our purposes, where the toolchain was eas-
ily ported, and the timescale short, the greater concurrency
offered by a high performance cluster proved invaluable.

In future work, we will test the HEC facilities with other
corpora with different filesize distribution characteristics.
We will also experiment with the MapReduce programming
model through implementations such as Apache Hadoop. A
key future requirement is to expose such parallel process-
ing facilities through a programming-lite interface so that
the benefits can be exploited by corpus linguists and digital
humanists alike.

8. References
Constantopoulos, P., Dallas, C., Doorn, P., Gavrilis, D.,

Gros, A., and Stylianou, G. (2008). Preparing DARIAH.
In Proceedings of the International Conference on Vir-
tual Systems and MultiMedia (VSMM08).

Garside, R. and Smith, N. (1997). A hybrid grammatical
tagger: CLAWS4. Corpus annotation: Linguistic infor-
mation from computer text corpora, pages 102–121.

Nagle, D., Serenyi, D., and Matthews, A. (2004). The
Panasas ActiveScale Storage Cluster: Delivering Scal-
able High Bandwidth Storage. In Proceedings of the
2004 ACM/IEEE conference on Supercomputing, SC
’04, pages 53–, Washington, DC, USA. IEEE Computer
Society.

Rayson, P., Archer, D., Piao, S., and McEnery, T. (2004).
The UCREL semantic analysis system. In Proceedings
of the workshop on Beyond Named Entity Recognition
Semantic labelling for NLP tasks in association with 4th
International Conference on Language Resources and
Evaluation (LREC 2004), pages 7–12, May.

Tablan, V., Roberts, I., Cunningham, H., and Bontcheva,
K. (2013). GATECloud. net: a platform for large-scale,
open-source text processing on the cloud. Philosophi-
cal Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 371(1983).

Tamás Váradi, Steven Krauwer, P. W. M. W. and Kosken-
niemi, K. (2008). CLARIN: Common Language Re-
sources and Technology Infrastructure. In Nicoletta
Calzolari (Conference Chair), Khalid Choukri, B. M.
J. M. J. O. S. P. D. T., editor, Proceedings of the
Sixth International Conference on Language Resources
and Evaluation (LREC’08), Marrakech, Morocco, may.
European Language Resources Association (ELRA).
http://www.lrec-conf.org/proceedings/lrec2008/.

4096

http://archlinux.org

	Introduction
	Toolchain
	High-Performance System
	Hansard Corpus
	Method
	Performance
	Commodity Hardware

	Discussion and conclusion
	References

