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Abstract 

The proliferation of different metadata schemas and models pose serious problems of interoperability. Maintaining isolated 
repositories with overlapping data is costly in terms of time and effort. In this paper, we describe how we have achieved a Linked Open 
Data version of metadata descriptions coming from heterogeneous sources, originally encoded in XML. The resulting model is much 
simpler than the original XSD schema and avoids problems typical of XML syntax, such as semantic ambiguity and order constraint. 
Moreover, the open world assumption of RDF/OWL allows to naturally integrate objects from different schemas and to add further 
extensions, facilitating merging of different models as well as linking to external data. Apart from the advantages in terms of 
interoperability and maintainability, the merged repository enables end-users to query multiple sources using a unified schema and is 
able to present them with implicit knowledge derived from the linked data. The approach we present here is easily scalable to any 
number of sources and schemas. 
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1. Motivation 

Because of our participation in different projects 
(CLARIN, Panacea, Metanet4U) we have different 
registers and catalogues. They all resemble in that they 
provide curated metadata descriptions for a variety of 
NLP resources (including lexica, corpora and NLP 
services & workflows) and give access to them. They 
essentially differ in the metadata model used. This results 
in a frustrating lack of interoperability among them. 
Broadly speaking, the whole picture goes as follows: 

 

 Web Services (WS) are described and registered in 
the IULA WS registry

1
 which is an instance of the 

BioCatalogue application
2
. The BioCatalogue is a 

registry that allows to: register, discover, annotate, 
monitor and execute WS. It is integrated with 
Taverna which facilitates integration into NLP 
pipelines. Records are encoded following the 
BioCatalogue schema. 

 Workflows (that is, pipelines of NLP WS) are 
registered and described in myExperiment catalogue

3
. 

MyExperiment makes it easy to find, use and share 
scientific workflows and to build communities. It is 
also integrated with Taverna

4
 and linked to 

BioCatalogue. Records in the catalogue are encoded 
following the MyExperiment model. 

 As META-SHARE (MS) members, we set up and 
maintain our own Language Resource Repository 
Node

5
 which is synchronized with the MS network. 

All metadata records in the repository are described 
following the MS schema. Our MS node contains 
lexica and corpora. 

 Finally, we have an OAI-PMH server
6 
that includes 

all records from the catalogues above (that is: service, 
                                                           
1
 http://services.iula.upf.edu/ 

2 https://www.biocatalogue.org/ 
3 http://myexperiment.elda.org/ 
4 http://www.taverna.org.uk/   
5 http://metashare.upf.edu/ 
6 http://ws02.iula.upf.edu/corpus_data/oai-iula/?verb=Identify 

workflow and resource descriptions). The goal of the 
OAI-PMH server is to collect and expose all 
metadata from our specialised catalogues following 
the standard harvesting protocol. Our server is 
harvested by the Virtual Language Laboratory

7
, by 

the UPF Digital Repository
8
 and by OLAC

9
 (Open 

Language Archives Community) among others. 
 The institutional repository of the UPF

10
 collects, 

disseminates and preserves in digital form the 
intellectual output that results from the academic and 
research activity of the University. This includes not 
only traditional publications but also primary data. 
Thus, most of the primary data described in our MS 
records are stored in this repository and many 
publications (articles, documentation, manuals, etc) 
are also there. The e-Repository builds on DSpace 
and uses Dublin Core (DC) metadata. The 
e-Repository offers us long term preservation 
facilities and persistent identifiers (handlers). 

 
The scenario described above illustrates well the diversity 
of formats that metadata for language resources may take. 
The proliferation of different metadata schemas and 
models pose serious problems of interoperability 
(Haslhofer and Klas, 2010). In addition, there is no 
connection between entities in the different catalogues, 
although in many cases they may just be one and the same. 
Maintaining isolated repositories with overlapping data is 
a waste of time and effort, as we need to curate the same 
data in different places and in different formats. 

2. Objectives 

In this paper we will describe how we have achieved a 
Linked Open Data (LOD) version of metadata 

                                                           
7
 

http://catalog.clarin.eu/vlo/?fq=collection:IULA-UPF+Centre+

de+Compet%C3%A8ncia+CLARIN 
8 http://repositori.upf.edu/ 
9 http://www.language-archives.org/archive/iula.upf.edu 
10 http://repositori.upf.edu/ 
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descriptions coming from heterogeneous sources. We will 
see that the LOD approach not only proves essential for 
linking data but also improves modeling and promotes 
interoperability between the different models (Lam et al., 
2006). Thus, we were able to match, merge and link three 
different metadata schemas, providing a unique repository 
which allows users querying multiple sources using a 
unified schema rather than querying each source 
separately.  The ultimate goal of this task was to produce a 
registry of NLP assets that helps researchers in 
Humanities and Social Sciences to find relevant resources 
and services for their research. Since our users are 
unaware of the possibilities that NLP can offer them, we 
could not expect them to use the catalogue as a way to 
find what they already knew there existed, but rather as a 
place to discover things they did not know beforehand. 
The approach presented here is easily scalable to any 
number of sources and schemas. 
The reminder of this paper is organized as follows: In 
section 3 we describe the problems faced and decisions 
taken when RDFying XML data. We take the MetaShare 
(MS) schema as a convenient example of an XML based 
model. We choose the MS model because it is a large and 
exhaustive schema to be used eventually by a wide 
community. In section 4 we describe the process of 
linking the database to existing vocabularies and to 
external resources. In section 5 we address merging of the 
catalogues, and in section 6 the exploitation benefits that 
we have obtained. 

3. RDFying MS data 

XML is only self-descriptive about a few structural 

relationships: containment, adjacency, co-occurrence, 

attribute and opaque reference. Commonly, this set of 

relationships is not sufficient for modeling purposes. For 

example, the structural containment relation between two 

elements may be used to express things that are quite 

different semantically. Thus, often containment expresses 

constituency or part-of relation (as in book/chapter), but it 

may also express other relations, such as the ones found in 

book/title or book/creator. In what follows we will see the 

sort of problems encountered when mapping ambiguous 

XML elements into OWL classes and properties (Hunter 

and Lagoze, 2001; Tsinaraki and Christodoulakis, 2007; 

Xiaoshu et al., 2005).  

3.1 MS:  a component-based model 

According to the User Manual of the META-SHARE 
Metadata Model

11
, this model (i) is an ontology, (ii) 

follows the component-based mechanism as suggested by 
CLARIN (Broeder et al., 2008)  and (iii) is formalized in a 
XSD, which means that all metadata instance records 
need to be validated against the schema.  
The MS ontology includes five distinct entities: resource, 
actor, project, document and license. They are defined as 
sub-classes of the top entity class. Though MS is defined 
as ontology, the documentation does not use common 
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http://www.meta-net.eu/meta-share/META-SHARE%20%20do

cumentationUserManual.pdf  

ontology concepts, such as classes, instances and/or 
properties, but rather uses component-based terminology 
and talks in terms of components and elements. In the 
component-based approach, elements are used to encode 
specific descriptive features of the resources and are 
linked to conceptually similar existing elements in the 
Dublin Core and/or ISOcat registry. Components are 
complex elements and can be seen as bundle of 
semantically coherent elements. 
Whereas the MS elements can be easily understood as 
properties (e.g. name, gender, version, etc.) and are 
formalized as simple-type elements in the XSD schema, 
components are more complex. MS distinguishes between 
„special status components‟, „linked components‟ and 
„bare components‟. The former include person, 
organization, communication, project, size and document 
and their „special status‟ is meant to reflect the fact that 
they can be attached to various components performing 
different roles (i.e. creator, validator, annotator, etc.). 
„Linked components‟ can be understood as relations 
between components and include concepts such as 
validationTool, validationReport or validator, among 
many others. Finally, „bare components‟ are used to group 
together semantically coherent information (i.e. 
metadataInfo, validationInfo etc.). Formally, all 
components are defined as complex-type elements in the 
XSD schema. Semantically, „special status components‟ 
correspond to classes whereas „linked components‟ 
correspond to properties. As we will see in the next 
section, „bare components‟ are harder to map.  
To sum up, although the MS model is defined as being an 
ontology, there is no detailed (or formal) description of 
such an ontology that we could use. In its place, MS 
provides an XSD schema that „transcodes‟ a component 
based model that implicitly formalizes an ontology.  
The first thing we have to address when mapping the MS 
schema is the notion of resource. In MS, resources include 
corpus, lexica and tools. The schema has a root element 
resource which includes different components used to 
collect „semantically related information‟. Distinction 
between resource types is established at the level of a 
special component named resourceComponentType. This 
component is defined as a xs:choice between the different 
types of resources considered in MS. We can see the 
simplified tree structure in Figure 1. 
 

 
Figure 1: MS Resource 

 
Resource typing can be naturally expressed in OWL. Thus, 
Resource is a class with three subclasses: Corpus, 
lexicalConceptualResource and ToolService, which in 
turn have subclasses.  We can see the graph version in 
Figure 2, where continuous lines stand for subclass 

394

http://www.meta-net.eu/meta-share/META-SHARE%20%20documentationUserManual.pdf
http://www.meta-net.eu/meta-share/META-SHARE%20%20documentationUserManual.pdf


relations and dotted lines are properties that link 
Resources with other relevant classes. Thus, for example 
Resources and Documents may be linked by means of 
ms:documentation or ms:userManual properties. 
Similarly, Resources and Agents may be linked by means 
of properties such as ms:creator, ms:licensor, 
ms:iprRightsHolder, etc. 
 

 

 
Figure 2: Resource graph 

3.2 XML TO OWL 

RDFying MS data implied two steps: (i) generate the 

ontology from the XSD schema and (ii) generate the XML 

instances based on decisions taken in the previous step. 

Table 1 shows a straightforward mapping from XSD to 

RDF-OWL. 

 

XSD OWL 

xs:simpleType rdfs:Datatype 

xs:simpleType with 

xs:enumeration 

rdfs:Datatype., plus an 

instance for every 

enumerated value. 

xs:complexType  owl:Class 

global element with simple type rdfs:Datatype 

local element with complex type owl:ObjectProperty 

local element with simple type owl:DatatypeProperty  

 
Table 1: General mapping rules from XML to RDF 

 
However, a careful analysis of the MS schema showed 
that in some cases this schema was unnecessarily complex. 
This is partially due to the „document-centric‟ approach 
generally followed in the MS model. Applying the rules in 
Table 1 to the original XSD schema would derive into a 
graph filled with „superfluous‟ nodes. Thus, we decided to 
identify these nodes before the actual RDFication process, 
obtaining flatter and shallower representations. Simpler 
conversions derive in simpler graphs which will in turn 
facilitate merging and ulterior exploitation of the data. 
When addressing schema simplification we avoided 
entering into conceptual considerations and rather based 
our decisions only on formal aspects. As we describe in 
the next sections, the criteria applied take into account the 
tree structure of the nodes, their cardinality and the XPath 
axes

12
. 
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 An XPath axis defines a node-set relative to the current node. 

3.2.1 ‘Wrapping elements’ 

As may be derived from the rules in Table 1, any 
parent/child XML structure translates into a Parent class, 
a property such as has_Child and (possibly) a Child class. 
When the Child element is a simple element (i.e. an 
element that contains only text) the eventual Child class is 
omitted. When the Child element is a complex element, 
the corresponding class is created. 
As we saw in Section 3.1, in some cases elements merely 
act as a way to organize information for human 
consumption. We call them „wrapping elements‟. This is 
the case of „bare components‟ used to gather sets of 
relevant features. For example: in the MS schema, the 
root node resourceInfo contains a number of elements 
used to organize information: identificationInfo, 
distributionInfo, metadataInfo… as illustrated in Table 2.  
 

 

resourceInfo/identificationInfo(1)/... 

resourceInfo/distributionInfo(1)/...  

resourceInfo/contactPerson(n)/... 

resourceInfo/metadataInfo(1)/...  

resourceInfo/versionInfo(1)/...  

resourceInfo/validationInfo(n)/... 

resourceInfo/usageInfo(1)/... 

resourceInfo/resourceDocumentationInfo(1)/... 

resourceInfo/resourceCreationInfo(1)/... 

resourceInfo/relationInfo(1)/... 

resourceInfo/resourceComponentType(1)/... 

 
Table 2:  resurceInfo element

13
 

 
Assuming that (i) a class in OWL is a classification of 
individuals into groups which share common 
characteristics, and that (ii) individuals belong to some 
Class, we infer that for an XML element to become an 
OWL Class it is expected that there exist individuals 
belonging to this Class. In the example above, we can 
hardly expect individuals of identificationInfo type to 
exist. Embedded complex elements with 
cardinalityMax=1 can then safely be removed, provided 
they do not contain text nor attributes. This allows for a 
simplification of the model, as exemplified in Table 3.  
 

resource/identificationInfo/resourceName 

resource/identificationInfo /description 

resource/identificationInfo /resourceShortName 

resource/identificationInfo /url 

… 

becomes 

 

resource/ resourceName 

resource/ description 

resource/ resourceShortName 

resource/url 

… 

 
Table 3: Removing nodes. 

 
Note that such a rule can be applied provided this does not 
derive in „sibling conflicts‟. Nodes define the scope in 

                                                           
13 We use XPath expressions. Number in brackets shows node‟s 

cardinality. 
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which embedded elements occur and this needs to be 
taken into account. If we remove the identificationInfo 
element, its children nodes become children of the 
resourceInfo node. This means that resurceName, 
description, resurceShortName, etc. become sibling 
nodes of contactPerson, validationInfo, etc. Promoted 
nodes need to be unique in their new axe. 
In Table 2 above, metadataInfo and versionInfo seem to 
be candidates for removal (they have cardinalityMax=1). 
In this case, however, such a removal will cause a  „sibling 
conflict‟: both metadataInfo and versionInfo include a 
revision element. Removing these elements would result 
in two sibling revision elements (see Table 4).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: 'Sibling conflict' 
 
Naming conventions in XML design are crucial. It is 
recommended, as a best practice, not to name embedded 
elements with prefixes coming from higher nodes.  
Anyhow, in the MS schema, element names tend to reflect 
their scope. Accordingly, names of children nodes in the 
metadataInfo  element follow the pattern “*metadata*”. 
However, in the case of  revision, such a pattern does not 
occur.  
The MS schema alternates different styles: in certain 
cases element and type declarations are global, whereas in 
other cases elements and types are declared locally. 
Revision is locally declared, and this may explain why the 
name used is so „general‟. It seems that elements with 
global types tend to generate local (i.e. context sensitive) 
names: i.e. the referenced type is global whereas the 
element‟s name is local. Thus, for example, we find 11 
elements with type xs:date and they are all „context 
sensitive‟. Similarly, there are 19 elements with type 
sizeInfoType and, again, they are all „context sensitive‟.  
These naming inconsistencies prevented us from applying 
more general rules and required a manual revision. Note 
that if naming was consistently „context sensitive‟, 
„wrapping nodes‟ could be removed without problem. On 
the contrary, if naming was never „context sensitive‟, 
some prefixing rule could be applied. This illustrates how 
modeling with XML may make things unnecessarily 
complex and may derive into inconsistencies.  
All in all, we identified 11 wrapping elements in the MS 
schema.  

3.2.2 ‘Superfluous elements’ 

Besides the „wrapping elements‟ described above, we 
identified a number of „superfluous nodes‟: namely 
complex elements with one and only one simple element. 

This is, for example, what happens with the element 
validationInfo/validationTool/targetResourceNameURI.   
According to the general mapping rule in Table 1, such a 
structure would generate two classes and three properties, 
as shown in Table 5. In Figure 3, we show the resulting 
simplified graph. 
 

Class Property 

validationInfoType validationInfo  

validationTool validationTool 

 targetResourceNameUri 

 
Table 5: Mapping of validationInfo 

 
 

 

 
Figure 3: Removing superfluous nodes 

 
We identified a total of 9 „superfluous nodes‟ in the MS 
schema occuring in the following contexts: accessTool, 
annotationTool, creationTool, derivedResource, 
originalSource, relatedResource, resourceAssociatedWith, 
textNumericalContentInfo and validationTool. 

3.3  Enumerations 

Enumerations are an illustrative example of the advantage 
of using RDF/OWL over XML for encoding metadata.  
In XML xs:enumeration is not typed. Hence, we may end 
up having data categories spread along our XSD schemas 
with no explicit relation among them, or between them 
and external data.   
In OWL, these data categories are actually ordinary 
resources and therefore they can be reused and linked to 
external vocabularies in a straightforward manner. 
Simple types with xs:enumerations translate into an 
object property, a class and a corresponding instance for 
each enumerated value.  
Thus, for example, the lingualityType element in Figure 4 
results in the triples listed in Figure 5. 
 

<xs:element name="lingualityType"> 

 <xs:simpleType> 

  <xs:restriction base="xs:string"> 

     <xs:enumeration value="monolingual"/> 

     <xs:enumeration value="bilingual"/> 

     <xs:enumeration value="multilingual"/> 

  </xs:restriction> 

 </xs:simpleType> 

</xs:element> 

 
Figure 4: Linguality in the MS schema 

 

resource/metadataInfo/source 

resource/metadataInfo/originalMetadataSchema 

resource/metadataInfo/originalMetadataLink 

resource/metadataInfo/metadataLanguageName 

resource/metadataInfo/metadataLanguageId 

resource/metadataInfo/metadataLastDateUpdated 

resource/metadataInfo/revision**** 

resource/metadataInfo/metadataCreator 

resource/versionInfo/version 

resource/versionInfo/revision**** 

resource/versionInfo/lastDateUpdated 

resource/versionInfo/updateFrequency 
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### Class 

ms:linguality 

      rdf:type owl:ObjectProperty ; 

      rdfs:domain ms:Resource ; 

      rdfs:range ms:Linguality . 

### Property 

ms:Linguality   rdf:type owl:Class . 

#### Instances 

ms:monolingual a ms:Linguality . 

ms:bilingual a ms:Linguality . 

ms:multilingual a ms:Linguality . 

 

 
Figure 5: Linguality in OWL 

 
We found the MS schema to contain 962 xs:enumeration 
elements, of which 807 distinct ones. 
As an example, the enumeration value wordnet occurs 
twice in the MS schema: one as value of the 
lexicalConceptualResourceType element and the other as 
value of the compatibleLexiconType element. In addition 
a wordNet enumeration also exists as value of the 
conformanceToStandardsBestPractices element.  
In XML it is hard to organize enumerations while 
avoiding inconsistencies. The enumeration values from 
the elements lexicalConceptualResourceType and 
compatibleLexiconType, shown in Table 6, illustrate one 
of these inconsistencies. Notice that 
mophologicalLexicon, in the first column, is a type of 
lexicon. However this value is not included among the 
types of “lexical conceptual resources”, in the second 
column.  
 

compatibleLexiconType 
lexicalConceptual 

ResourceType 

wordnet,  

wordlist,    

morphologicalLexicon 

wordlist,  

computationalLexicon, 

ontology 

wordnet, 

thesaurus 

framenet, 

terminologicalResource 

machineReadableDicti. 

lexicon 

 
Table 6: Enumerated values for compatibleLexiconType 

and lexicalConceptualResourceType elements. 
 
Sharing common vocabularies is crucial for the 
interoperability between data sets. Enumerations are not 
adequate for describing vocabularies and XML designers 
suggest using simple embedded elements instead of 
enumerations. In LMF, for example, feature/value 
assignations   are performed by means of a feat element 
with two attributes (feat and val) that can be attached to 
almost any element. In order to be able to link „features‟ 
and „values‟ to some external vocabulary, two extra 
attributes are suggested:   dcr:datcat and dcr:valueDatcat  
(Windhouwer & Wright 2012). In any case, XML is not 
well suited for doing this: note that feat declarations are 
local and may lead to inconsistencies and errors, not 
allowing for further linking, either to new ISOcat 
declarations or additional vocabularies. 

Finally, let‟s mention that, in some cases, enumerations 
imply some sort of hierarchic organization. Since the 
XML machinery does not allow for „hierarchic‟ 
enumerations, designers tend to use naming conventions. 
For example, the MS schema includes the annotationType 
element that encodes “the annotation level of the resource 
or the annotation types a tool / service requires or 
produces as an output”. This element has 47 
enumerations and uses prefixing to somehow „organize‟ 
them.  
Table 7 shows part of its definition, with the prefix part in 
bold. Table 8 shows the same example in RDF/OWL 
version, which allows for a better formalization.  
 

 

... value="alignment"/> 

... value="discourseAnnotation"/> 

... value="discourseAnnotation-audienceReactions"/> 

... value="discourseAnnotation-coreference"/> 

... value="discourseAnnotation-dialogueActs"/> 

... value="discourseAnnotation-discourseRelations"/> 

... value="lemmatization"/> 

... value="morphosyntacticAnnotation-posTagging"/> 

... value="segmentation"/> 

... value="semanticAnnotation"/> 

... value="semanticAnnotation-certaintyLevel"/> 

... value="semanticAnnotation-emotions"/> 

... value="semanticAnnotation-entityMentions"/> 

... value="semanticAnnotation-events"/> 

 

 
Table 7: Enumerations of annotationType in XML 

 

 

 
Table 8: Enumerations of annotationType in OWL 

 
To sum up, although the general mapping rules in Table 1 
can be used to generate enumerations as instances of 
relevant classes, this, as we have seen, requires a careful 
analysis of the results in order to avoid possible 
inconsistencies and improve on the results. 

3.4 Cross references in XML 

XSD allows for different design styles, going from a style 
where elements and types are locally declared (Russian 
Doll style) to a style where all declarations are global 
(Salami Slice style). In general, the MS schema uses 
global declarations, allowing for component reusability 
throughout the schema.  
However, one of the biggest problems with the MS data is 
the lack of cross references among instances.Though the 
MS schema is full of global declarations that theoretically 
would facilitate component reusability, the schema does 
not include any ID/IDref mechanism allowing for cross 
reference of XML instances. All component instances are 
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local and cannot be referenced
14

. This poses a serious 
problem for the reusability (and even the usability) of the 
data. Consequently, searching across the resources in the 
MS database having the same creator, for example, 
implies using a complex element pattern matching. 
Similarly, uploading data into a database requires specific 
pattern matching validations. In contrast, in RDF/OWL, 
every resource is identified by an URI. Instances of 
person, project, document, etc. can be referenced 
everywhere, both inside the dataset as well as from 
external datasets. 

4. Linking data 

The most interesting aspect of LOD is the ability to link 

pieces of data, not only with data inside the same database, 

but also –crucially- with potentially any pieces of data out 

there.  

4.1 Using existing vocabularies 

The most basic approach to linking data (and 
interoperability) is to use existing vocabularies rather that 
creating new ones. So our first task was to identify which 
elements could be mapped to existing resources 
(properties, data categories and classes) in other well 
know vocabularies. We used FOAF

15
, DBLP

16
, 

DCTERMS
17,

 BIBO
18

 and SWRC
19

. Sharing vocabularies 
allowed us to harmonize entities such as Person, 
Document and Project among the different catalogues we 
integrated. In Table 9 we list the correspondences between 
the original MS elements and the classes used in the 
ensuing ontology: 
 

Document  

 

 

Agent 

  

Organization

  

Person 

  

Project  

bibo:Document , foaf:Document 

swrc:Document 

 

foaf:Agent , swrc:Agent 

         

foaf:Organizatio , swrc:Organization 

 

foaf:Person , swrc:Person 

 

foaf:Project , swrc:ResearchProject 

 

 
Table 9:  External vocabularies (Classes) 

 
Similarly, some properties in the original the MS data 
were replaced by properties from external vocabularies. 
These include properties from DCTERMS, DC and 
FOAF vocabularies. Additionally, we used specific 
properties from the BioCatalogue model not included in 
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 Note, in addition, that ID/IDref mechanism only guarantees 

cross reference inside a document, and not to external 

references.  
15 http://www.foaf-project.org/  
16 

http://dblp.uni-trier.de/ which indexes more than 2.3 million 

articles and contains many links to home pages of computer 

scientists 
17

 http://dublincore.org/documents/dcmi-terms/ 
18

 http://bibliontology.com/ a Bibliographic Ontology 
19

Semantic Web for Research Communities at 

http://ontoware.org/swrc/ 

MS. In Table 10 we list the external properties used, 
together with the number of triples involved in each case. 
 

bio:demoInvocation 74 

bio:endpoint 74 

bio:input 51 

bio:output 71 

bio:serviceProvider 74 

bio:serviceTechnology 146 

bio:task 106 

bio:wsdl 74 

dc:contributor 25 

dc:creator 248 

dc:description 850 

dc:license 1 

dc:subject 16 

dc:title 76 

dcterms:bibliographicCitation 76 

dcterms:description 5 

dcterms:hasVersion 8 

dcterms:isReferencedBy 35 

dcterms:issued 8 

dcterms:modified 8 

dcterms:references 35 

foaf:familyName 68 

foaf:givenName 68 

foaf:homepage 96 

foaf:mbox 142 

foaf:name 165 

foaf:workplaceHomepage 66 

  
 

 
Table 10: External properties 

 
Finally, although the MS schema defines „language‟ 
information (both names and codes) as simple xs:string 
type elements, we used the FAO

20
 ontology for language 

codes (ISO638-3). Currently, our dataset includes 298 
triples with language code information, using 19 different 
codes. 

4.2 Linking to external data 

Besides using existing vocabularies, we defined links 
between our instances and external instances whenever 
possible. We used the sameAs and seeAlso properties to 
point to the relevant records in the DBLP, the Virtual 
International Authority File (VIAF) and the LOC 
Authorities Names

21
. Table 11 lists the correspondences 

between agents and documents with external data.   
 

Class Instances sameAs 

bibo:Article 38 24 

bibo:AudioVisualDocument 12 0 

bibo:Book 2 0 

bibo:Chapter 4 0 

bibo:Report 10 1 

foaf:Organization 71 63 

foaf:Person 68 45 

foaf:Project 26 1 

 
Table 11: Linking agents and documents 
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 Food and Agriculture Organization of the United Nations 

(FAO)  http://www.fao.org/aims/aos/languagecode.owl 
21

 http://id.loc.gov/authorities/names.html  
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Data categories are, by large, the most prolific elements in 
the MS schema. As we have already mentioned, the 
schema includes up to 807 different enumerations that 
were translated into instances of relevant classes in the 
final model (see the example in Figure 5 above).  We 
undertook the task of linking these instances to relevant 
ISOcat data categories and to DBpedia whenever possible. 
In Table 12 we list the data categories used: the first 
column indicates the class; the second column shows the 
number of instances for each class; and the third and 
fourth columns show the number of linked instances to 
ISOcat and DBpedia respectively (we defined a ms:dcr 
property to link to ISOcat and used sameAs property with 
DBpedia). 
 

MS enumeration Num. ISOcat DBpedia 

AnnotationType 47 2 2 

Availability 4 0 0 

CharacterEncoding 140 0 4 

EncodingLevel 5 5 5 

LcrType 9 0 3 

License 38 0 2 

Linguality 3 0 0 

LinguisticInformation 47 13 32 

MediaType 5 4 0 

ModalityType 7 0 4 

MultlingualityType 3 0 0 

RestrictionsOfUse 10 0 1 

SegmentationLevel 16 6 8 

StandardsBestPractices 44 0 18 

Use 2 0 0 

UseNLPSpecific 99 2 46 

TOTAL 479 32 125 

 
Table 12: Linking to ISOcat and DBpedia 

5. Merging catalogues 

As explained in the first section of this paper, we come 
from a scenario where corpus and lexicons are described 
in the META-SHARE node and stored in our institutional 
e-Repository, whereas services are registered in the 
BioCatalogue. In BioCatalogue, a service is defined as “a 
container for ServiceDeployments and variants”, where a 
variant is either a SoapService or RestService, and a 
ServiceDeployment is a particular running instance of the 
service. Services also include information about testing. 
On the other hand, in the MS model, a service is defined 
as a “form in which NLP tasks are realized and delivered 
to a user, without the need of acquiring and installing the 
corresponding tools”. Services (and tools) are resources 
which are distinguished from other resources in their 
resourceComponentType.  
Due to these disparate descriptions it is not possible to 
directly map the information in the input SoapServices 
descriptions into the target MS toolService component. 
This implies that we need to merge the MS and 
BioCatalogue ontologies. The solution is to map the 
variants of a given BioCatalogue service as different MS 
resources, i.e. as subtypes of the MS Service. Table 13 
shows the resulting merged model. 
 
 

 
Table 13: MS & BioCatalogue merging 

 
LOD is the perfect place to merge and combine data. As 
explained in the preceding section, by reusing data from 
external vocabularies we were able to re-define some MS 
components such as Person and Organization in a much 
more standard way (via FOAF). Similarly, for Documents, 
the BIBO ontology allowed us to merge our 
bibliographical database into the dataset. In the original 
MS schema, documents could only be attached to 
resources, either as the „documentation‟ of the whole 
resource or as „reports‟ relevant for its validation, usage, 
annotation and evaluation aspects.  In the converted 
model, documents include articles, manuals, reports, 
videos, etc. and constitute an important element of the 
dataset. We assume that everything can be documented 
either directly (by means of the ms:documentation or 
ms:validationReport properties among others) or 
indirectly (by means of dc:subject or dcterms:references 
properties). Thus, any class and instance in the dataset 
may be linked to some relevant document. For example, 
the class SOAPservice may be referenced by some video 
or article. Similarly, a Task instance such as 
namedEntityRecognition or a Standard instance such as 
LMF may be also documented.  We use the dc:subject and 
dcterms:references properties to link documents to 
relevant parts of the data set. 

6. Exploitation benefits 

Integrating disparate, yet related, datasets into a single 
repository has obvious benefits, especially, to the 
maintainability, interoperability and integrity of the data. 
All of this has positive consequences both on cost and 
functionality.  
We also get an additional advantage from the properties of 
the RDF/OWL/SPARQL framework, which makes data 
exploitation simple and efficient. For example, if our user 
wants to know about Named Entity Recognition (NER), 
we can get all relevant data with a very simple query 
(Figure 6). 
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Figure 6: SPARQL query example 

 
With this simple query we easily retrieve „everything that 
has to do with NER‟. In this case we get Articles, Reports 
and Projects dealing with NER as well as Services 
performing such a task. In addition, the seeAlso property 
suggests us to check namedEntity. 

7. Data sources 

All data is stored at the SPARQL endpoint:  
http://iula02v.upf.edu/sparql. We run a data browser 
located at http://lod.iula.upf.edu/types/service. 
 

8. Conclusions 

The benefits of our exercise can be summarized as 
follows.  
On the one hand, the final RDF/OWL model is much 
simpler than the original XSD schema: it clearly 
differentiates between Classes and Properties and avoids 
problems typical of XML syntax, such as semantic 
ambiguity and order constraint. This is essential for 
mapping purposes. On the other hand, the open world 
assumption of RDF/OWL allows to naturally integrate 
objects from different schemas and to add further 
extensions, making merging of different models 
straightforward. We were effectively able to merge 
Service and Document ontologies into the MS model in a 
natural way.  
Moreover, linking data has an additional benefit: The 
resulting model not only includes linking between merged 
catalogues but also linking to external data.  
Last but not least, the RDF/OWL version of the registry 
(loaded in a SPARQL end point) not only provides a 
single unified repository but also facilitates the 
exploitation of the metadata records by the end-user. 

The success of our experiment encourages us to apply it 

on a larger scenario, such as the CLARIN Component 

Registry. The idea behind the CMDI approach was that 

identifying components blocks in the original schemas 

would improve interoperability among models. However, 

the proliferation of components in the Component 

Registry eventually becomes a critical problem.  

Conversion to RDF/OWL paves the way for more 

ambitious goals such as being able to derive a general 

ontology accounting for the different underlying schemas.  
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