
Metadata as Linked Open Data: mapping disparate XML metadata registries
into one RDF/OWL registry

Marta Villegas, Maite Melero, Núria Bel
Universitat Pompeu Fabra

Roc Boronat, 138 - 08018 Barcelona

E-mail: {marta.villegas, maite.melero, nuria.bel}@upf.edu

Abstract

The proliferation of different metadata schemas and models pose serious problems of interoperability. Maintaining isolated
repositories with overlapping data is costly in terms of time and effort. In this paper, we describe how we have achieved a Linked Open
Data version of metadata descriptions coming from heterogeneous sources, originally encoded in XML. The resulting model is much
simpler than the original XSD schema and avoids problems typical of XML syntax, such as semantic ambiguity and order constraint.
Moreover, the open world assumption of RDF/OWL allows to naturally integrate objects from different schemas and to add further
extensions, facilitating merging of different models as well as linking to external data. Apart from the advantages in terms of
interoperability and maintainability, the merged repository enables end-users to query multiple sources using a unified schema and is
able to present them with implicit knowledge derived from the linked data. The approach we present here is easily scalable to any
number of sources and schemas.

Keywords: LOD, RDF/OWL, metadata, META-SHARE

1. Motivation

Because of our participation in different projects
(CLARIN, Panacea, Metanet4U) we have different
registers and catalogues. They all resemble in that they
provide curated metadata descriptions for a variety of
NLP resources (including lexica, corpora and NLP
services & workflows) and give access to them. They
essentially differ in the metadata model used. This results
in a frustrating lack of interoperability among them.
Broadly speaking, the whole picture goes as follows:

 Web Services (WS) are described and registered in
the IULA WS registry

1
 which is an instance of the

BioCatalogue application
2
. The BioCatalogue is a

registry that allows to: register, discover, annotate,
monitor and execute WS. It is integrated with
Taverna which facilitates integration into NLP
pipelines. Records are encoded following the
BioCatalogue schema.

 Workflows (that is, pipelines of NLP WS) are
registered and described in myExperiment catalogue

3
.

MyExperiment makes it easy to find, use and share
scientific workflows and to build communities. It is
also integrated with Taverna

4
 and linked to

BioCatalogue. Records in the catalogue are encoded
following the MyExperiment model.

 As META-SHARE (MS) members, we set up and
maintain our own Language Resource Repository
Node

5
 which is synchronized with the MS network.

All metadata records in the repository are described
following the MS schema. Our MS node contains
lexica and corpora.

 Finally, we have an OAI-PMH server
6
that includes

all records from the catalogues above (that is: service,

1
 http://services.iula.upf.edu/

2 https://www.biocatalogue.org/
3 http://myexperiment.elda.org/
4 http://www.taverna.org.uk/
5 http://metashare.upf.edu/
6 http://ws02.iula.upf.edu/corpus_data/oai-iula/?verb=Identify

workflow and resource descriptions). The goal of the
OAI-PMH server is to collect and expose all
metadata from our specialised catalogues following
the standard harvesting protocol. Our server is
harvested by the Virtual Language Laboratory

7
, by

the UPF Digital Repository
8
 and by OLAC

9
 (Open

Language Archives Community) among others.
 The institutional repository of the UPF

10
 collects,

disseminates and preserves in digital form the
intellectual output that results from the academic and
research activity of the University. This includes not
only traditional publications but also primary data.
Thus, most of the primary data described in our MS
records are stored in this repository and many
publications (articles, documentation, manuals, etc)
are also there. The e-Repository builds on DSpace
and uses Dublin Core (DC) metadata. The
e-Repository offers us long term preservation
facilities and persistent identifiers (handlers).

The scenario described above illustrates well the diversity
of formats that metadata for language resources may take.
The proliferation of different metadata schemas and
models pose serious problems of interoperability
(Haslhofer and Klas, 2010). In addition, there is no
connection between entities in the different catalogues,
although in many cases they may just be one and the same.
Maintaining isolated repositories with overlapping data is
a waste of time and effort, as we need to curate the same
data in different places and in different formats.

2. Objectives

In this paper we will describe how we have achieved a
Linked Open Data (LOD) version of metadata

7

http://catalog.clarin.eu/vlo/?fq=collection:IULA-UPF+Centre+

de+Compet%C3%A8ncia+CLARIN
8 http://repositori.upf.edu/
9 http://www.language-archives.org/archive/iula.upf.edu
10 http://repositori.upf.edu/

393

http://services.iula.upf.edu/
https://www.biocatalogue.org/
http://myexperiment.elda.org/
http://www.taverna.org.uk/
http://metashare.upf.edu/
http://ws02.iula.upf.edu/corpus_data/oai-iula/?verb=Identify
http://catalog.clarin.eu/vlo/?fq=collection:IULA-UPF+Centre+de+Compet%C3%A8ncia+CLARIN
http://catalog.clarin.eu/vlo/?fq=collection:IULA-UPF+Centre+de+Compet%C3%A8ncia+CLARIN
http://www.language-archives.org/archive/iula.upf.edu
http://repositori.upf.edu/

descriptions coming from heterogeneous sources. We will
see that the LOD approach not only proves essential for
linking data but also improves modeling and promotes
interoperability between the different models (Lam et al.,
2006). Thus, we were able to match, merge and link three
different metadata schemas, providing a unique repository
which allows users querying multiple sources using a
unified schema rather than querying each source
separately. The ultimate goal of this task was to produce a
registry of NLP assets that helps researchers in
Humanities and Social Sciences to find relevant resources
and services for their research. Since our users are
unaware of the possibilities that NLP can offer them, we
could not expect them to use the catalogue as a way to
find what they already knew there existed, but rather as a
place to discover things they did not know beforehand.
The approach presented here is easily scalable to any
number of sources and schemas.
The reminder of this paper is organized as follows: In
section 3 we describe the problems faced and decisions
taken when RDFying XML data. We take the MetaShare
(MS) schema as a convenient example of an XML based
model. We choose the MS model because it is a large and
exhaustive schema to be used eventually by a wide
community. In section 4 we describe the process of
linking the database to existing vocabularies and to
external resources. In section 5 we address merging of the
catalogues, and in section 6 the exploitation benefits that
we have obtained.

3. RDFying MS data

XML is only self-descriptive about a few structural

relationships: containment, adjacency, co-occurrence,

attribute and opaque reference. Commonly, this set of

relationships is not sufficient for modeling purposes. For

example, the structural containment relation between two

elements may be used to express things that are quite

different semantically. Thus, often containment expresses

constituency or part-of relation (as in book/chapter), but it

may also express other relations, such as the ones found in

book/title or book/creator. In what follows we will see the

sort of problems encountered when mapping ambiguous

XML elements into OWL classes and properties (Hunter

and Lagoze, 2001; Tsinaraki and Christodoulakis, 2007;

Xiaoshu et al., 2005).

3.1 MS: a component-based model

According to the User Manual of the META-SHARE
Metadata Model

11
, this model (i) is an ontology, (ii)

follows the component-based mechanism as suggested by
CLARIN (Broeder et al., 2008) and (iii) is formalized in a
XSD, which means that all metadata instance records
need to be validated against the schema.
The MS ontology includes five distinct entities: resource,
actor, project, document and license. They are defined as
sub-classes of the top entity class. Though MS is defined
as ontology, the documentation does not use common

11

http://www.meta-net.eu/meta-share/META-SHARE%20%20do

cumentationUserManual.pdf

ontology concepts, such as classes, instances and/or
properties, but rather uses component-based terminology
and talks in terms of components and elements. In the
component-based approach, elements are used to encode
specific descriptive features of the resources and are
linked to conceptually similar existing elements in the
Dublin Core and/or ISOcat registry. Components are
complex elements and can be seen as bundle of
semantically coherent elements.
Whereas the MS elements can be easily understood as
properties (e.g. name, gender, version, etc.) and are
formalized as simple-type elements in the XSD schema,
components are more complex. MS distinguishes between
„special status components‟, „linked components‟ and
„bare components‟. The former include person,
organization, communication, project, size and document
and their „special status‟ is meant to reflect the fact that
they can be attached to various components performing
different roles (i.e. creator, validator, annotator, etc.).
„Linked components‟ can be understood as relations
between components and include concepts such as
validationTool, validationReport or validator, among
many others. Finally, „bare components‟ are used to group
together semantically coherent information (i.e.
metadataInfo, validationInfo etc.). Formally, all
components are defined as complex-type elements in the
XSD schema. Semantically, „special status components‟
correspond to classes whereas „linked components‟
correspond to properties. As we will see in the next
section, „bare components‟ are harder to map.
To sum up, although the MS model is defined as being an
ontology, there is no detailed (or formal) description of
such an ontology that we could use. In its place, MS
provides an XSD schema that „transcodes‟ a component
based model that implicitly formalizes an ontology.
The first thing we have to address when mapping the MS
schema is the notion of resource. In MS, resources include
corpus, lexica and tools. The schema has a root element
resource which includes different components used to
collect „semantically related information‟. Distinction
between resource types is established at the level of a
special component named resourceComponentType. This
component is defined as a xs:choice between the different
types of resources considered in MS. We can see the
simplified tree structure in Figure 1.

Figure 1: MS Resource

Resource typing can be naturally expressed in OWL. Thus,
Resource is a class with three subclasses: Corpus,
lexicalConceptualResource and ToolService, which in
turn have subclasses. We can see the graph version in
Figure 2, where continuous lines stand for subclass

394

http://www.meta-net.eu/meta-share/META-SHARE%20%20documentationUserManual.pdf
http://www.meta-net.eu/meta-share/META-SHARE%20%20documentationUserManual.pdf

relations and dotted lines are properties that link
Resources with other relevant classes. Thus, for example
Resources and Documents may be linked by means of
ms:documentation or ms:userManual properties.
Similarly, Resources and Agents may be linked by means
of properties such as ms:creator, ms:licensor,
ms:iprRightsHolder, etc.

Figure 2: Resource graph

3.2 XML TO OWL

RDFying MS data implied two steps: (i) generate the

ontology from the XSD schema and (ii) generate the XML

instances based on decisions taken in the previous step.

Table 1 shows a straightforward mapping from XSD to

RDF-OWL.

XSD OWL

xs:simpleType rdfs:Datatype

xs:simpleType with

xs:enumeration

rdfs:Datatype., plus an

instance for every

enumerated value.

xs:complexType owl:Class

global element with simple type rdfs:Datatype

local element with complex type owl:ObjectProperty

local element with simple type owl:DatatypeProperty

Table 1: General mapping rules from XML to RDF

However, a careful analysis of the MS schema showed
that in some cases this schema was unnecessarily complex.
This is partially due to the „document-centric‟ approach
generally followed in the MS model. Applying the rules in
Table 1 to the original XSD schema would derive into a
graph filled with „superfluous‟ nodes. Thus, we decided to
identify these nodes before the actual RDFication process,
obtaining flatter and shallower representations. Simpler
conversions derive in simpler graphs which will in turn
facilitate merging and ulterior exploitation of the data.
When addressing schema simplification we avoided
entering into conceptual considerations and rather based
our decisions only on formal aspects. As we describe in
the next sections, the criteria applied take into account the
tree structure of the nodes, their cardinality and the XPath
axes

12
.

12

 An XPath axis defines a node-set relative to the current node.

3.2.1 ‘Wrapping elements’

As may be derived from the rules in Table 1, any
parent/child XML structure translates into a Parent class,
a property such as has_Child and (possibly) a Child class.
When the Child element is a simple element (i.e. an
element that contains only text) the eventual Child class is
omitted. When the Child element is a complex element,
the corresponding class is created.
As we saw in Section 3.1, in some cases elements merely
act as a way to organize information for human
consumption. We call them „wrapping elements‟. This is
the case of „bare components‟ used to gather sets of
relevant features. For example: in the MS schema, the
root node resourceInfo contains a number of elements
used to organize information: identificationInfo,
distributionInfo, metadataInfo… as illustrated in Table 2.

resourceInfo/identificationInfo(1)/...

resourceInfo/distributionInfo(1)/...

resourceInfo/contactPerson(n)/...

resourceInfo/metadataInfo(1)/...

resourceInfo/versionInfo(1)/...

resourceInfo/validationInfo(n)/...

resourceInfo/usageInfo(1)/...

resourceInfo/resourceDocumentationInfo(1)/...

resourceInfo/resourceCreationInfo(1)/...

resourceInfo/relationInfo(1)/...

resourceInfo/resourceComponentType(1)/...

Table 2: resurceInfo element

13

Assuming that (i) a class in OWL is a classification of
individuals into groups which share common
characteristics, and that (ii) individuals belong to some
Class, we infer that for an XML element to become an
OWL Class it is expected that there exist individuals
belonging to this Class. In the example above, we can
hardly expect individuals of identificationInfo type to
exist. Embedded complex elements with
cardinalityMax=1 can then safely be removed, provided
they do not contain text nor attributes. This allows for a
simplification of the model, as exemplified in Table 3.

resource/identificationInfo/resourceName

resource/identificationInfo /description

resource/identificationInfo /resourceShortName

resource/identificationInfo /url

…

becomes

resource/ resourceName

resource/ description

resource/ resourceShortName

resource/url

…

Table 3: Removing nodes.

Note that such a rule can be applied provided this does not
derive in „sibling conflicts‟. Nodes define the scope in

13 We use XPath expressions. Number in brackets shows node‟s

cardinality.

395

which embedded elements occur and this needs to be
taken into account. If we remove the identificationInfo
element, its children nodes become children of the
resourceInfo node. This means that resurceName,
description, resurceShortName, etc. become sibling
nodes of contactPerson, validationInfo, etc. Promoted
nodes need to be unique in their new axe.
In Table 2 above, metadataInfo and versionInfo seem to
be candidates for removal (they have cardinalityMax=1).
In this case, however, such a removal will cause a „sibling
conflict‟: both metadataInfo and versionInfo include a
revision element. Removing these elements would result
in two sibling revision elements (see Table 4).

Table 4: 'Sibling conflict'

Naming conventions in XML design are crucial. It is
recommended, as a best practice, not to name embedded
elements with prefixes coming from higher nodes.
Anyhow, in the MS schema, element names tend to reflect
their scope. Accordingly, names of children nodes in the
metadataInfo element follow the pattern “*metadata*”.
However, in the case of revision, such a pattern does not
occur.
The MS schema alternates different styles: in certain
cases element and type declarations are global, whereas in
other cases elements and types are declared locally.
Revision is locally declared, and this may explain why the
name used is so „general‟. It seems that elements with
global types tend to generate local (i.e. context sensitive)
names: i.e. the referenced type is global whereas the
element‟s name is local. Thus, for example, we find 11
elements with type xs:date and they are all „context
sensitive‟. Similarly, there are 19 elements with type
sizeInfoType and, again, they are all „context sensitive‟.
These naming inconsistencies prevented us from applying
more general rules and required a manual revision. Note
that if naming was consistently „context sensitive‟,
„wrapping nodes‟ could be removed without problem. On
the contrary, if naming was never „context sensitive‟,
some prefixing rule could be applied. This illustrates how
modeling with XML may make things unnecessarily
complex and may derive into inconsistencies.
All in all, we identified 11 wrapping elements in the MS
schema.

3.2.2 ‘Superfluous elements’

Besides the „wrapping elements‟ described above, we
identified a number of „superfluous nodes‟: namely
complex elements with one and only one simple element.

This is, for example, what happens with the element
validationInfo/validationTool/targetResourceNameURI.
According to the general mapping rule in Table 1, such a
structure would generate two classes and three properties,
as shown in Table 5. In Figure 3, we show the resulting
simplified graph.

Class Property

validationInfoType validationInfo

validationTool validationTool

 targetResourceNameUri

Table 5: Mapping of validationInfo

Figure 3: Removing superfluous nodes

We identified a total of 9 „superfluous nodes‟ in the MS
schema occuring in the following contexts: accessTool,
annotationTool, creationTool, derivedResource,
originalSource, relatedResource, resourceAssociatedWith,
textNumericalContentInfo and validationTool.

3.3 Enumerations

Enumerations are an illustrative example of the advantage
of using RDF/OWL over XML for encoding metadata.
In XML xs:enumeration is not typed. Hence, we may end
up having data categories spread along our XSD schemas
with no explicit relation among them, or between them
and external data.
In OWL, these data categories are actually ordinary
resources and therefore they can be reused and linked to
external vocabularies in a straightforward manner.
Simple types with xs:enumerations translate into an
object property, a class and a corresponding instance for
each enumerated value.
Thus, for example, the lingualityType element in Figure 4
results in the triples listed in Figure 5.

<xs:element name="lingualityType">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="monolingual"/>

 <xs:enumeration value="bilingual"/>

 <xs:enumeration value="multilingual"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

Figure 4: Linguality in the MS schema

resource/metadataInfo/source

resource/metadataInfo/originalMetadataSchema

resource/metadataInfo/originalMetadataLink

resource/metadataInfo/metadataLanguageName

resource/metadataInfo/metadataLanguageId

resource/metadataInfo/metadataLastDateUpdated

resource/metadataInfo/revision****

resource/metadataInfo/metadataCreator

resource/versionInfo/version

resource/versionInfo/revision****

resource/versionInfo/lastDateUpdated

resource/versionInfo/updateFrequency

396

Class

ms:linguality

 rdf:type owl:ObjectProperty ;

 rdfs:domain ms:Resource ;

 rdfs:range ms:Linguality .

Property

ms:Linguality rdf:type owl:Class .

Instances

ms:monolingual a ms:Linguality .

ms:bilingual a ms:Linguality .

ms:multilingual a ms:Linguality .

Figure 5: Linguality in OWL

We found the MS schema to contain 962 xs:enumeration
elements, of which 807 distinct ones.
As an example, the enumeration value wordnet occurs
twice in the MS schema: one as value of the
lexicalConceptualResourceType element and the other as
value of the compatibleLexiconType element. In addition
a wordNet enumeration also exists as value of the
conformanceToStandardsBestPractices element.
In XML it is hard to organize enumerations while
avoiding inconsistencies. The enumeration values from
the elements lexicalConceptualResourceType and
compatibleLexiconType, shown in Table 6, illustrate one
of these inconsistencies. Notice that
mophologicalLexicon, in the first column, is a type of
lexicon. However this value is not included among the
types of “lexical conceptual resources”, in the second
column.

compatibleLexiconType
lexicalConceptual

ResourceType

wordnet,

wordlist,

morphologicalLexicon

wordlist,

computationalLexicon,

ontology

wordnet,

thesaurus

framenet,

terminologicalResource

machineReadableDicti.

lexicon

Table 6: Enumerated values for compatibleLexiconType

and lexicalConceptualResourceType elements.

Sharing common vocabularies is crucial for the
interoperability between data sets. Enumerations are not
adequate for describing vocabularies and XML designers
suggest using simple embedded elements instead of
enumerations. In LMF, for example, feature/value
assignations are performed by means of a feat element
with two attributes (feat and val) that can be attached to
almost any element. In order to be able to link „features‟
and „values‟ to some external vocabulary, two extra
attributes are suggested: dcr:datcat and dcr:valueDatcat
(Windhouwer & Wright 2012). In any case, XML is not
well suited for doing this: note that feat declarations are
local and may lead to inconsistencies and errors, not
allowing for further linking, either to new ISOcat
declarations or additional vocabularies.

Finally, let‟s mention that, in some cases, enumerations
imply some sort of hierarchic organization. Since the
XML machinery does not allow for „hierarchic‟
enumerations, designers tend to use naming conventions.
For example, the MS schema includes the annotationType
element that encodes “the annotation level of the resource
or the annotation types a tool / service requires or
produces as an output”. This element has 47
enumerations and uses prefixing to somehow „organize‟
them.
Table 7 shows part of its definition, with the prefix part in
bold. Table 8 shows the same example in RDF/OWL
version, which allows for a better formalization.

... value="alignment"/>

... value="discourseAnnotation"/>

... value="discourseAnnotation-audienceReactions"/>

... value="discourseAnnotation-coreference"/>

... value="discourseAnnotation-dialogueActs"/>

... value="discourseAnnotation-discourseRelations"/>

... value="lemmatization"/>

... value="morphosyntacticAnnotation-posTagging"/>

... value="segmentation"/>

... value="semanticAnnotation"/>

... value="semanticAnnotation-certaintyLevel"/>

... value="semanticAnnotation-emotions"/>

... value="semanticAnnotation-entityMentions"/>

... value="semanticAnnotation-events"/>

Table 7: Enumerations of annotationType in XML

Table 8: Enumerations of annotationType in OWL

To sum up, although the general mapping rules in Table 1
can be used to generate enumerations as instances of
relevant classes, this, as we have seen, requires a careful
analysis of the results in order to avoid possible
inconsistencies and improve on the results.

3.4 Cross references in XML

XSD allows for different design styles, going from a style
where elements and types are locally declared (Russian
Doll style) to a style where all declarations are global
(Salami Slice style). In general, the MS schema uses
global declarations, allowing for component reusability
throughout the schema.
However, one of the biggest problems with the MS data is
the lack of cross references among instances.Though the
MS schema is full of global declarations that theoretically
would facilitate component reusability, the schema does
not include any ID/IDref mechanism allowing for cross
reference of XML instances. All component instances are

397

local and cannot be referenced
14

. This poses a serious
problem for the reusability (and even the usability) of the
data. Consequently, searching across the resources in the
MS database having the same creator, for example,
implies using a complex element pattern matching.
Similarly, uploading data into a database requires specific
pattern matching validations. In contrast, in RDF/OWL,
every resource is identified by an URI. Instances of
person, project, document, etc. can be referenced
everywhere, both inside the dataset as well as from
external datasets.

4. Linking data

The most interesting aspect of LOD is the ability to link

pieces of data, not only with data inside the same database,

but also –crucially- with potentially any pieces of data out

there.

4.1 Using existing vocabularies

The most basic approach to linking data (and
interoperability) is to use existing vocabularies rather that
creating new ones. So our first task was to identify which
elements could be mapped to existing resources
(properties, data categories and classes) in other well
know vocabularies. We used FOAF

15
, DBLP

16
,

DCTERMS
17,

 BIBO
18

 and SWRC
19

. Sharing vocabularies
allowed us to harmonize entities such as Person,
Document and Project among the different catalogues we
integrated. In Table 9 we list the correspondences between
the original MS elements and the classes used in the
ensuing ontology:

Document

Agent

Organization

Person

Project

bibo:Document , foaf:Document

swrc:Document

foaf:Agent , swrc:Agent

foaf:Organizatio , swrc:Organization

foaf:Person , swrc:Person

foaf:Project , swrc:ResearchProject

Table 9: External vocabularies (Classes)

Similarly, some properties in the original the MS data
were replaced by properties from external vocabularies.
These include properties from DCTERMS, DC and
FOAF vocabularies. Additionally, we used specific
properties from the BioCatalogue model not included in

14

 Note, in addition, that ID/IDref mechanism only guarantees

cross reference inside a document, and not to external

references.
15 http://www.foaf-project.org/
16

http://dblp.uni-trier.de/ which indexes more than 2.3 million

articles and contains many links to home pages of computer

scientists
17

 http://dublincore.org/documents/dcmi-terms/
18

 http://bibliontology.com/ a Bibliographic Ontology
19

Semantic Web for Research Communities at

http://ontoware.org/swrc/

MS. In Table 10 we list the external properties used,
together with the number of triples involved in each case.

bio:demoInvocation 74

bio:endpoint 74

bio:input 51

bio:output 71

bio:serviceProvider 74

bio:serviceTechnology 146

bio:task 106

bio:wsdl 74

dc:contributor 25

dc:creator 248

dc:description 850

dc:license 1

dc:subject 16

dc:title 76

dcterms:bibliographicCitation 76

dcterms:description 5

dcterms:hasVersion 8

dcterms:isReferencedBy 35

dcterms:issued 8

dcterms:modified 8

dcterms:references 35

foaf:familyName 68

foaf:givenName 68

foaf:homepage 96

foaf:mbox 142

foaf:name 165

foaf:workplaceHomepage 66

Table 10: External properties

Finally, although the MS schema defines „language‟
information (both names and codes) as simple xs:string
type elements, we used the FAO

20
 ontology for language

codes (ISO638-3). Currently, our dataset includes 298
triples with language code information, using 19 different
codes.

4.2 Linking to external data

Besides using existing vocabularies, we defined links
between our instances and external instances whenever
possible. We used the sameAs and seeAlso properties to
point to the relevant records in the DBLP, the Virtual
International Authority File (VIAF) and the LOC
Authorities Names

21
. Table 11 lists the correspondences

between agents and documents with external data.

Class Instances sameAs

bibo:Article 38 24

bibo:AudioVisualDocument 12 0

bibo:Book 2 0

bibo:Chapter 4 0

bibo:Report 10 1

foaf:Organization 71 63

foaf:Person 68 45

foaf:Project 26 1

Table 11: Linking agents and documents

20

 Food and Agriculture Organization of the United Nations

(FAO) http://www.fao.org/aims/aos/languagecode.owl
21

 http://id.loc.gov/authorities/names.html

398

http://www.foaf-project.org/
http://dblp.uni-trier.de/
http://dublincore.org/documents/dcmi-terms/
http://bibliontology.com/
http://ontoware.org/swrc/
http://www.fao.org/aims/aos/languagecode.owl
http://id.loc.gov/authorities/names.html

Data categories are, by large, the most prolific elements in
the MS schema. As we have already mentioned, the
schema includes up to 807 different enumerations that
were translated into instances of relevant classes in the
final model (see the example in Figure 5 above). We
undertook the task of linking these instances to relevant
ISOcat data categories and to DBpedia whenever possible.
In Table 12 we list the data categories used: the first
column indicates the class; the second column shows the
number of instances for each class; and the third and
fourth columns show the number of linked instances to
ISOcat and DBpedia respectively (we defined a ms:dcr
property to link to ISOcat and used sameAs property with
DBpedia).

MS enumeration Num. ISOcat DBpedia

AnnotationType 47 2 2

Availability 4 0 0

CharacterEncoding 140 0 4

EncodingLevel 5 5 5

LcrType 9 0 3

License 38 0 2

Linguality 3 0 0

LinguisticInformation 47 13 32

MediaType 5 4 0

ModalityType 7 0 4

MultlingualityType 3 0 0

RestrictionsOfUse 10 0 1

SegmentationLevel 16 6 8

StandardsBestPractices 44 0 18

Use 2 0 0

UseNLPSpecific 99 2 46

TOTAL 479 32 125

Table 12: Linking to ISOcat and DBpedia

5. Merging catalogues

As explained in the first section of this paper, we come
from a scenario where corpus and lexicons are described
in the META-SHARE node and stored in our institutional
e-Repository, whereas services are registered in the
BioCatalogue. In BioCatalogue, a service is defined as “a
container for ServiceDeployments and variants”, where a
variant is either a SoapService or RestService, and a
ServiceDeployment is a particular running instance of the
service. Services also include information about testing.
On the other hand, in the MS model, a service is defined
as a “form in which NLP tasks are realized and delivered
to a user, without the need of acquiring and installing the
corresponding tools”. Services (and tools) are resources
which are distinguished from other resources in their
resourceComponentType.
Due to these disparate descriptions it is not possible to
directly map the information in the input SoapServices
descriptions into the target MS toolService component.
This implies that we need to merge the MS and
BioCatalogue ontologies. The solution is to map the
variants of a given BioCatalogue service as different MS
resources, i.e. as subtypes of the MS Service. Table 13
shows the resulting merged model.

Table 13: MS & BioCatalogue merging

LOD is the perfect place to merge and combine data. As
explained in the preceding section, by reusing data from
external vocabularies we were able to re-define some MS
components such as Person and Organization in a much
more standard way (via FOAF). Similarly, for Documents,
the BIBO ontology allowed us to merge our
bibliographical database into the dataset. In the original
MS schema, documents could only be attached to
resources, either as the „documentation‟ of the whole
resource or as „reports‟ relevant for its validation, usage,
annotation and evaluation aspects. In the converted
model, documents include articles, manuals, reports,
videos, etc. and constitute an important element of the
dataset. We assume that everything can be documented
either directly (by means of the ms:documentation or
ms:validationReport properties among others) or
indirectly (by means of dc:subject or dcterms:references
properties). Thus, any class and instance in the dataset
may be linked to some relevant document. For example,
the class SOAPservice may be referenced by some video
or article. Similarly, a Task instance such as
namedEntityRecognition or a Standard instance such as
LMF may be also documented. We use the dc:subject and
dcterms:references properties to link documents to
relevant parts of the data set.

6. Exploitation benefits

Integrating disparate, yet related, datasets into a single
repository has obvious benefits, especially, to the
maintainability, interoperability and integrity of the data.
All of this has positive consequences both on cost and
functionality.
We also get an additional advantage from the properties of
the RDF/OWL/SPARQL framework, which makes data
exploitation simple and efficient. For example, if our user
wants to know about Named Entity Recognition (NER),
we can get all relevant data with a very simple query
(Figure 6).

399

Figure 6: SPARQL query example

With this simple query we easily retrieve „everything that
has to do with NER‟. In this case we get Articles, Reports
and Projects dealing with NER as well as Services
performing such a task. In addition, the seeAlso property
suggests us to check namedEntity.

7. Data sources

All data is stored at the SPARQL endpoint:
http://iula02v.upf.edu/sparql. We run a data browser
located at http://lod.iula.upf.edu/types/service.

8. Conclusions

The benefits of our exercise can be summarized as
follows.
On the one hand, the final RDF/OWL model is much
simpler than the original XSD schema: it clearly
differentiates between Classes and Properties and avoids
problems typical of XML syntax, such as semantic
ambiguity and order constraint. This is essential for
mapping purposes. On the other hand, the open world
assumption of RDF/OWL allows to naturally integrate
objects from different schemas and to add further
extensions, making merging of different models
straightforward. We were effectively able to merge
Service and Document ontologies into the MS model in a
natural way.
Moreover, linking data has an additional benefit: The
resulting model not only includes linking between merged
catalogues but also linking to external data.
Last but not least, the RDF/OWL version of the registry
(loaded in a SPARQL end point) not only provides a
single unified repository but also facilitates the
exploitation of the metadata records by the end-user.

The success of our experiment encourages us to apply it

on a larger scenario, such as the CLARIN Component

Registry. The idea behind the CMDI approach was that

identifying components blocks in the original schemas

would improve interoperability among models. However,

the proliferation of components in the Component

Registry eventually becomes a critical problem.

Conversion to RDF/OWL paves the way for more

ambitious goals such as being able to derive a general

ontology accounting for the different underlying schemas.

9. Acknowledgements

The work reported has been co-funded by the "Fons

europeu de desenvolupament regional (FEDER),

Programa operatiu FEDER de Catalunya 2007-2013,

Objective 1".

10. References

Broeder, Daan, Oliver Schonefeld, Thorsten Trippel,

Dieter Van Uytvanck and Andreas Witt. “A pragmatic

approach to XML interoperability – the Component

Metadata Infrastructure (CMDI).” Presented at

Balisage: The Markup Conference 2011, Montréal,

Canada, August 2 - 5, 2011. In Proceedings of Balisage:

The Markup Conference 2011. Balisage Series on

Markup Technologies, vol. 7 (2011).

doi:10.4242/BalisageVol7.

Haslhofer, Bernhard and Klas, Wolfgang. (2010) A survey

of techniques for achieving metadata interoperability.

ACM Comput. Surv. 42, 2, Article 7 (March 2010), 37

pages
Hunter, Jane and Lagoze, Carl (2001) Combining RDF

and XML schemas to enhance interoperability between
metadata application profiles. In Proceedings of the
10th international conference on World Wide Web
(WWW '01). ACM, New York, NY, USA, 457-466.

Lam, H. Y., Marenco, L., Shepherd, G. M., Miller, P. L.,
Cheung K. H. (2006) Using web ontology language to
integrate heterogeneous databases in the neurosciences.
AMIA ... Annual Symposium proceedings / AMIA
Symposium. AMIA Symposium, pp. 464-468.

Tsinaraki, Chrisa and Christodoulakis, Stavros (2007)
Interoperability of XML schema applications with
OWL domain knowledge and semantic web tools. In
Proceedings of the 2007 OTM Confederated
international conference on On the move to meaningful
internet systems: CoopIS, DOA, ODBASE, GADA, and
IS - Volume Part I (OTM'07), Robert Meersman and
Zahir Tari (Eds.), Vol. Part I. Springer-Verlag, Berlin,
Heidelberg, 850-869.

Windhouwer, M., & Wright, S. E. (2012). Linking to

linguistic data categories in ISOcat. In C. Chiarcos, S.

Nordhoff, & S. Hellmann (Eds.), Linked data in

linguistics: Representing and connecting language

data and language metadata (pp. 99-107). Berlin:

Springer.

Xiaoshu Wang, Robert Gorlitsky, Jonas S Almeida (2005).

From XML to RDF: how semantic web technologies

will change the design of 'omic' standards. In Nature

Technology, Vol 23, No 9, pp 1099-1103, Sep 2005.

400

http://iula02v.upf.edu/sparql
http://lod.iula.upf.edu/types/service

