
A Compact Interactive Visualization of Dependency Treebank Query Results

Chris Culy†, Marco Passarotti‡, Ulla König-Cardanobile†

†Universität Tübingen, ‡Università Cattolica del Sacro Cuore

†Seminar für Sprachwissenschaft, Wilhelmstraße 19, Tübingen, Germany

‡CIRCSE Research Centre, Largo Gemelli 1, Milan, Italy
E-mail: christopher.culy@uni-tuebingen.de, marco.passarotti@unicatt.it, ulla.koenig@gmail.com

Abstract

One of the challenges of corpus querying is making sense of the results of a query, especially when a large number of results and
linguistically annotated data are concerned. While the most widespread tools for querying syntactically annotated corpora tend to
focus on single occurrences, one aspect that is not fully exploited yet in this area is that language is a complex system whose units
are connected to each other at both microscopic (the single occurrences) and macroscopic level (the whole system itself). Assuming
that language is a system, we describe a tool (using the DoubleTreeJS visualization) to visualize the results of querying dependency
treebanks by forming a node from a single item type, and building a network in which the heads and the dependents of the central
node are respectively the left and the right vertices of the tree, which are connected to the central node by dependency relations. One
case study is presented, consisting in the exploitation of DoubleTreeJS for supporting one assumption in theoretical linguistics with
evidence provided by the data of a dependency treebank of Medieval Latin.

Keywords: corpus query, dependency treebanks, visualization of results

1. Introduction and Motivation
One of the challenges of corpus querying is making
sense of the results of a query, especially when a large
number of results is concerned. Hard enough as this task
is for text results, even without annotations, it is yet more
difficult when results are syntactic structures, such as
dependency constructions extracted from a treebank.
Typically, results show the full dependency annotation of
sentences, either one at a time or perhaps in a “carousel”
of images, e.g. TrEd (Pajas & Štěpánek, 2008), Annis
(Zeldes et al., 2009) and Tündra (Martens, 2012).
These approaches do not facilitate the comparison of the
results, and especially of the specific context that was
searched for. Indeed, one limit of the most widespread
tools for querying syntactically annotated corpora is that
they tend to focus on single occurrences (usually shown
by tree-graphs), at best providing statistics reported in
the form of lists and frequencies (or percentages). One
aspect that is not fully exploited yet in this area is that
language is a system whose units are connected to each
other at both microscopic (the single occurrences) and
macroscopic level (the whole system itself). In this
respect, language can be viewed as a complex system by
looking at different levels of analysis: morphology (in
particular, word formation), syntax (relations between
words in sentences) and semantics (for instance,
compositional semantics).
Assuming that language is a system and focussing on
syntactic analysis, a simple and efficient way to visualize
the results of a query performed on a dependency-based
treebank is to form a node from a single item type, and
build a network in which the heads and the dependents of
the central node are respectively the left and the right
vertices of the tree, which are connected to the central
node by dependency relations.

2. Contribution
In the domain of text queries, Word Tree (Wattenberg &
Viègas, 2008) constructs a suffix tree (or a prefix tree,
depending on user selection) from the results, and then
provides an interactive way to explore that tree by
expanding and collapsing nodes in the tree. In this way,
the user can see and explore the various extended
contexts of the hit term in a much more compact way
than a KWIC index or concordance.
Although Wattenberg & Viègas (2008) refer to Word
Tree as an “Interactive Concordance”, one thing that
concordances typically provide which Word Tree does
not is two sided context. In a concordance the hit term is
typically displayed with some context to the left of it and
some context to the right of it. In contrast, Word Tree
displays either the right context (suffix tree) or the left
context (prefix tree), but not both. To address this issue,
Culy & Lyding (2010) created Double Tree, an extension
of the Word Tree concept to two sides. Since it is not the
case that every right hand side corresponds to every left
hand side (and vice versa), there needs to be some way to
indicate which nodes on the right correspond to which
nodes on the left and conversely. In Double Tree, when
the user clicks on a node, the nodes on the opposite side
of the tree with which it occurs are highlighted. Thus, in
Figure 1, we can say that and see whether is a phrase in
the original text, but and see him is not.
The key idea of our contribution is to realize that we can
use Double Tree to visualize the results of querying
syntactic corpora (in particular, dependency treebanks)
by using the traversals of the syntactic structures as the
data to be visualized, rather than the syntactic structures
themselves. In other words, what we visualize are paths
through the structures, which are in fact what the user is
typically interested in.

759

Figure 2: Double Tree with dependencies

Figure 1: Double Tree with text

Figure 3: KWIC view with dependencies

760

For example, in Figure 2, we see the results of a query
performed on a Medieval Latin dependency treebank
(the Index Thomisticus Treebank, around 200,000 words
in more than 11,000 sentences (Passarotti, 2011)). The
query searches for those occurrences of the word
definitiones (“definitions”) where this is labeled with the
dependency relation Obj (object: either direct or
indirect). This means that in these contexts the word
definitiones stands in an object relation with its heads in
the tree.
Figure 2 shows that definitiones depends as an object on
two different words in the treebank, which are reported
as left-side vertices of the Double Tree: assimilat (“it
absorbs”) and cognoscimus (“we know”)1. The size of
the words in the vertices depends on the number of their
occurrences in that specific syntactic position: the node
of assimilat is bigger than that of cognoscimus, because
assimilat occurs 5 times while cognoscimus just one (this
is shown by moving the pointer on the word in the tree).
The right-side vertices of the Double Tree report the
words that depend on the word definitiones (labeled with
Obj) regardless of its head in the tree. These are
significantur (“they are meant”), which occurs 5 times,
and quarum (“of them”, feminine), whose frequency is 1.
By clicking on one word, the words reported in the
double tree that share at least one context with that word
are highlighted in red. In figure 2, the words assimilat,
definitiones and significantur are highlighted because
definitiones heads the word significantur in all the 5
contexts where definitiones depends on assimilat as an
object.
The Double Tree can be further expanded by clicking on
one its vertices: the rightmost side of Figure 2 shows the
nodes that depend on significantur along the dependency
path assimilat - definitiones - significantur.

3. Technical Details
We have reimplemented Double Tree in Javascript using
the D3 toolkit (Bostock et al., 2011). DoubleTreeJS2
extends the original Double Tree with some capabilities
that were mentioned as future work in Culy & Lyding
(2010), such as the abilities to sort the branches by a
variety of properties, to filter the branches by different
properties, and to search the items in the Double Tree.
Another particularly useful addition is the ability to
trigger additional actions when using a modifier key
while clicking on a node. In particular, we use shift-click
to show a more extensive view of the item clicked on in
the current context, using a KWIC style view of the
original results. Since these results are of the clicked
item in the context of the original hit, the number of

1 In the Double Tree reported in Figure 2, each word is
preceded by the name of its dependency relation and followed
by a part-of-speech tag (according to the Index Thomisticus
Treebank annotation style). The dependency relations reported
in Figure 2 are: Atr (attribute), AuxP (preposition), AuxX
(punctuation), Coord (coordination), Obj (direct or indirect
object). The part-of-speech tags are: 1 (nominal inflection), 3
(verbal inflection), 4 (uninflected), Punc (punctuation mark).
2 Freely available at http://www.sfs.uni-
tuebingen.de/~cculy/software/DoubleTreeJS/index.html.

results is smaller than the full results and they are easier
to read as a whole. Figure 3 shows the KWIC view with
dependencies resulting from shift-clicking on
Obj/definitiones in Figure 2. From the KWIC view, the
user can click on one example and see the dependency
structure for the whole sentence, either as an arc diagram
or as a hierarchical diagram, according to the settings
chosen.
DoubleTreeJS is designed as a library which is
independent from any particular data or data format. It is
up to an application to supply DoubleTreeJS with the
data to visualize. DoubleTreeJS then constructs its own
internal data structures and the visualization. However,
DoubleTreeJS also comes with several practical
examples which use a data model which allows text to be
read, provides simple regular expression-based querying,
and allows query results to be stripped of context items
that are not of interest (e.g., omitting function words, or
showing nominal elements only).
To use DoubleTreeJS for dependency structures, we
constructed a new example using a slightly modified
version of the above data model. Basically, we simply
have to provide DoubleTreeJS with the hits in the
structure, along with the left contexts of the paths from
the roots to the hits and the right contexts of the paths
from the hits to the leaves, which we do as follows.
First, apart from the data model, we construct the list of
all the paths from the roots to the leaves through the
structures in the treebank. Then, we use a modified
version of the data model to read in the paths. The
modification, also relevant in other uses of the data
model, limits the context of an item in a path to the path
itself: unlike raw text, where we allow context to cross
sentence boundaries, we do not want the context of a
syntactic node to include nodes of words occurring in
other sentences. All of the other operations of the tool,
including the querying, the stripping of the results, the
interaction in the visualization, follow immediately from
the data model and from DoubleTreeJS itself. The only
additional work was to supply the KWIC view (adapted
from other examples), and the thumbnail view, which is
specific to syntactic structures. The thumbnails use the
ProD visualization (Culy et al., 2012)3.
The data model can take advantage of whatever
information is present in the input. In particular, it
permits querying, via regular expressions, over whatever
fields are present in the input, including forms, lemmas,
parts of speech, etc., in addition to the dependencies.
Figure 4 shows a schematic diagram of a sample
application using DoubleTreeJS.

3 Freely available at http://www.sfs.uni-
tuebingen.de/~cculy/software/ProD/index.html.

Figure 4: System diagram

761

4. Case Study
In this section, we describe a case study consisting in the
exploitation of DoubleTreeJS for supporting one
assumption in theoretical linguistics with evidence
provided by corpus data. The purpose of this case study
is not to provide a full analysis of data, but to give an
example of how DoubleTreeJS can be used for accessing
a corpus for linguistic research.
It is a well-known fact that verbs play a central role in
dependency-based description of the syntactic structure
of sentences. The root of a dependency tree is the
predicate of the main clause of the sentence (usually a
verb) and the remainder of the sentence depends on the
root. Also, this aspect is strictly related to the basic idea
of frame semantics (Fillmore, 1982): knowledge of a
particular sense of a verb (and of other parts of speech,
as well) requires the knowledge of a number of entities
evoked in the situation designated by that verb. These
entities are both obligatory and optional complements,
respectively named 'arguments' and 'adjuncts'4.
The entities are collected in a 'frame'. Knowledge of the
specific sense of a verb thus involves the knowledge of
the specific frame of that verb, i.e. of the entities that are
combined with that verb. “The capacity a verb (or noun,
etc.) has for combining with particular patterns of other
sentence constituents” (Allerton, 1982: 2) is called the
'valency' of that verb. Valency is usually defined as the
number of arguments of a word, but Éech et al. (2010)
have recently brought good arguments for not
distinguishing between obligatory and not obligatory
complements, claiming that all complements are ruled by
a similar mechanism of selection, called by the authors
'full valency'.
Although valency can refer to different parts of speech
(verbs, nouns, adjectives and, at some extent, adverbs),
scholars have mainly focused their attention on verbs.
This is due to the fact that verb is the most valency-
capable part of speech.
In a dependency tree, the node of a complement depends

4 Different terminology is used in different traditions. For
instance, 'actants' (arguments) and 'circonstants' (adjuncts) are
the terms introduced by Tesnière (Tesnière, 1959), while 'inner
participants' (arguments) and 'free modifications' (adjuncts) are
those used in Functional Generative Description (Sgall et al.,
1986).

on the node of the word that it modifies. As verbs are the
part of speech most able to select complements, it may
be expected that in a dependency-based treebank they
have a high number of dependent nodes and, conversely,
a small number of head nodes. Instead, other parts of
speech should behave differently. In particular, we
expect that (a) nouns should have a similar number of
heads and dependents and (b) adjectives and adverbs
should have more heads than dependents.
DoubleTreeJS can be used to confirm (or refute) these
intuition-based assumptions. In terms of DoubleTreeJS,
the above assumptions mean the following:

− a Double Tree centred on a verb should have more

right branches (dependents) than left ones (heads);
− a Double Tree centred on a noun should have more

or less the same number of right and left branches;
− a Double Tree centred on an adjective or an adverb

should have more left branches.

In our case study, we took one lemma of the IT-TB as
representative for each of the parts of speech concerned
and built its corresponding Double Tree5.
The first lemma discussed is the verb tango (“to touch”).
Figure 5 presents its Double Tree6. Figure 5 clearly
shows that the Double Tree centred on tango has much
more right branches (dependent-nodes) than left ones
(head-nodes). Most of the left nodes are verbs (eloquor,
impugno: these are the cases where tango heads a
subordinate clause) and “bridging” function words, like
subordinative conjunctions (sicut, quia, nisi, quod)7.
Figure 6 shows the Double Tree of the noun diversitas
(“difference”). In Figure 6, the number of left and right
branches is similar. In particular, it is worth noting that
most of the left nodes are verbs (sum, sequor, consequor

5 Of a number of lemmas extracted randomly from the IT-TB,
the ones discussed here are among those whose Double Tree
fits the size of the page in the paper.
6 In the Double Trees reported here, branches are ordered
alphabetically by dependency relation.
7 In the IT-TB style, lemma “_” (appearing, for instance, in
Adv/_) is assigned to abbreviations.

Figure 5: The Double Tree of tango

762

Figure 6: The Double Tree of diversitas

Figure 7: The Double Tree of formalis

763

Figure 8: The Double Tree of semper

764

and all the other lemmas ending in -o) and most of the
right ones are labelled with the dependency relation Atr
(attributes). This is consistent with the fact that nouns
tend to modify verbs and nouns (i.e. to be headed by
verbs and nouns) and to be modified by attributes
represented by nouns (mostly in genitive case), agreeing
adjectives and relative clauses (headed by verbs in the
annotation style of the IT-TB). That one noun is more
dependent on verbs than on nouns is related to its
semantic value.
Figure 7 reports the Double Tree of the adjective
formalis (“formal”)8. This Double Tree features almost
only left branches. There is just one right node, which is
filled with an adverb (tantum: “only”)9. All the left nodes
are nouns, reflecting that adjectives tend to modify (i.e.
to be dependent on) nouns.
Figure 8 is the Double Tree of the adverb semper
(“always”)10. Like with the adjective formalis, the
Double Tree of semper has almost only left branches (the
only right node being that of the negation non). All the
left nodes but two are verbs. Namely, they are:

(a) one occurrence of the pronoun idem (“same”; form:

eodem), used with attributive function in the clause
semper eodem modo se habentes (“[they] being
always in the same way”);

(b) one occurrence of the coordinating conjunction et
(“and”). In this case, semper is an adverbial
modification shared by two coordinated predicates
and, thus, dependent on the node of the coordinating
element (et).
The full sentence here concerned is semper enim
honorabilius est agens patiente, et principium,
scilicet activum, [honorabilius est] materia (“The
agent is always more honorable than the patient, and
the principle, i.e. the active one, [is more honorable]
than the matter”). In the dependency tree of this
sentence in the IT-TB, the conjunction et heads (i.e.
coordinates) both the predicate of the first clause
(est) and all the words of the second clause that
would depend on the elliptical predicate of it, if this
was present. Semper depends on et because it
modifies both the present and the missing
predicates. Further information on the IT-TB
annotation style can be found in Bamman et al.
(2007).

5. Conclusion and Future Work
We have presented an innovative interactive tool to help
make sense of query results for syntactic structures by
reusing an existing system for visualization with
different data: paths through syntactic structures instead
of strings of textual items. While we have illustrated
dependency structures, also constituent structures, or

8 For reasons of space, this Double Tree is limited to the
occurrences of formalis labelled with the dependency relation
Atr only.
9 The other right node appearing in figure 8 is not filled with
any lemma, as it represents those occurrences of formalis
having no dependent nodes in the tree.
10 Again for reasons of space, this Double Tree is limited to the
occurrences of semper labelled with the dependency relation
Adv (adverbial) only.

indeed any graph that can be represented by traversals,
could be visualized using this technique. The
visualization itself needed no modification, and the
modification to the data model was simple. In addition,
all the scenarios illustrated by the DoubleTreeJS
examples (e.g. comparison of two Double Trees) are
easily done also for syntactic structures.
Although we have used a simple data model and a simple
query engine, it would also be possible to use
DoubleTreeJS with other data models and/or other
search engines. DoubleTreeJS is just a visualization
library, and as such it does not depend on any particular
data model or search engine. In other words, every
component of the system reported in Figure 4 could be
replaced by a component with similar functionality.
Indeed, we have used DoubleTreeJS to visualize the
results of text queries in Sketch Engine (Kilgariff et al.,
2004). This was done directly, i.e. without using the
sample data model we have used here. In the near future,
we hope to be able to use DoubleTreeJS to visualize the
results produced by the XQuery-based TüNDRA
treebank querying tool (Martens, 2012).
An anonymous referee suggested that DoubleTreeJS
could also be helpful in “debugging” parses, i.e.
checking for anomalies in input data. We fully agree, and
think that DoubleTreeJS would be a useful part of a
broader application that might also allow editing the
underlying dependency data when an error is found, in
addition to incorporating a more sophisticated query
engine.
Finally, assuming that one of the main interests in
querying treebanks is to compare different constructions
as well as the syntactic behaviour of different (categories
of) words, in the near future we foresee to enhance
DoubleTreeJS with a visualization facility that permits to
highlight the shared and non-shared features of two or
more words/constructions in a dependency treebank.

6. Acknowledgements
The research of the first author was supported by the
Federal Ministry for Education and Research (BMBF) as
part of the grant CLARIN-D. Thanks to Markus
Dickinson for valuable feedback.

7. References
Allerton, D.J. (1982). Valency of the English verb.

London: Academic Press.
Bamman, D., Passarotti, M., Crane, G. and Raynaud, S.

(2007). Guidelines for the Syntactic Annotation of
Latin Treebanks. Tufts University Digital Library.
Available from http://hdl.handle.net/10427/42683.

Bostock, M., Ogievetsky, V. and Heer, J. (2011). D3:
Data-Driven Documents. IEEE Trans. Visualization &
Comp. Graphics (Proc. InfoVis), 17(12), pp. 2301--
2309.

Culy, C., Dima, C. and Dima, E. (2012). Through the
Looking Glass: Two Approaches to Visualizing
Linguistic Syntax Trees. In Proceedings of the 16th
International Conference on Information Visualisation
IV2012, July 11-13, 2012, Montpellier, France. pp.
214--219.

Culy, C. and Lyding, V. (2010). Double Tree: An

765

Advanced KWIC Visualization for Expert Users. In
Information Visualization, Proceedings of IV 2010,
2010 14th International Conference Information
Visualization. London, UK, pp. 98--103.

Éech, R., Pajas, P. and Maéutek, J. (2010). Full valency.
Verb valency without distinguishing complements and
adjuncts. Journal of Quantitative Linguistics, 17, pp.
291--302.

Fillmore, C. (1982). Frame semantics. In The Linguistic
Society of Korea (ed.), Linguistics in the Morning
Calm. Seoul: Hanshin Publishing Co., pp. 111--137.

Kilgarriff, A., Rychly, P., Smrz, P. and Tugwell, D.
(2004). The Sketch Engine. In Proceedings of
EURALEX 2004, Lorient, France. pp 105--116.
Available from http://www.sketchengine.co.uk.

Martens, S. (2012). TüNDRA: TIGERSearch-style
treebank querying as an XQuery-based web service. In
Proceedings of the joint CLARIN-D/DARIAH
Workshop "Service-oriented Architectures (SOAs) for
the Humanities: Solutions and Impacts", Digital
Humanities Conference, Hamburg, pp. 43--50.
Available from http://www.clarin-
d.de/images/workshops/proceedingssoasforthehumanit
ies.pdf.

Pajas, P. and Štěpánek, J. (2008). Recent advances in a
feature-rich framework for treebank annotation. In
Proceedings of the 22nd International Conference on
Computational Linguistics, August 18-22, 2008,
Manchester, United Kingdom. pp. 673--680.

Passarotti, M. (2011). Language Resources. The State of
the Art of Latin and the Index Thomisticus Treebank
Project. In M.-S. Ortola (ed.), Corpus anciens et Bases
de données, «ALIENTO. Échanges sapientiels en
Méditerranée», N°2. Nancy: Presses universitaires de
Nancy, pp. 301--320.

Sgall, P., Hajicová, E. and Panevová, J. (1986). The
Meaning of the Sentence in its Semantic and
Pragmatic Aspects. Dordrecht NL: D. Reidel.

Tesnière, L. (1959). Éléments de syntaxe structurale.
Paris, France: Editions Klincksieck.

Wattenberg, M. and Viégas, F.B. (2008). The word tree,
an interactive visual concordance. IEEE Trans. on
Visualization and Computer Graphics, 14(6), pp.
1221--1228.

Zeldes, A., Ritz, J., Lüdeling, A. and Chiarcos, C.
(2009). ANNIS: A Search Tool for Multi-Layer
Annotated Corpora. In Proceedings of Corpus
Linguistics 2009, July 20--23, Liverpool, UK.
Availabe from
http://ucrel.lancs.ac.uk/publications/cl2009/358_FullP
aper.doc.

766

