
ILLINOISCLOUDNLP: Text Analytics Services in the Cloud

Hao Wu, Zhiye Fei, Aaron Dai, Stephen Mayhew, Mark Sammons, Dan Roth
Department of Computer Science,

University of Illinois, Urbana-Champaign.
{haowu4,zfei2,dai13,mayhew2,mssammon,danr}@illinois.edu

Abstract
Natural Language Processing (NLP) continues to grow in popularity in a range of research and commercial applications. However,
installing, maintaining, and running NLP tools can be time consuming, and many commercial and research end users have only
intermittent need for large processing capacity. This paper describes ILLINOISCLOUDNLP, an on-demand framework built around
NLPCURATOR and Amazon Web Services’ Elastic Compute Cloud (EC2). This framework provides a simple interface to end users
via which they can deploy one or more NLPCURATOR instances on EC2, upload plain text documents, specify a set of Text Analytics
tools (NLP annotations) to apply, and process and store or download the processed data. It also allows end users to use a model trained
on their own data: ILLINOISCLOUDNLP takes care of training, hosting, and applying it to new data just as it does with existing models
within NLPCURATOR. As a representative use case, we describe our use of ILLINOISCLOUDNLP to process 3.05 million documents
used in the 2012 and 2013 Text Analysis Conference Knowledge Base Population tasks at a relatively deep level of processing, in
approximately 20 hours, at an approximate cost of US$500; this is about 20 times faster than doing so on a single server and requires no
human supervision and no NLP or Machine Learning expertise.

Keywords: Natural Language Processing Tools, Text Analytics, Cloud Computing

1. Motivation
Natural Language Processing (NLP) is an active research
area, and its use in commercial enterprises has ballooned
with the advent of the recent surge of interest in analyzing
large amounts of data to support business intelligence prac-
tices. Many end users are small research teams or small-
to medium-sized commercial enterprises with intermittent
processing loads, i.e. they do not constantly process a large
volume of data, but instead wish to process data as needed.
When the need arises, they may have a large amount of
data that they wish to process quickly. This use case has
led to the commercial success of cloud services such as
Amazon Web Services’ Elastic Compute Cloud (EC2): a
knowledgeable user can select from a wide variety of vir-
tual machine images, start multiple instances on a group of
EC2 host machines, and process data in parallel to achieve
fast, high-volume data processing.
However, the use of Text Analytics tools and of cloud com-
puting resources still requires significant end user expertise.
While a number of NLP-related commercial and research
efforts are underway to provide frameworks to support ma-
chine learning and NLP on cloud infrastructure (see Sec-
tion 7.), many still require significant end user expertise and
a corresponding investment of time, effort, and money.
ILLINOISCLOUDNLP is a prototype cloud-based service
that aims simply to provide scalable Text Analytics pro-
cessing capabilities to non-expert end users, performing al-
most the entire set-up and the processing based on end user
instructions via a simple application interface. ILLINOIS-
CLOUDNLP builds on NLPCURATOR, an NLP component
management framework (Clarke et al., 2012). Clients sign
up for an Amazon EC2 account, install a small client pro-
gram, and can then upload and process text documents on
multiple EC2 nodes. The interface manages the initializa-
tion of the nodes and the processing of the documents. It
provides a straightforward interface for choosing the level
of processing needed (which tools to run on the data) and

for monitoring progress and node health. Once the docu-
ments are processed, the user can easily download or store
the data, and terminate the EC2 nodes. The interface pro-
vides estimates of processing time and cost based on the
user’s data collection and choice of NLP annotations. The
ILLINOISCLOUDNLP infrastructure therefore allows the
user to process documents on demand, and requires no
NLP, Machine Learning, or Cloud Computing expertise.
This paper describes the analytics and classification ca-
pabilities that ILLINOISCLOUDNLP currently provides
(Sec. 2. and 3.), the system infrastructure that manages the
Amazon servers (Sec. 4.), and the workflow from the user
perspective (Sec. 5.). It also gives an example application of
the ILLINOISCLOUDNLP system (Sec. 6.), a comparison
to some other NLP/Machine Learning frameworks (Sec. 7.)
and our plans to improve the system (Sec. 8.).

2. NLPCURATOR

NLPCURATOR (Clarke et al., 2012) is an NLP manage-
ment system that allows multiple NLP components to be
distributed across multiple machines. End users can config-
ure pipelines over components by specifying input depen-
dencies for components in a configuration file. NLPCU-
RATOR caches processed documents, allowing fast retrieval
when multiple clients need to process the same data, or
when a single user needs to repeat the same processing
of the data (e.g. in an experimental setting). NLPCURA-
TOR provides a single point of access to all these services,
and a programmatic interface that allows end users to re-
quest and access NLP annotations within applications. It
is complemented by EDISON, a Java library that provides
a large suite of NLP data structures and supports feature
extraction and common experimental NLP tasks. Together,
EDISON and NLPCURATOR provide a straightforward API
for applying a suite of state-of-the-art Illinois NLP tools to
plain text documents.
ILLINOISCLOUDNLP builds on this infrastructure and
provides users with the ability to process text with

14

a range of state-of-the-art tools including tokeniza-
tion, Part of Speech (POS) tagging (Roth and Ze-
lenko, 1998), shallow parsing (Punyakanok and Roth,
2001), Named Entity recognition (Ratinov and Roth,
2009), and Wikification (Cheng and Roth, 2013)
(see http://cogcomp.cs.illinois.edu/page/
[software,demos] for the tools named above, and
others that we plan to integrate).
NLPCURATOR takes plain text as input, and generates data
structures representing layers of annotation over the input
text as output. The POS tagger and shallow parser use the
relevant Penn Treebank tag sets. The Named Entity Rec-
ognizer labels proper nouns, either with the widely used
CoNLL 2003 shared task scheme (Tjong Kim Sang and
De Meulder, 2003), which has four categories: Person, Or-
ganization, Location, and Miscellaneous; or with the 18 en-
tity types in the OntoNotes scheme (Hovy et al., 2006). The
Wikifier identifies concepts in text, disambiguates them and
grounds them by mapping the corresponding phrase to the
most specific appropriate page in Wikipedia. The output
data structures can be used directly, or written to a json or
a binary format for disk storage.

3. ILLINOISCLASSIFIER

In addition to NLP annotation services, ILLINOIS-
CLOUDNLP provides users with access to a generic classi-
fication architecture built around Learning Based Java (Riz-
zolo and Roth, 2010)1: the ILLINOISCLASSIFIER applies a
suite of feature extractors and is trained simply by provid-
ing a set of plain-text documents which have been labeled
according to the user’s desired categories. ILLINOISCLAS-
SIFIER uses this data to build a statistical model that, given
a new set of previously unseen documents, assigns them
labels seen during training. Labels can be associated with
documents (e.g., categorizing them to topics), to sentences,
or to other text snippets. Providing a training set with a
different labeling scheme results in a different model. Cru-
cially, the ILLINOISCLASSIFIER application is agnostic to
the actual task, and is therefore easily applied to different
document classification tasks, e.g. spam vs. not-spam; sub-
ject (sports vs. music vs. politics); author; etc.
The initial release of ILLINOISCLOUDNLP supports clas-
sification of spans of text, with the assumption that each
span of text is an independent paragraph, sentence, or doc-
ument, and uses simple n-gram features. Future releases
will extend the expressiveness of the classification task and
the feature space (see Section 8.).
We characterize the learning problem in the following way:
the user wishes to learn a classifier C to assign one of a set
of labels L1,L2, ...Lk ∈ L to each text snippet Ti ∈ T ,
where T is the domain of text snippets that are suitable for
such labels. For example, T could be newspaper articles,
and L a set of subject labels such as “Sport”, “Politics”,
“Finance” etc. Alternatively, T could be customer reviews
of hotels, and L the associated rating from 1 to 5.
In the supervised learning setting used by ILLINOISCLAS-
SIFIER, the user must have a sufficiently large set of text

1http://cogcomp.cs.illinois.edu/page/
software_view/LBJ

snippets that have been labeled with the target categories;
this set of labeled data is typically split into training and
evaluation data sets. The learning system generates an ab-
stract representation of the text snippets and uses the cor-
respondences of elements of this representation with target
labels in the training data to automatically generate a model
that can map unseen instances drawn from T to the tar-
get labels. The performance of the resulting model, which
is usually measured on the held-out evaluation data, de-
pends on the expressiveness of the abstract representation
and the amount of labeled data available (Kearns and Vazi-
rani, 1994). The learned model should perform as well on
new snippets drawn from the same domain T , even though
it has not seen them before. It can therefore be used to la-
bel new data drawn from the same sources as the training
data; for example, if you use a set of documents drawn from
news articles labeled by subject, your trained classifier can
be used to label new news articles with those subjects. The
classifier considers multiple sets of features and uses cross-
validation to choose the most appropriate one, without any
user involvement.

4. ILLINOISCLOUDNLP Infrastructure
ILLINOISCLOUDNLP is a framework that allows non-
expert end users to specify a text collection to be processed
and a set of tools (which we will call here “NLP annota-
tions”) to be applied to it; it then generates a set of worker
nodes on Amazon’s EC2 to process the data. The end user
must have their own Amazon EC2 account, which is used
to pay the cost of processing the data.
The software package used by ILLINOISCLOUDNLP users
is a lightweight application that controls and monitors
a complete infrastructure built on Amazon Web Service
(AWS). This package allows the user to manage an NLP
service in a simple, user-friendly way. All NLP services
that we provide are run on the Cloud, so the user doesn’t
have to install a large suite of software on their site. In
the rest of this section we briefly describe the infrastructure
underlying the system.

4.1. Amazon Web Services
Amazon Web Services (2014) (AWS) is a collection of
cloud based infrastructure and services provided by Ama-
zon. AWS gives users the ability to compute, store and
manage their data on the cloud. Amazon charges the user
based on the resources they choose to use: in effect, the user
“rents” some of AWS’s servers only for the time needed to
process their data plus an additional charge to store data on
the AWS servers and to access it. A specific example is
given in Section 6.

4.2. Amazon Elastic Compute Cloud
Amazon Elastic Compute Cloud (EC2) is an elastic in-
frastructure provided by AWS to support computing on
demand. It allows users to specify a profile of one or
more virtual computers for their use and pay hourly only
for those resources they use. The user can then start and
stop these machines as they wish, and when these Ama-
zon Machine Instances (AMIs) are active, the user can ac-
cess them either by connecting to them (e.g. via ssh) or

15

using the Amazon API to programmatically interact with
them. An alternative model is to install service software
on these AMIs that can be run when they are active, and
then have other applications use these services to handle
CPU- or memory-intensive tasks. This framework pro-
vides a very economical way to support on-demand NLP
services, since most state of the art NLP systems require
a relatively large amount of RAM and processing power.
In ILLINOISCLOUDNLP, all annotation processing is per-
formed in EC2.

4.3. Amazon Simple Storage Service
Amazon Simple Storage Service (S3) provides cloud based
key-value pair storage. Keys (created by the user) are iden-
tifiers associated with some piece of data, while a value can
be an arbitrary data structure representing a document or,
in this case, a set of annotations over a document. A user
can create collections of key-value pairs (buckets) for their
own use. Amazon charges a fee for storage and for access-
ing the data; at the time of writing, these fees are quite low.
ILLINOISCLOUDNLP uses S3 to store processed data for
retrieval by the user and/or later use on Amazon EC2.

4.4. ILLINOISCLOUDNLP Cloud Infrastructure
ILLINOISCLOUDNLP’s NLP services are run as sets of
AMIs (“clusters”) on EC2. Each curator cluster has three
components:

• NLPCURATOR Worker. A number of NLPCURA-
TOR workers receive jobs (documents to be processed)
from the job queue, annotate the given document, and
store the processed result. Each worker is an AMI that
runs an instance of NLPCURATOR with a suite of Illi-
nois NLP tools or a model trained using an ILLINOIS-
CLASSIFIER component that is applied just like other
NLPCURATOR components.

• TRAINING UNIT. A component that trains a clas-
sifier based on the data given by user. It stores a
trained model to Amazon S3, so that NLPCURA-
TOR Workers can load it from S3 and run it on data.

• Manager. A control node that starts and stops Work-
ers and TRAINING UNITs. It runs a central queue that
stores all incoming jobs, which are then transferred to
Workers or TRAINING UNITs.

• Shared Data Store. A shared data store, Ama-
zon’s S3 service, that is accessed by all ILLINOIS-
CLOUDNLP components.

Figure 1 shows this architecture. The user workflow for
ILLINOISCLOUDNLP is described in Section 5.
The design challenges underlying this architecture are how
to manage the workload to optimize throughput and overall
cost; how to handle problems that arise with the software
being run on individual EC2 nodes; how to maintain user
security; and how to balance ease of use with user control
over the process.
To maximize ease of use, ILLINOISCLOUDNLP man-
ages the workload dynamically. It initially starts five
worker nodes to process the client’s data, then monitors
the throughput at the Job Queue component: if this is too

slow, it starts another five worker nodes. It will repeat this
process until a preset cap is reached (currently, 20 nodes,
which is the standard limit imposed by Amazon on users).
Once the job queue is exhausted, the worker nodes are shut
down as they complete their tasks.
Some ill-formed text or extremely long documents can
cause individual NLP annotators to fail. ILLINOIS-
CLOUDNLP tries up to 5 times to annotate each document,
then gives up. No annotations will be generated for these
specific documents, but there is no effect on other docu-
ments. If a node should fail completely for some reason, a
replacement node will be started automatically.
The ILLINOISCLOUDNLP interface provides a cost esti-
mator pane which is periodically updated based on current
system throughput. The interface also provides a “stop the
cluster” button, so that at any time if a user decides to ter-
minate an ongoing annotation task they can do so. In the
event of a partially completed task, all completed annota-
tions will be stored on S3. The user can also use the Ama-
zon Web Service EC2 interface to stop nodes, or to check
that nodes have been started.
For security and privacy, ILLINOISCLOUDNLP is set up
for users to deploy it from their own Amazon Web Service
account. The user logs into the ILLINOISCLOUDNLP’s
EC2 manager using substrings from their own security
keys, which prevents other parties from accessing their EC2
nodes and their data.

5. Using ILLINOISCLOUDNLP
This section gives details on setting up ILLINOIS-
CLOUDNLP and describes the workflow.

5.1. Prerequisites
The user must first set up a user account on Amazon Web
Services’ EC2 and S3 services. The account id and pass-
word will be used with the ILLINOISCLOUDNLP client to
initiate document processing. It is also necessary to se-
lect and start an AMI (virtual machine) instance so that
it is available when the client software connects to Ama-
zon. The Java Development Kit (version 1.5 or higher)
must be installed, and the JAVA HOME and JAVAC envi-
ronment variables must be set. The data to be processed
must be plain text.
Installing the ILLINOISCLOUDNLP client is straightfor-
ward – visiting the software’s home page2 and downloading
the zip file, unpacking the zip file in the desired location on
the host machine, and running the start script.

5.2. Overview
Throughout this section, we use the term annotations
to refer to the enriched output produced by NLPCURA-
TOR, including models previously trained in the ILLINOIS-
CLOUDNLP environment by the user.
The start script opens a locally hosted login page in a web
browser. After the user enters their Amazon login creden-
tials they indicate the data they wish to use, either select-
ing an S3 bucket they generated in a previous session or

2http://cogcomp.cs.illinois.edu/page/
software_view/IllinoisCloudNLP

16

Figure 1: System architecture of ILLINOISCLOUDNLP. Arrows indicate workflow: 1. The client uploads documents to be processed or
to train a classifier. 2. For an annotation task, the manager node transmits documents to worker nodes for processing. 3. Worker nodes
store annotated documents using Amazon’s S3 service. 4. When a model is trained, the client starts a training node, which stores the
model it learns on S3. 5. The user can access the data on S3 without starting a cluster.

naming a new one. This allows users to simply access data
they previously annotated without starting any annotation
servers. (The user can decide to use a different data bucket
or upload a new data set.)
The interface then starts the manager component on the
cloud. Once this has loaded, the user is directed to
a browser-based interface which presents four options:
1) View existing annotations generated in previous runs.
2) Add new annotations to data previously uploaded and
processed by the user. 3) Annotate new documents pro-
vided by the user with Illinois NLP services and/or user-
trained classifiers. 4) Train a new classifier (see Figure 2).
At any time after one or more jobs have been started, the
user can visit the cost estimation pane to get an estimate of
the expected time and cost. These estimates are dynami-
cally updated as the task progresses.

5.3. Annotating Text
The user defines an annotation task by specifying a set of
desired NLP annotations (see Figure 3). The list of avail-
able annotation components will also include any models
trained by the user.
When the user is satisfied with their task specification, they
start the process. Our client program will run the entire
system as described in the previous sections, and push the
raw documents into the job queue; all of this is initiated by
a single click.
The Jobs pane displays information about ongoing annota-
tion and training tasks, indicating which stage of processing
the system has reached (an example is shown in Figure 4).
Once the task is finished, the user is alerted and the anno-
tations are stored in an S3 bucket with a name provided by
the user. These annotations can be viewed or downloaded,
and by default are stored on S3 for later use.

Figure 3: Selecting annotation components for an annotation task

5.4. Using ILLINOISCLASSIFIER to Train a Model
Users can provide labeled text data to the ILLINOISCLAS-
SIFIER component to train and evaluate a classifier (see Sec-
tion 3.). Once data is provided, ILLINOISCLASSIFIER auto-
matically takes care of the rest – dividing the input data into
training and evaluation sets and tuning training parameters
to learn a robust model. In the initial release, the ILLINOIS-
CLASSIFIER uses simple n-gram features. In later releases,
we will enrich the feature representation to use the other
NLP annotations provided by the Annotation components.
To train a model using ILLINOISCLASSIFIER, the user first
creates on their own machine a directory for the data T
with a subdirectory for each label Li ∈ L, each named for

17

Figure 2: Main selection pane in ILLINOISCLOUDNLP interface

Figure 4: ILLINOISCLOUDNLP pane showing jobs in progress

the target label, and containing the text snippets associated
with that label. For example, for a spam filter, the user
would use two sets of files, one for the spam and one for
the non-spam. They would put each set of files in its own
directory, and name the two directories with the label they
would like the classifier to assign to that type of document.
They put these two directories into a single root directory,
and create a zip from that directory.

After selecting the option “Train Models” from the main
menu, the user will be prompted to upload the zip file (see
Figure 5). Clicking the “Train it” button uploads the data to
an S3 bucket and launches a single Amazon EC2 node that
runs the training process. Once completed, the interface
alerts the user, and a new model with the name provided by

the user appears in the list of available models in the Model
pane. It also appears as an available annotation component
when starting an annotation task (see Figure 3).

5.5. Viewing and Downloading the Annotated
Data

Once the documents in the collection have been processed,
the annotations are stored using Amazon S3 in the data
bucket the user named when the task was specified. The
processed documents can be viewed in a concise, human-
readable form using the ILLINOISCLOUDNLP client’s vi-
sualization interface (see Figure 6). Data labeled with
the ILLINOISCLASSIFIER component appear as views with
single labels.
By default, these annotations will remain on the Amazon

18

Figure 5: ILLINOISCLOUDNLP pane for setting up a classifier training task

S3 cluster storage service for later use (for a use case that
illustrates why this can be helpful, see Section 6.). They
can be downloaded from Amazon S3 using a third party
application such as S3cmd3 for local use, and deleted from
the S3 storage if desired.

6. An Example Application
For a recent project, we wanted to annotate 3.4 million doc-
uments from TAC KBP 2012 and 2013 (Ellis et al., 2012;
Ellis et al., 2013) with a set of our NLP tools. A server with
128G RAM and two 6-Core, 2.4GHz Intel Xeon E5645
processors would have taken more than two weeks to pro-
cess this collection. In the past, the best we could do was to
split our dataset and manually distribute it to several servers
running the curator. However, this is limited by the number
of available servers and the need to share them between
multiple projects. With ILLINOISCLOUDNLP, we were
able to annotate 3.05 million documents with the NLPCU-
RATOR’s Wikifier, NER, POS and Chunker components, in
only 20 hours and for $500. In addition, the outcome is a set
of serialized NLPCURATOR Record data structures (Clarke
et al., 2012) stored on Amazon S3; these can be easily de-
serialized and used in a number of programming languages.
But working on the Amazon EC2 cloud and using its S3
storage has other advantages too. In almost any project in-
volving a large set of documents, it is likely that there is a
need for some batch processing to generate useful statistics
from the annotated dataset, such as, for example, building
inverted indexes on words or entity mentions. Often this

3http://s3tools.org/s3cmd

involves a lot of time and energy, not only in building and
maintaining further infrastructure to support these opera-
tions, but also in running them on slow local hardware.
However, having all of our annotated documents in Ama-
zon S3, we are able to take advantage of other Amazon ser-
vices, specifically AWS Elastic MapReduce (EMR). Using
EMR, we can easily run MapReduce jobs on those anno-
tated documents using straightforward MapReduce code.
Through a very simple setup, EMR allows us to calcu-
late a wide range of interesting statistics on the text we
just processed. For example, counting frequency and co-
occurrence of entities, or answering more sophisticated
questions like what is the most popular adjective to describe
a noun such as “president”.

7. Related Work
We discuss below a number of other machine learning/NLP
frameworks built around cloud services, with varying ob-
jectives and expected user expertise.

7.1. API-based Services
A common way to provide cloud-based NLP services is
through an API. Two such services are AlchemyAPI (2014)
and Mashape (2014). AlchemyAPI is an API dedicated to
text processing. Mashape is an open-domain API market-
place which hosts several text analytics APIs, one example
being AYLIEN (2014). By virtue of being an API, these
services require more user expertise and, in addition, both
services are significantly more expensive than ILLINOIS-
CLOUDNLP. For example, the Mashape AYLIEN API
with minimal functionality costs $200 per month and only

19

Figure 6: Viewing annotated data.

allows 6000 transactions per day. It would take 500 days to
annotate our 3 million documents, at a cost of over $3000.
Semantria (2014) provides a variety of NLP services based
on the Lexalytics Salience engine, but is accessed only
through an API, or through Microsoft Excel. The baseline
cost is $450 per month for academic users ($900 for com-
mercial users), and the number of transactions is limited to
100,000 (where each transaction represents a discrete piece
of text to be annotated). Again, it requires more expertise
and is more expensive than ILLINOISCLOUDNLP.
AnnoMarket (Tablan et al., 2013) is based on GATE
tools (Cunningham et al., 2002) and provides APIs for text
processing, but also allows a user to create their own API
and sell it to others. Unlike the services above, the cost
is hourly based on machine usage. At present, AnnoMar-

ket has good multilingual support for some basic NLP tasks
but limited diversity in types of NLP tools. The key differ-
ence between these services and ILLINOISCLOUDNLP is
that simply by virtue of being APIs, they require significant
user expertise for even simple tasks.

7.2. NLP Processing Services
GATECLOUD (2014) is a cloud-based version of the
GATE suite of NLP tools, and it offers a number of spe-
cialty services. The relevant functionalities are similar to
those offered by ILLINOISCLOUDNLP, but only include
annotations out-of-the-box for a limited number of tools –
named entities, measurements, and numbers. Charges are
calculated by the hour.

7.3. Machine Learning Cloud Services
There are other cloud computing services that support ma-
chine learning and/or algorithm development. GoogleAPI
(2014) provides a service for learning and using a classifier,
but does not support the range of Text Analytics tools that
we do. Moreover, users must send their data to Google,
and build their classifier using its API. The free quota of
predictions is limited; going beyond 40k queries/day re-
quires direct negotiation with Google. GraphLab (2014)
provides the infrastructure for algorithms development on
the cloud, but targets algorithm developers rather than ap-
plication programmers as we do. Moreover, it does not have
an existing model for text analytic components as we do.

7.4. Summary
It is important to note that for all of the services described
in this section, the issues of of data privacy and security are
not handled in a clear and transparent way. For example, it
is sometimes unclear who provides the cloud computing re-
sources, and a third party is involved in handling billing and
in managing access to computing resources. Many of these
services require an ongoing financial commitment, limit the
amount of processing per day, or offer only relatively low-
complexity NLP analytics.
On the other hand, ILLINOISCLOUDNLP provides a state-
of-the-art suite of tools for English text analytics via a
very simple interface. Our analytics tools have all been
individually described and evaluated in peer-reviewed aca-
demic publications. There is no third party billing agent,
and users maintain direct control over their data, which is
processed and stored in a user-owned account on Amazon
EC2/S3 machines and protected via their Amazon creden-
tials. Rather than paying a monthly subscription for a fixed
upper limit on the number of documents that can be pro-
cessed, users pay as they go and process what they need,
when they need to.

8. Conclusions and Future Work
ILLINOISCLOUDNLP is a cloud-based service that allows
users to process plain text documents with a suite of state-
of-the-art NLP tools via a simple user interface, and to
train text classifiers using a generic feature representation.
This solution is cost-effective for end users with intermit-
tent processing needs and requires no NLP, Machine Learn-
ing, or Cloud Computing expertise. As a demonstration,

20

we have developed a simple application over ILLINOIS-
CLOUDNLP by processing 3.05 million documents from
the TAC KBP tasks with segmentation, Part of Speech,
Named Entity Recognition, and Wikification in approxi-
mately 20 hours, at a cost of approximately US$500. This
task would require about a month of continuous processing
on a single local server, a non-trivial installation effort, and
a lot of human expertise and supervision in case of failure.
The ILLINOISCLOUDNLP initial release is a working
prototype: it should already be a useful resource in its
own right. However, we plan to improve its capabilities
along two distinct dimensions. Additional Text Analytics
components will be added to ILLINOISCLOUDNLP based
on other stand-alone NLP components developed by the
Cognitive Computation Group4. The ILLINOISCLASSI-
FIER component will be extended to use features extracted
from NLPCURATOR annotations to allow more expressive
models to be learned. In addition, the learning framework
will be extended to allow chunk-level annotations such as
Named Entities to be learned.
We also plan to investigate caching mechanisms that go
beyond the current single-user model, and allow voluntary
sharing of document annotations.
ILLINOISCLOUDNLP can be downloaded from http:
//cogcomp.cs.illinois.edu/software/
IllinoisCloudNLP under an Academic Use license.
Its home page contains a more detailed overview of its use,
together with pointers to useful third party resources.

9. Acknowledgements
This research was supported by: the Multimodal Informa-
tion Access & Synthesis Center at UIUC, part of CCI-
CADA, a DHS Science and Technology Center of Excel-
lence; the Army Research Laboratory (ARL) under agree-
ment W911NF-09-2-0053; DARPA, under agreement num-
ber FA8750-13-2-0008; and NSF grant #SMA 12-09359.
The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either ex-
pressed or implied, of any of the aforementioned organiza-
tions.

10. References
AlchemyAPI. (2014). http://www.alchemyapi.com/. Ac-

cessed: March 2014.
Amazon.com. (2014). Amazon web services.

http://aws.amazon.com/. Accessed: March 2014.
AYLIEN. (2014). AYLIEN intelligence.

http://aylien.com/. Accessed: March 2014.
Cheng, X. and Roth, D. (2013). Relational inference for

wikification. In Proc. of the Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Clarke, J., Srikumar, V., Sammons, M., and Roth, D.
(2012). An NLP Curator (or: How I learned to stop wor-
rying and love NLP pipelines). In Proc. of the Interna-
tional Conference on Language Resources and Evalua-
tion (LREC), 5.

4For examples of these tools, please see http://cogcomp.
cs.illinois.edu/software and http://cogcomp.
cs.illinois.edu/demos.

Cunningham, H., Maynard, D., Bontcheva, K., and Tablan,
V. (2002). GATE: A Framework and Graphical Devel-
opment Environment for Robust NLP Tools and Appli-
cations. In ACL.

Ellis, J., Li, X., Griffitt, K., Strassel, S. M., and Wright,
J. (2012). Linguistic resources for 2012 knowledge
base population evaluation. In Text Analysis Conference
(TAC).

Ellis, J., Getman, J., Mott, J., Li, X., Griffitt, K., Strassel,
S. M., and Wright, J. (2013). Linguistic resources for
2013 knowledge base population evaluations. In Text
Analysis Conference (TAC).

GATECLOUD. (2014). GATECLOUD: Text solutions
on the cloud. https://gatecloud.net/. Accessed: March
2014.

GoogleAPI. (2014). Google Prediction API.
https://developers.google.com/prediction/. Accessed:
March 2014.

GraphLab. (2014). The GraphLab Project.
http://graphlab.org/projects/index.html. Accessed:
March 2014.

Hovy, E., Marcus, M., Palmer, M., Ramshaw, L., and
Weischedel, R. (2006). Ontonotes: The 90% solution.
In HLT-NAACL.

Kearns, M. J. and Vazirani, U. V. (1994). An Introduction
to Computational Learning Theory. MIT Press.

Mashape. (2014). Mashape, the cloud api platform.
https://www.mashape.com. Accessed: March 2014.

Punyakanok, V. and Roth, D. (2001). The use of classi-
fiers in sequential inference. In Proc. of the Conference
on Neural Information Processing Systems (NIPS), pages
995–1001. MIT Press.

Ratinov, L. and Roth, D. (2009). Design challenges and
misconceptions in named entity recognition. In Proc.
of the Conference on Computational Natural Language
Learning (CoNLL), 6.

Rizzolo, N. and Roth, D. (2010). Learning based Java for
rapid development of NLP systems. In Proc. of the Inter-
national Conference on Language Resources and Evalu-
ation (LREC), Valletta, Malta, 5.

Roth, D. and Zelenko, D. (1998). Part of speech tagging
using a network of linear separators. In Coling-Acl, The
17th International Conference on Computational Lin-
guistics, pages 1136–1142.

Semantria. (2014). Semantria: Text analytics and senti-
ment analysis. https://semantria.com/. Accessed: March
2014.

Tablan, V., Bontcheva, K., Roberts, I., Cunningham, H.,
and Dimitrov, M. (2013). Annomarket: An open cloud
platform for nlp. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguis-
tics: System Demonstrations, Sofia, Bulgaria.

Tjong Kim Sang, E. F. and De Meulder, F. (2003). In-
troduction to the conll-2003 shared task: Language-
independent named entity recognition. In CoNLL.

21

