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Abstract
This paper presents a method for greatly reducing parse times in LFG by integrating a Constraint Grammar (CG) parser into a
probabilistic context-free grammar. The CG parser is used in the pre-processing phase to reduce morphological and lexical ambiguity.
Similarly, the c-structure pruning mechanism of XLE is used in the parsing phase to discard low-probability c-structures, before
f-annotations are solved. The experiment results show a considerable increase in parsing efficiency and robustness in the annota-
tion of Wolof running text. The Wolof CG parser indicated an f-score of 90% for morphological disambiguation and a speedup
of ca. 40%, while the c-structure pruning method increased the speed of the Wolof grammar by over 36%. On a small amount of
data, CG disambiguation and c-structure pruning allowed for a speedup of 58%, however with a substantial drop in parse accuracy of 3.62.

Keywords: Wolof, LFG, c-structure pruning, probabilistic context-free grammar, Constraint Grammar.

1. Introduction

This paper presents a method for greatly reducing parse
times in LFG parsing of Wolof by combining disambigua-
tion models based on constituent structure pruning (Crouch
et al., 2013; Cahill et al., 2007; Cahill et al., 2008) and
Constraint Grammar (CG) (Karlsson, 1990). Traditional
LFG analyses focus on two levels of syntactic representa-
tion (Kaplan and Bresnan, 1982): Constituent structure (c-
structure) models the surface exponence of syntactic infor-
mation (e.g. word order, dominance and phrasal groupings),
and functional structure (f-structure) represents grammati-
cal functions like subject and object. C-structure pruning
constitutes a way of dealing with structural ambiguity: it al-
lows to make parsing faster by discarding low-probability
c-structures, before functional annotations are solved. Like-
wise, the use of CG disambiguation in a pre-processing step
allows to resolve morpholexical ambiguity.
This work takes place within a broader context of an on-
going process of creating language resources and tools for
Wolof. In previous work, a Wolof Morphological Analyzer
(WoMA) (Dione, 2012) has been developed using finite-
state techniques (Beesley and Karttunen, 2003). Subse-
quently, the main linguistically important aspects of Wolof
have been described and analyzed within the LFG frame-
work. This includes the treatment of clitics and the analy-
sis of the Wolof constituent structure (Dione, 2013b). Fur-
thermore, Dione (2013c) discussed the treatment of va-
lency changes and complex predicates found in Wolof, in-
cluding causative and applicative derivation. Dione (2013a)
presents the development of a large-scale LFG compu-
tational grammar for this language. At the current state,
the grammar has 250 XLE rules (with regular expression-
based right-hand sides) which compile into an automaton
with 2737 states and 39189 arcs. The expansion of the
Wolof grammar has led to serious efficiency and perfor-
mance problems that result from a variety of causes, includ-
ing long-distance dependencies, functional uncertainty, re-

stricted unification, but especially morpholexical and syn-
tactic ambiguities. To cope with these problems and to en-
hance coverage and parsing quality, robust parsing tech-
niques were adopted. However, as is typical for grammar
development, large-scale grammars tend to be massively
ambiguous, while parsing natural texts needs to be robust.
Loosening rules to allow robustness increases ambiguity. In
particular, when parsers are applied to large-scale linguistic
data, it becomes critically important to control ambiguity
and increase parsing performance and efficiency. Thus, the
present work is a further step in reducing ambiguity and
pruning the search space of the Wolof parser.
The parsing model used by XLE is a unification-based
parsing system. Basic components of the XLE architec-
ture include components for morphological analysis, a
chart parser and a unifier. Unification is typically the most
computation-intensive part of LFG parsing (Cahill et al.,
2007), and this is a practical reason for experimenting
with the parse pruning method in this work. XLE usually
spends most of its time in the unifier, “searching for valid
f-structures (dependency attribute value matrices) within
the space of the many valid c-structures (phrase structure
trees)" (Cahill et al., 2007). Since a particular grammar gen-
erates many valid c-structure trees for a given input, the uni-
fier then processes all of these trees (as packed structures).
Consider for example the Wolof sentence “Xale bi moom
doon ree." shown in (1). The sentence has more than 100
valid c-structure trees according to the current Wolof gram-
mar.1 However, once the CG disambiguator has removed
the unintended readings and the unifier processed all of
these trees (in a packed form), only one c-structure and f-
structure pair is valid (see Figure 1).

1For example, bi can be a determiner, a bound or a free relative
pronoun and a complementizer as well; moom can either be a
verb, a strong pronoun or a topic adverb; doon can be a copula or
a past progressive auxiliary, etc.

2863



(1) Xale
child

bi
the

moom
adv.TOP

doon
AUX.PST.PROG

ree.
laugh

‘As for the child, (s)he was laughing.’

Figure 1: C- and f-structure for sentence (1)

The structure of this paper is as follows: Section 2. presents
the constraint-based model of morphological disambigua-
tion used for Wolof. Section 3. describes the chart pruning
mechanism used for syntactic disambiguation. Section 3.1.
introduces the chart pruning mechanism of XLE. Section
3.2. discusses experiments conducted on the Wolof devel-
opment set, from which the most successful cutoff value is
selected to annotate the test set. Both the c-structure prun-
ing mechanism and the Wolof morphological disambigua-
tor are evaluated against manually constructed gold stan-
dards. Section 4. concludes the discussion.

2. CG Disambiguation for Wolof
In a recent past, robust NLP systems based on Constraint
Grammar have been reported for several languages, includ-
ing English (Karlsson et al., 1995), Norwegian (Hagen et
al., 2000), French (Bick, 2004) and Spanish (Bick, 2006).
The CG formalism (Karlsson, 1990) has been developed at
the University of Helsinki. As a methodological paradigm
for handling token-linked information in a contextual, rule-
based fashion, the CG formalism is “used for parsing where

the grammar statements are closer to real text sentences and
more directly address some notorious parsing problems, es-
pecially ambiguity" (Karlsson, 1990, p. 1).
Accordingly, a CG disambiguator is integrated into the
Wolof parser to handle morpholexical (but not syntactic)
ambiguity in the pre-processing phase. The implementa-
tion of the CG model is developed by Didriksen (2003)
within the VISL NLP framework.2 The disambiguator uses
the third generation compiler vislcg3 (Bick, 2000).
As is typical within the CG framework, contextual rules are
used to add, remove, select or replace tags in a token-based
fashion. CG rules are usually ordered in task batches, also
called sections. Within each section, there is an heuristicity
order: the rules are usually divided into safer rules (i.e. rules
to be used earlier) and heuristic rules (rules to be used later).
The rules are applied in a deterministic and sequential way,
so that removed information can’t be recovered; yet it re-
mains the task of the grammar writer to place the safest
rules first. Also, the CG compiler uses very robust features
to always assign an analysis to a given input. For instance,
it does not allow to remove the last remaining reading of a
given type. Consequently, the rules applied late can’t cause
harm, if safer rules already have disambiguated a token.

2.1. The Morphological Analyzer
In the preprocessing phase, the Wolof grammar uses a cas-
cade of finite-state transducers (Kaplan et al., 2004).

MORPHOLOGICAL
ANALYZER

CG TOKENIZER
STANDARD
TOKENIZER

INPUT

PoS/morph

LEXICON

valency
semantics

ANNOTATION

PoS/morphological
disambiguation CG

LFG PARSER CG STD LFG PARSER

Figure 2: Anatomy of the Wolof parsing system

As Figure 2 shows, the input is first tokenized either by a
deterministic CG tokenizer or by a non-deterministic stan-
dard tokenizer. Next, morphological analysis (Dione, 2012)
is carried out. The output of the morphology is either dis-
ambiguated prior to syntactic analysis or directly fed into
the standard (std) LFG parser (i.e. without CG disambigua-
tion), before the morphosyntactic annotation is produced.
Some relevant components of this system are presented in
the next sections.

2See http://beta.visl.sdu.dk.
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2.2. The Lexicon
The Wolof CG system requires a lexicon-based morpho-
logical analysis as input. The lexicon is a finite-state trans-
ducer initially created using the existing Wolof dictionaries
and grammars, e.g. Diouf (2003) and Diouf (2009), as a
guidance. Dictionary updates and new words found in the
Wolof corpora are regularly and directly added to the Wolof
morphological analyzer. In building this lexicon, the root
(and in some cases the stem) was taken as the base form.
Stems for closed classes are directly encoded in the lexi-
con, since most of these stems have a wide range of forms
due to agreement with the Wolof noun class system. Lem-
mas for open classes (verbs, common nouns, proper names,
adverbs, etc.) were also added into the lexicon.
One main challenge in creating the lexicon was to obtain
valency frame information required by the morphological
analyzer to deal with the text input. Since there are cur-
rently no annotated corpora for Wolof, it was difficult to
automatically extract verb valency frames. Because it was
more efficient to use existing resources as to start build-
ing frames from the scratch, the solution adopted was to
manually collect these frames from printed Wolof dictio-
naries. There exist some Wolof dictionaries which contain
verb frames encoded in a formal way, but their size is quite
limited (ca. 2000 verbs) and the information concerns only
surface frames. Nevertheless, these dictionaries were useful
for creating the lexicon. At the current stage of the gram-
mar development, the lexicon contains approximately 2836
valency frames.

2.3. Morphological Disambiguation
In Wolof, many words, especially short tokens such as la,
ne, bi, etc. have more than one possible reading. As exam-
ple (2) shows, la can be multiply ambiguous with both a
verbal and non-verbal reading. It can be a non-subject fo-
cus inflectional (INFL) marker (2a), a non-subject copula
(2b), a clitic object (2c), a determiner (2d), a bound (2e) or
a free (2f) relative pronoun and a complementizer (2g).

(2) a. Fas
horse.w-cl

la
3sg.FOC

gis.
see

INFL

‘It is the horse that he saw.’

b. Fas
horse.w-cl

la.
COP.3sg

Non-subject copula

‘It is a horse.’

c. Gis-u-ma
see-NEG-1sg

la.
2sgO

Clitic object

‘I haven’t seen you.’

d. Ngelaw
wind.l-cl

la
l-cl.det

agsi.
arrive

Determiner

‘The wind came around.’

e. Ngelaw
wind.m-cl

la
REL.l-cl

mu
3sg

doon
ipf.PST

xaar
wait

agsi.
arrive

‘The wind he was waiting for came around’

f. la
free.REL

mu
he

gis-oon
see-PST

... Free relative

‘What he saw ...’

g. la
COMP

mu
3sg

doon
ipf.PST

ngelaw
be.windy

lépp
quant

...

‘Despite the fact that it was windy ...’

In the following, I will show how CG can be used to dis-
ambiguate the sentence in (2a), which has ca. 42 readings.
The multi-tagged text of this sentence before disambigua-
tion is displayed in (3).3 The cohort (i.e the analysis lines)
“<la>” has received seven different readings in the mor-
phology analysis.4

(3) <"fas">
f a s +V+Base+Main+A c t i v e
f a s +N+Common+w+y+Count+Anim
f a s +N+Common+g+y+Count+Inanim

<"la">
l a +Comp+Free
l a +Det+Def+ l +Sg+D i s t+NonHum
l a +Pron+Rel+ l +Sg+D i s t+NonHum
l a +Pron+Free+ l +Sg+D i s t+NonHum
l a +INFL+NonSubjCopula+3SgSubj
l a +INFL+CompFoc+3SgSubj+ I n d i c
l a +C l t+Obj+P e r s +2+Sg+Weak+Acc

<"gis">
g i s +V+Base+Main+A c t i v e
g i s +N+Common+b+y+Count+Inanim

<".">
.+PERIOD

In order to get the desired reading for the Wolof input sen-
tences, a large number of detailed constraints have been de-
veloped for each possible correct reading. The use of these
constraints are exemplified in the next sections.

2.3.1. Disambiguating Determiners
A great deal of ambiguities in the Wolof nominal system
can easily be resolved by looking at noun class (NC) agree-
ment of the constituents. In such a system, agreement typi-
cally takes the form of class agreement on a dependent with
a governing noun or plural agreement. Class agreement is
seen on determiners, demonstratives, relative pronouns, etc.
Accordingly, those analysis lines in (3) which contain a
noun class tag that does not occur in the analysis line of
the adjacent noun can be removed. For instance, the deter-
miner reading of la can be safely removed, since it belongs
to the l class that differs from the possible classes for the
noun fas, which can take either the g or the w index.
Examples (4-7) show three constraint rules used to filter
out unintended analyses of la. These rules are written in
accordance with the CG-3 compiler documentation.5

(4) Constraint: remove the definite determiner reading
if left adjacent word is a noun which does not agree
with the determiner noun class.

3For the definition of the tags, see Dione (2012).
4Note that the word fas may have a verbal and a nominal reading.
Within the nominal reading, the word is semantically ambiguous:
It can mean ‘horse’ or ‘amulet’, depending on the noun class, i.e.
on whether it co-occurs with the w or the g noun class index;
the index functions as a stem to which a determiner/pronoun/etc.
affix is added.

5See Bick (2009) and http://beta.visl.sdu.dk/cg3.html.
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REMOVE (Det Def) + $$NC
IF (NEGATE -1 NOM + $$NC)

(NEGATE *-1 Pron + $$NC BARRIER
CLB);

In (4), a definite determiner, (Det Def ), that contains a noun
class index is removed from a cohort, if and only if the
two following conditions match: (i) if there is no nominal
(NOM), with the same class, occurring immediately to the
left (-1); (ii) if there is no pronoun with the same noun class
anywhere (*) to the left from the first neighbouring posi-
tion, and if there is no clause boundary (CLB) in between
(BARRIER). A barrier context blocks the preceding con-
text search, if the barrier condition is instantiated before the
unbounded context can be instantiated. Hence, in this rule,
the matching condition is to be formulated as an agreement
feature shared between the noun and its dependent. For this
purpose, the third generation compiler vislcg3 allows the
use of sets as to-be-unified variables, prefixing $$ before
the set name (i.e. $$NC). All occurrences of such a set in
a given rule will be unified to mean the same set member,
and the rule operation will only apply if the set does have
a member that satisfies all occurrences of the set in both
target and contexts at the same time.
Example (4) illustrates a very simple rule. More complex
rules will often incorporate more than one context as well
as conditioned (LINK) contexts and rule templates.

2.3.2. Disambiguating Relative Pronouns
Like determiners, relative pronouns agree in singular or
plural noun class with the noun they relate to. Thus, a sim-
ilar rule to (4) applies for this grammatical category. In ad-
dition, relative pronouns can be directly removed in a more
general context, e.g. if the right adjacent constituent is a
prepositional phrase, a conjunction or a punctuation symbol
(’.’, parenthesis, etc.). Also, this reading can be removed if
none of the following conditions holds: (i) a transitive verb
or a predicate noun occurs anywhere to the right from the
first neighbouring position; (ii) the left adjacent word is a
nominal, a locative PP, a personal or quantitative pronoun;
(iii) if there is no relative pronoun anywhere (*) to the left
from the second neighbouring position. Such remove oper-
ations can be accomplished by the rule given in (5).

(5) REMOVE (Pron Rel)
IF (1 T:PP | CONJ | PUNCTUATION)
(NEGATE -1 Nominal | (PP Loc) |
(Pron QuantPron) | (Pron PersPron)
| Quotes)
(NEGATE *1 Verb | PredNoun
| COMMA BARRIER CLB)
(NEGATE *-2 (Pron Rel));

2.3.3. Disambiguating Copular Elements
Conditioned context rules are exemplified in (6) which re-
moves the copular reading if both contexts (left and right)
contain a verb.

(6) Constraint: remove the non-subject copular reading
if left adjacent and right adjacent word are verbs.

REMOVE (Icop) IF (-1 Verb LINK 2 Verb);

The contexts, chained by the word LINK, are applied as
AND-linked conditions, i.e. all conditions of this rule must
be true for the rule to apply. The second, linked context con-
dition is written in the same way as the first one, however,
its relative position is calculated from the instantiated first
context rather than the rule target.

2.3.4. Disambiguating la Complementizer
(7) Constraint: remove la as a complementizer if a tran-

sitive verb occurs anywhere to the right from the
first neighbouring position, and if there is no clause
boundary in between.

REMOVE ("la’’ Comp)
IF (*1C (Verb Trans) BARRIER CLB);

The rule in (7) removes la as a complementizer if an un-
ambiguous (C) transitive verb occurs anywhere to the right
from the first neighbouring position, and if there is no
clause boundary in between.
Having applied the rules in (4-7), only three cohort lines of
la will be retained, as shown in (8).

(8) <"fas">
fas+V+Base+Main+Active
fas+N+Common+w+y+Count+Anim
fas+N+Common+g+y+Count+Inanim

<"la">
la+Pron+Free+l+Sg+Dist+NonHum
la+INFL+CompFoc+3SgSubj+Indic
la+Clt+Obj+Pers+2+Sg+Weak+Acc

<"gis">
gis+V+Base+Main+Active
gis+N+Common+b+y+Count+Inanim

<".">
.+PERIOD

In general, a great number of lexical ambiguities can be
reduced by looking at the local context. However, in some
cases it is difficult to fully disambiguate. This is particularly
true for contexts including Wolof nouns which, similar to
Arabic nouns (Attia, 2008), are multifunctional. This mul-
tifunctionality is characterized by the fact that many Wolof
nouns are derived from verbs and can take verbal functions
in the sentence (some nouns can also become prepositions,
adverbs, etc.). Thus, disambiguating free relative pronouns
and object clitics in some cases is a task which requires a
careful rule design. Considering the example shown so far,
in the current Wolof CG disambiguator, the surviving co-
hort lines may remain undisambiguated.

2.4. The Constraint Grammar Rules for Wolof
The Wolof disambiguator consists of 250 rules for morpho-
logical disambiguation. The disambiguator contains a rela-
tively small set of rules — e.g. compared to the Portuguese
CG system PALAVRAS (Bick, 2006) which has 1418 mor-
phological disambiguation rules — but is relatively effi-
cient. Applying the CG disambiguator on the Wolof test
data (Cissé, 1994; Garros, 1997) and (Ba, 2007) reduced
the average numbers of readings per token from 2.69 to
1.55. Section 3.2. discusses the evaluation of the CG dis-
ambiguator. Before discussing the experimental evaluation,
let us first consider the c-structure pruning in XLE.
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3. C-structure Pruning
As noted above, XLE usually spends considerable time
in the unification phase. Thus, previous works (Cahill et
al., 2007; Cahill et al., 2008) concentrated on exploring
techniques to reduce the number of c-structure trees to be
processed by the unifier. Cahill et al. (2008) evaluate the
methodology on data from English, German and Norwe-
gian and show that the same patterns hold across languages.
The English and German LFG parsing system was respec-
tively trained on (WSJ) Penn Treebank and on (FR) TIGER
Treebank data. For both, a significant speed-up (67% and
49%, respectively) with a stable parsing accuracy could
be observed. For Norwegian, this technique allows for a
speedup of 40% in parsing time, but causes a slight loss
in accuracy. According to Cahill et al. (2008), this parsing
quality could probably be improved using more data.
Similar to the work carried out by Cahill et al. (2008), the
c-structure pruning mechanism of XLE (Cahill et al., 2007;
Crouch et al., 2013) is applied to Wolof. In an experiment,
I investigate ways to improve the overall parsing time con-
sisting in pruning the search space at an earlier stage of the
parsing process. Section 3.1. presents the basic idea of the
c-structure pruning mechanism of XLE. Section 3.2. dis-
cusses the experiments conducted for Wolof and reports on
the experimental evaluation results.

3.1. The C-structure Pruning Mechanism of XLE
The pruning process starts by training a probabilistic
context-free grammar on a corpus annotated with syntac-
tic bracketing. Such a grammar typically has context-free
rewrite rules with one non-terminal symbol on left-hand
side (LHS) and a combination of terminal and/or non-
terminal symbols on right-hand side (RHS). XLE grammar
rules are context-free rules augmented with functional an-
notations. The probabilities associated with these rules can
be estimated as relative frequencies found in a parsed (and
disambiguated) corpus. More specifically, during the train-
ing, XLE uses a chart-based mechanism to build parses and
collect probabilities for subtrees stored in the chart. The
probability of a tree is defined as the product of the prob-
abilities of each of the rules used to form the tree, includ-
ing the rules that lead to lexical items. The probability of
a rule is basically the number of times that particular form
of the rule occurs in the training data divided by the num-
ber of times the rule’s category occurs in these data, plus
a smoothing term. The pruning mechanism occurs then at
the level of individual constituents in the chart. Having esti-
mated the probabilities of each of the constituent subtrees,
XLE compares them (i.e. the probability of each subtree
is compared with the best subtree probability for that con-
stituent). If a subtree’s probability is lower than the best
probability by a given factor, then the subtree is pruned.
The cutoff value is the natural logarithm of that factor. So a
value of 5 means that a subtree will be pruned if its proba-
bility is about a factor of 100 less than the best probability.
To illustrate how this works, consider the sentence “Bo-
room jooy ni xale”. As Figures 4 and 5 show, this sentence
has two different analyses which are provided with hypo-
thetical probabilities for each rule. These analyses come
together at the S constituent that spans the whole sen-

tence. The probability of the first and the second analysis is
8.4375E-14 and 4.21875E-12, respectively. This means that
reading 1 in Figure 4 is 50 times less probable than reading
2 in Figure 5.6 Depending on how the c-structure pruning
cutoff is set — e.g. if the threshold is less than the natural
logarithm of 50, (about 3.9) — reading 1 may be discarded
even before corresponding f-annotations are solved. If so,
the sentence will only get one solution rather than two.

S

NP

N

Boroom

N

jooy

VP

V

ni

NP

N

xale

S → NP VP 0.5000
NP → N N 0.1500
N → Boroom 0.0010
N → jooy 0.0015
VP → V NP 0.2000
V → ni 0.0050
NP → N 0.5000
N → xale 0.0015

8.4375E-14

Figure 4: Analysis 1 for the string Boroom jooy ni xale “the
crying owner says children” with hypothetical probabilities

S

NP

N

Boroom

VP

V

jooy

PP

P

ni

NP

N

xale

S → NP VP 0.5000
NP → N 0.5000
N → Boroom 0.0010
VP → V PP 0.1000
V → jooy 0.0025
P → ni 0.0500
PP → P NP 0.9000
NP → xale 0.0015

4.21875E-12

Figure 5: Analysis 2 for the string Boroom jooy ni xale “the
owner cries like children" with hypothetical probabilities

3.2. Experiments on Wolof
To test the effect of c-structure pruning, a number of parsing
experiments have been conducted. The experiments aimed
at evaluating the parsing system against both accuracy and

6The hypothetical probabilities are reproduced from Crouch et al.
(2013).
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XLE Output: (ROOT (IP (DP (DP (NP (N xale)) (D bi)) (ADVP (ADV moom))) (S (VPaux (AUX doon) (VP (V’ (V ree)))))) (PER .))
Labeled: \[ROOT \[IP \[DP \[DP Xale bi \] moom \] \[S doon \[VP ree \] \] \] .\]

Unlabeled: \[ \[ \[ \[ Xale bi \] moom \] \[ doon \[ ree \] \] \] .\]

Figure 3: Example of bracketed sentences as input to the c-structure pruning training method

parsing time. Because the pruning algorithm of XLE prunes
the c-structure chart using information that is only available
in this chart, a corpus of bracketed sentences as gold stan-
dard is needed in order to train the chart pruner. Accord-
ingly, the experiment process consists first in parsing the
unlabeled training data using the Wolof hand-crafted pars-
ing system.

First, the short stories in Cissé (1994) and Garros (1997)
are annotated using the Wolof standard LFG parser.
Then, using the LFG Parsebanker (Rosén et al., 2009), a
discriminant-based approach is taken to manually disam-
biguate the parsed sentences and to collect fully disam-
biguated sentences as gold standard. This tool also allows
to automatically export the training data as bracketed sen-
tences. Thus, the gold standard sentences could automat-
ically be extracted and used to pre-bracket input to XLE,
constraining the valid c-structure space for each sentence.
Thus, only those sentences which could get a full parse and
be fully disambiguated were included in the gold standard,
meaning that fragments and other non-full sentences were
not used as gold standard.

An additional step required to train the pruner was to cus-
tomize the Wolof grammar so that it can deal with the for-
mat of the sentences in the gold standard corpus. Therefore,
the grammar rules are rewritten to integrate the brackets
LSB (left square bracket) and RSB (right square bracket)
and to convert the relevant rules into the form XP –> LSB
XP RSB. The LSB and RSB symbols were introduced since
XLE expects that the brackets are named so. If the input to
the XLE parser is bracketed, the parser will only generate c-
structures that respect these brackets, i.e. only c-structures
with brackets that are compatible with the input brackets
are considered during the unification stage. However, when
gathering statistics, XLE will ignore rules of this form.

There are 4125 features in the final pruning model, which is
relatively small compared to the 52,959 features in the Ger-
man pruning model (Cahill et al., 2008). With this input,
the Wolof LFG parser was trained in two different ways:
(i) only using the regular Wolof grammar without CG dis-
ambiguation and (ii) using the CG parser for morphologi-
cal disambiguation. The c-structure algorithm was trained
on randomly selected sentences: (i) 380 sentences extracted
from Cissé (1994) and Garros (1997), and (ii) 246 sentences
from So Long a Letter (Ba, 2007). Figure 3 gives an exam-
ple of bracketed sentences used as input to the c-structure
pruning algorithm.

The typical time of XLE components with the Wolof gram-
mar is: Morphology (0.1%), Chart (3.1%) and Unifier
(85.5%). The c-structure pruning technique was first ex-
perimented with different values of the pruning cutoff on
the development set. Tables 1 and 2 show the experiment
results on this set without and with CG disambiguation, re-
spectively. The LFG evaluation metric for the development
and test set is based on the comparison of full f-structures,

represented as triples relation(predicate,argument).7 Thus,
the f-structures (i.e. the triples) of the system are compared
to the triples-based gold standards. For each comparison,
the best match, i.e. the reading that comes closest to the in-
tended analysis (from all source analyses) is chosen. Thus,
the oracle f-score refers to a regular f-score calculated from
the set of the triples in best match solution.8

As similarly experienced by Cahill et al. (2008), the experi-
ments results in Wolof show that the lower the cutoff value,
the quicker the sentences can be parsed. This is true for
both experiments (i.e. with or without CG disambiguation).
Using a cutoff of 4 and without CG disambiguation, the de-
velopment sentences can be parsed in 180 CPU seconds,
while with a cutoff of 10, the same experiment takes 414
CPU seconds. With no cutoff and no CG disambiguation,
the experiment takes 710 CPU seconds. In contrast, using a
cutoff of 4 combined with CG disambiguation, the develop-
ment set can be parsed very much more quickly, i.e. in 93
CPU seconds, while with a cutoff of 10, the same experi-
ment takes 297 CPU seconds. Using the CG disambiguator
with no cutoff, the experiment takes 520 CPU seconds.
However, this increase in speed comes at a price. For
both experiments, the number of fragment parses increases,
meaning that there are more sentences that failed to get a
complete parse, which impacts negatively on the results.
With no pruning, the number of fragment parses for the
experiment without or with CG disambiguation is 29 and
46, respectively. However, with the most aggressive prun-
ing factor 4, there are 121 and 138 fragment parses, respec-
tively. There are also many more skimmed sentences with
no c-structure pruning.
The c-structure pruning has also a negative impact on
the quality of the f-structure. With c-structure pruning,
the number of fragment parses increases for all thresh-
olds, independently of CG disambiguation. Note that the
Wolof gold standard only consists of sentences that can be
parsed by the grammar, thus excluding fragment parses and
skimmed sentences. Theoretically, the oracle f-score for the
experiment with no pruning should be 100. The relatively
slight drop is due to the fact that the gold standard was man-
ually built by allowing all possible parse solutions and then
selecting the best parse, while during the experiment some
parse possibilities may be blocked, e.g. due to the use of OT
marks (Frank et al., 2001). Without CG disambiguation, a
cutoff of 10 seems to provide the best tradeoff between time
and accuracy. In contrast, if CG disambiguation is used, a
cutoff of 9 seems to perform best on the development data.

7For more details about the LFG triples-based metric, see e.g. Rie-
zler et al. (2002).

8For instance, if S is the set of dependency triples in the (best)
solution of the system and G is the set of dependency triples in
the gold standard, the precision P is calculated as |S ∩ G|/|S| and
the recall R is calculated as |S ∩ G|/|G|. The F-score is the geo-
metrical mean of precision and recall, i.e. F = (2 * P * R)/(P +

R).
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Pruning Level None 4 5 6 7 8 9 10
Time (CPU seconds) 710 180 276 374 419 518 404 414
Oracle F-Score 96.83 79.67 80.98 83.08 86.13 87.98 89.51 90.90
# Fragment Parses 29 121 119 100 74 66 58 48
# Skimmed Sentences 27 2 7 12 8 14 16 17
# Time Outs 1 0 0 0 0 1 0 0

Table 1: Results of c-structure pruning experiments on Wolof development data without CG disambiguation

Pruning Level None 4 5 6 7 8 9 10
Time (CPU seconds) 520 93 112 134 200 202 177 297
Oracle F-Score 90.94 80.70 82.07 83.73 85.04 86.47 87.34 88.16
# Fragment Parses 46 138 113 92 74 74 67 60
# Skimmed Sentences 13 2 2 5 9 11 10 11
# Time Outs 2 0 0 0 0 0 0 0

Table 2: Results of c-structure pruning experiments on Wolof development data using CG disambiguation

Without CG With CG
Pruning Level None 10 None 9
Total Time 7374 4779 4473 3164
Oracle F-Score 93.02 92.05 90.52 89.40
# Full Parses 1712 1613 1551 1434
# Fragment Parses 627 737 775 917
# Time Outs 10 5 8 6
# Skimmed Sentences 348 240 191 125

Table 3: Results of the c-structure pruning experiments on
Wolof test data

Having established the cutoffs that perform best on the de-
velopment data, c-structure pruning was applied on the test
set for final evaluation. This consists of 2364 unseen sen-
tences randomly selected from Ba (2007) and disjoint from
those sentences included in the training and development
set. Table 3 shows the results on the test set. Note that
for the test set, automatic measurement was not possible in
Wolof, since gold standards to match against the whole test
sentences are not available. Instead, I took a random sam-
ple of 50 sentences from the test set and build gold standard
for this subset. Thus, the f-scores provided in Table 3 refer
to the results obtained via f-structure comparison between
this gold standard and the system output for this subset.
In the test set, c-structure pruning with and without CG dis-
ambiguation gives a huge reduction in parsing time. Again,
this increase in speedup results in a relatively significant
drop in f-score quality. A cutoff of 10 leads to speedup over
36% and a drop in oracle f-score of 0.97 points. With CG
disambiguation, a cutoff of 9 allows for a speedup of 30%
and a drop in f-score of 1.12. In total, a threshold of 9 com-
bined with CG disambiguation leads to a speedup of 58%
and a drop in f-score of 3.62.
Table 4 shows the ambiguity reduction achieved by using
the c-structure pruning algorithm and CG.9 Combining c-
structure pruning with CG disambiguation (row 3.) pro-
vides the best results with over 80% ambiguity reduction.

9Because the ambiguity rate was measured relative to the common
full parse solutions produced by the specific test run, the values
for ambiguity rate are not absolute, but rather relative values.

Ambiguity Ambiguity
Rate Reduction

1. w/o CG w/o Pruning 209.77 72.92%cutoff 10 56.81

2. w/o CG w/o Pruning 174.38 77.64%with CG w/o Pruning 56.45

3. w/o CG w/o Pruning 154.66 80.66%with CG cutoff 9 29.92

Table 4: Ambiguity reduction when using c-structure prun-
ing and CG disambiguation

4. Conclusion
This paper has presented a method for greatly reducing
parse times in LFG parsing of Wolof by combining the
c-structure pruning of XLE with CG-based models for
morphological disambiguation. The CG disambiguator pre-
sented in this paper is still in progress. It shows that a mod-
est number of CG rules can improve both efficiency and
performance of the LFG parser, while significantly reduc-
ing the large number of lexical and morphological ambi-
guities. By using the c-structure pruning mechanism, the
number of the c-structures built in the chart reduced consid-
erably, allowing for a significant improvement of the pars-
ing time. Combining the c-structure mechanism with CG
disambiguation greatly increased the parsing efficiency by
58%, however at the expense of the accuracy of the overall
system. With such a combination, the parsing quality de-
creased by ca. 3.62. With more training data one can expect
this figure to increase. The Wolof LFG grammar is avail-
able electronically and can be accessed for public use from
http://clarino.uib.no/iness/.
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