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Abstract
Electronic Medical Records (EMRs) encode an extraordinary amount of medical knowledge. Collecting and interpreting this knowledge,
however, belies a significant level of clinical understanding. Automatically capturing the clinical information is crucial for performing
comparative effectiveness research. In this paper, we present a data-driven approach to model semantic dependencies between medical
concepts, qualified by the beliefs of physicians. The dependencies, captured in a patient cohort graph of clinical pictures and therapies is
further refined into a probabilistic graphical model which enables efficient inference of patient-centered treatment or test recommendations
(based on probabilities). To perform inference on the graphical model, we describe a technique of smoothing the conditional likelihood of
medical concepts by their semantically-similar belief values. The experimental results, as compared against clinical guidelines are very
promising.
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1. Introduction
An increasing abundance of clinical data is available through
massive warehouses of Electronic Medical Records (EMRs).
Both within the United States and across the world, hospitals
generate millions of EMRs each year. These EMRs include
rich clinical information, consisting of detailed notes on
patients’ medical history, physical exam findings, lab re-
ports, radiology reports, operative reports, and discharge
summaries. Clinical information contains multiple men-
tions of medical problems, including observations resulting
from a physical exam (known as signs), features that the
patient observed first-hand (known as symptoms), historical
and present medical problems (known as co-morbidities), in
addition to diagnostic information. We have used the onto-
logical definitions of medical concepts related to diseases
outlined in (Scheuermann et al., 2009) to capture the seman-
tics of clinical information. Hence, we have considered the
fact that EMRs also document the medical interventions per-
formed during the patient’s hospital stay, including medical
tests and their results, as well as all the medical treatments
performed as part of the patient’s therapy. These forms of
clinical information are crucial for performing comparative
effectiveness research. As shown in (Ratner et al., 2009),
capturing the clinical information from EMRs enables the
discovery of alternative methods to prevent, diagnose, treat,
or monitor a medical problem.
It has been shown that clinical information – medical con-
cepts (e.g. problems, tests and treatments) – can be automat-
ically identified from clinical texts, as described in (Uzuner
et al., 2011). However, because medical science centers
around asking hypotheses, experimenting with new methods
of care, and evaluating medical evidence, medical concepts
are associated with different degrees of belief, or assertions.
As such, clinical writing entails a large number of specula-
tive statements indicating the physician’s belief at the time,
rather than strictly quantifying a fact. In order to take into
account the physicians’ beliefs when automatically process-
ing the clinical information from EMRs, we also recognized

the assertions formulated by physicians when discussing any
of the medical concepts.
The 2010 i2b2/VA challenge evaluated the task of automati-
cally inferring six types of assertions, or belief states, used
to qualify medical problems in EMRs (Uzuner et al., 2011).
However, those assertions correspond to clinical information
found in only one type of EMR: discharge summaries. Be-
cause we consider more types of EMRs, we have extended
the problem of classifying medical assertions by consider-
ing additional types of assertions. The new assertion values
were selected based on discussions with practicing clini-
cians, and by following the guidelines outlined in (Uzuner
et al., 2011).
Medical concepts and their assertions were cast as nodes
in a graph which encodes a patient’s clinical picture and
therapy along with the potential dependencies between
them. We called this graph the clinical graph (CG). As
in (Scheuermann et al., 2009), the clinical picture is defined
as the clinical phenome1 which contains the clinical findings
(e.g. medical problems, signs, symptoms and tests). Like-
wise, we use Scheuermann’s definition of therapy as all the
treatments, cures, and preventions included within the man-
agement plan for an individual patient. Figure 1 illustrates
our representation of the CG for a patient. Given the pa-
tient’s hospital visit, we automatically discover the medical
problems along with the tests and treatments documented
during the patient’s hospital course. Medical problems, tests,
and treatments are qualified by their assertions and con-
nected by their dependencies (e.g. when cellulitis was a
present diagnostic, a blood culture test was conducted).
Moreover, as reported in (Scheuermann et al., 2009), the
clinical picture may vary widely between patients with the
same disease and even for the same patient during the course
of his or her diseases. Therefore, in order to capture the vari-
ation in the corresponding clinical graphs (CGs), we have

1While the clinical phenotype refers to the set of observations
related to a medical condition, the clinical phenome is the set of
observations pertaining to a single patient.
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Medical Problem Assertion 
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Figure 1: The Clinical picture & therapy Graph (CG).
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Figure 2: The combined Cohort Clinical Graph (CCG).

considered a patient cohort which we obtained by using the
system reported in (Goodwin and Harabagiu, 2013). Patient
cohort retrieval results in an ordered set of hospital visits
which correspond to a cohort of patients sharing the same
diagnosis (e.g. patients with abcess2). As illustrated in Fig-
ure 2, this enabled us to access all the clinical pictures and
therapies from all the clinical graphs (CGs) of all patients
within a cohort. This clinical information regarding a patient
cohort constitutes the set of all hospital visits (V), the set of
all medical problems (M), the set of all medical tests (E),
and the set of all treatments (R), across the CGs of all the
patients belonging to the cohort. We refer to the graph that
combines all CGs as the Cohort Clinical Graph (CCG).
Given a patient cohort, the corresponding CGG was cast as a

2Abscess is an infectious disease of the skin and soft tissue.

k-partite graph (where k = 4) because there are four types of
nodes (V, M, E and R), as illustrated in Figure 2. It is to be
noted that the edges from the CCG originate from the CGs
of patients from the cohort. We also noticed that, crucially,
the CCG can also be viewed as a factorization of a Markov
network. In this way, we were able to transform the CCPT
into a probabilistic graphical model. Probabilistic graphical
models (Koller and Friedman, 2009) are known to be a
state-of-the-art representation for producing probabilistic
inference, which we used for finding recommendations for
the most adequate tests or treatments for a patient, given
inference on the CCG.

The remainder of this paper is organized as follows. In Sec-
tion 2, we describe the clinical language processing required
for generating the CGs. Section 3 describes the construction
of the CCG, as well as how it can be transformed into a prob-
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abilistic graphical model. Section 4 presents the inference
mechanisms we considered and how they may be used for
clinical test and treatment recommendation. Section 5 dis-
cusses the experimental results, and Section 6 summarizes
the conclusions.

2. Medical Language Processing
Open-source software, such as MetaMap (Aronson, 2001) or,
more recently, cTakes (Savova et al., 2010) can parse EMRs
to determine concept unique identifiers (CUIs) which corre-
spond to entries in the Unified Medical Language System
(UMLS) (Bodenreider, 2004). However, UMLS includes
many concepts that were authored according to ontological
principles and, thus, it is too fine-grained for our purpose
of data-driven probabilistic processing of EMRs. In select-
ing a conceptual representation, we also evaluated the more
general frameworks developed by the i2b2/VA challenge in
2010 (Uzuner et al., 2011). This framework was designed
to detect medical concepts within clinical text and assign
one of several distinct assertions indicating the state of the
author’s belief for each concept. This i2b2 challenge helped
popularize the notion that recognizing medical concepts
alone is not sufficient for clinical reasoning, because, when
medical concepts are used in clinical texts, physicians also
express their belief state about such concepts, e.g. that a
medical problem is present or absent, that a treatment is con-
ditional on a test. The i2b2 challenge, however, considered
assertions only for medical problems. In our aim to build the
CCG, we have extended the problem of assertion classifica-
tion in two ways: (1) we have produced assertions (or belief
values) for all medical concepts (including treatments and
tests) that we have automatically identified; and (2) we have
introduced 6 additional values which are defined in Table 1.

2.1. Medical Concept Recognition
To recognize the nodes of the CCG, we have partitioned
medical concepts within three categories: (1) medical prob-
lems (e.g. ATRIAL FIBRILLATION – an irregular heart beat);
(2) medical treatments (e.g. ABLATION – the removal of
undesired tissue); and (3) medical tests (e.g. ECG – an elec-
trocardiogram). We detect these medical concepts using the
methods reported in (Roberts and Harabagiu, 2011). Further,
we distinguish three sub-classes of medical problems: (a)
signs (observations from a physical exam), (b) symptoms
(observations by the patient), (c) co-morbidities (diseases or
disorders), and (d) the diagnostic. Our method recognizes
medical concepts in three steps:
Step 1: Identification of the boundaries within text that

refers to a medical concept;
Step 2: Classification of the medical concept into (1) medi-

cal problems, (2) medical treatments, or (3) medical
tests.

Step 3: Classification of medical problems into (a) signs,
(b) symptoms, (c) co-morbidities, or (d) diagnos-
tics.

Medical concepts were recognized both within the narrative
(i.e. report text) and structured sections (e.g. CHIEF COM-
PLAINT) of EMRs. To do this, we used two conditional
random fields (CRFs), trained on the i2b2 annotations as

well as our own set of 2,349 EMR annotations. As illus-
trated in Figure 3, we incorporated knowledge from many
lexico-semantic resources. In this research, we used the
feature set reported in (Roberts and Harabagiu, 2011). Addi-
tionally, we have normalized the detected medical concepts
by (1) converting the surface string to lowercase, (2) filtering
words belonging to closed-class3 words, and (3) ignoring
word order.

2.2. Medical Assertion Classification
In order to encode the medical knowledge from EMRs with
the clinical graph (CG) of each patient, we needed to au-
tomatically qualify each medical concept with one of the
assertions given in Table 1. We performed this automatic
classification using an SVM classifier which considers in-
formation from: (a) the medical concept to be classified,
(b) the section header where the assertion is implied, (c)
features available from UMLS (extracted by MetaMap), (d)
features reflective of negated statements, disclosed through
the NegEx negation detection package, and (e) belief values
are available from the Harvard General Inquirer’s category
information (Stone et al., 1966). Additional details of the
automatic assertion identification techniques are provided
in (Roberts and Harabagiu, 2011).

3. Generating the Graphical Model
For clinical decision support, it is critical to analyse the
relationships between medical problems, medical tests, and
associated treatments across patients’ hospital visits. As
such, we must move beyond merely identifying the textual
mentions of medical concepts and their associated belief
values. To this end, we present a framework for modelling
the data-driven interactions between problems, treatments,
and tests. We first create a CG in which connections between
medical concepts are not only inferred, but their strength
is also quantified by a weight. Because of the economy
of language, relations between medical concepts are rarely
explicitly stated, but they are rather implied. To capture
these implications, we postulate that co-occurrence statistics
can inform these relations, and further that they can also
inform the strength of these relations.
After we create complete CGs, we can then transform the
combined CGs for a cohort of patients (the CCG) into a
probabilistic graphical model.

3.1. Inferring Edges in the Cohort Clinical
Graph

The nodes of the CCG are automatically discovered by the
language processing techniques described in Section 2. In
addition, we needed to infer the edges of the CCG and the
weights of the edges indicating semantics used in the clinical
picture and therapy ontological definition. The observations
from the clinical picture of a patient connected hospital
visit (or nodes from V) to the observed medical problem (or
nodes from M) generating edges of type TVM. In the clin-
ical picture of patients, connections between the observed

3In linguistics, a closed-class of words is a class of words for
which new words are rarely introduced, for example pronouns,
determiners, prepositions, etc.
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Scenario EMR Excerpt

HISTORICAL* X X X occurred during a previous hospital visit the patient’s past medical history is signif-
icant for CONGESTIVE HEART FAILURE

CONDITIONAL X X X occurs only during certain conditions readmit him for REHAB once the WOUND

has HEALED

PRESCRIBED* X has been assigned and will occur she was given ROCEPHIN and ZITHRO-
MAX

ABSENT X X X is not present the patient denies any CHEST PAIN at this
time

SUGGESTED* X has been advised, but cannot be assumed to occur was recommended that he be on ALLOP-
URINOL

PRESENT X is currently happening there is a moderate PERICARDIAL EFFU-
SION

HYPOTHETICAL X may occur in the future she is to return for any WORSENING PAIN

ORDERED* X has been scheduled and will occur in the future
we will do a PULMONARY FUNCTION

TEST

ASSOCIATED WITH

ANOTHER
X not associated with the patient father died of LUNG CANCER

POSSIBLE X may occur, but there is uncertainty
I believe that this may represent worsen-
ing for PULMONARY HYPERTENSION

ONGOING* X X currently exists and can be assumed to persist
into the future

continue DIALYSIS

CONDUCTED* X has been performed and completed UNASYN 3 GRAMS IV was given

Table 1: Assertion values for medical concepts (typeset in SMALLCAPS) in each excerpt; “moment” refers to the specific
instant when the medical concept was mentioned. Newly defined assertions are marked with an ‘*’.

Preprocessing:
1. Sentence Segmenter
2. Tokenizer

3. Pattern-based Entity 
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i2b2

Hospital 
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Figure 3: Language processing used for constructing the CGs and CCG.

medical problems (i.e. nodes from M) and results of tests
(i.e. nodes from E) exist as well, giving rise to edges of
type TME in the CCG. In addition, connection between both
types of nodes (medical problems and tests) in the clinical
picture and therapies exist. Thus, we shall also have edges

in the CCG between medical problems (i.e. nodes from M)
and treatments (nodes from R), generating edges of type
TMR. Similarly, we have edges between tests (i.e. nodes
from E) and treatments (nodes from R), generating edges of
type TER. The weight of edges of each type is computed as
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follows:
• The weight of an edge of type TVM between a visit
v ∈ V and a medical problem m ∈ M is computed
as the number of EMRs associated with v which also
mention m.

• The weight of an edge of type TME between a medical
problem m ∈ M and test einE is computed by the
number of EMRs in which both m and e co-occur
(regardless of the patient).
• The weight of an edge of type TMR between a medical

problem m ∈ M and treatment rinR is computed by
the number of EMRs in which both m and r co-occur
(regardless of the patient).
• The weight of an edge of type TER between a test
e ∈ E and treatment rinR is computed by the number
of EMRs in which both e and r co-occur (regardless of
the patient).

3.2. The Probabilistic Graphical Model
In Section 3.1 we presented a co-occurrence-based method
of building a cohort clinical graph (CCG). The observation
that this graph is in fact a k-partite graph (where k = 4)
enables us to build the factorized Markov network illustrated
in Figure 4, which we call the Clinical Markov Network
(CMN).

Φ1 Φ2 

Φ3 Φ4 

V M E 

R 

Figure 4: The factorized Clinical Markov Network (CMN).

In the CMN, we assume that each vertex class (V, M,
E, or R) represents a distinct random variable in the in-
duced Markov network. Similarly, each of the four types of
weighted edges (TVM, TME, TMR, TER) have associated four
different factors to indicated the strength of the edge in the
CCG:
• Φ1(v,m) = weight of edge {v,m} ∈ TVM
• Φ2(m, e) = weight of edge {m, e} ∈ TME
• Φ3(m, r) = weight of edge {m, r} ∈ TMR
• Φ4(e, r) = weight of edge {e, r} ∈ TER

This factorization allows us to perform efficient probabilis-
tic inference by defining the joint probability as the Gibbs
distribution given in Equation 1.

P (v,m, e, r) =
1

Z
Φ1(v,m)Φ2(m, e)

Φ3(m, r)Φ4(e, r)
(1)

Note that Z is the typical normalization constant equal to

the partition function, as given in Equation 2.

Z =
∑

v,m,e,r

Φ1(v,m)Φ2(m, e)Φ3(m, r)Φ4(e, r) (2)

4. Probabilistic Inference
By modelling the CCG as a probabilistic graphical model,
we have gained access to an incredible breadth of proba-
bilistic information through the power of probabilistic infer-
ence. We can use this probabilistic information to construct
a recommendation engine enumerating the most probable
treatments for a given patient given their medical problems
and/or their medical tests.
We can use this joint distribution to calculate posterior prob-
ability of conducting a medical test during a particular pa-
tient’s hospital visit (i.e. P (E = e | V = v)) as shown in
Equation 3.

P (e | v) =
1

Z

∑
m∈M

Φ2(e,m)Φ1(v,m) (3)

Likewise, we can infer the posterior distribution of med-
ical treatments for a given set of N medical problems,
m0,m1, . . . ,mN ∈ M , as the conjunction of each prob-
lem’s posterior distribution, as shown in Equation 4.

P (r |m0 ∧m1 ∧ . . . ∧mN ) =

N

Z

∑
e∈E

Φ4(e, r)

N∏
i=1

Φ3(mi, r)Φ2(mi, r)
(4)

Although this straightforward approach yields precise re-
sults, it suffers from significant sparsity problems induced
by our decision to qualify all medical concepts by the physi-
cian’s belief state. Rather than restricting ourselves to the
interactions between concepts exactly matching the speci-
fied belief states (e.g. the likelihood that a test is conducted
given than a problem is present), we also consider the inter-
action between the same concepts with semantically similar
belief states (e.g. suggested, ordered, prescribed, condi-
tional). For example, consider that assertions ONGOING and
CONDUCTED both imply a strong degree of certainty that
the medical concept occurred and are likely to have simi-
lar semantic relationships despite having different temporal
groundings. Thus, they are semantically coherent. Based
on this observation, we introduce an assertion smoothing
factor, S, that encodes the degree to which two assertions
are semantically coherent, as given in Equation 5.

S(a1,a2) =

|C|∑
i=0

∑
v∈V

P
(
(ci, a1), v

) |C|∑
j=0

P
(
v, (cj , a2)

) (5)

This smoothing factor, S(a1, a2), captures the degree by
which occurrences for a certain medical concept labeled
with the assertion a2 may be relevant to probabilistic queries
targeting the same medical concept with assertion a1. We
estimate this value as the number of two-step paths in the
CMN from any concept with assertion a1 to any concept
with assertion a2.
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This assertion smoothing factor allows us to make recom-
mendations for a query concept given an evidence concept
(e.g. P

(
(qc, qa)

∣∣ (ec, ea)
)
), by considering information

across all belief values weighted by their semantic similarity
to the given belief values. We accomplish this by smooth-
ing the co-occurrence probability as a mixture model of
three components as shown in Equation 6: (1) the direct
probability, P , that the exact concepts co-occurred; (2) the
total probability that the exact query concept co-occurred
with the evidence concept qualified by any possible asser-
tion (i.e.

∑
i P
(
(qc, qa)

∣∣ (ec, ai)
)
, scaled by the smooth-

ing factor between the encountered evidence assertion and
the desired evidence assertion, i.e. S(qa, ai); and (3) the
total probability that the query concept qualified by any
assertion co-occurred with the exact evidence concept (i.e.∑

i P
(
(qc, ai)

∣∣ (ec, ea)
)
, scaled by the smoothing factor

between the encountered query assertion and the desired
query assertion, i.e. S(ai, ea).

P̂ ((c, a)|(d, b); δ) =

λ0P
(
(c, a)

∣∣(d, b))
+ λ1

∑
β

P̂
(
(c, a)

∣∣(d, β); δ − 1
)
S(b, β)

+ λ2

∑
α

P̂
(
(c, α)

∣∣(d, b); δ − 1
)
S(α, a) if δ > 0;

P
(
(c, a)

∣∣(d, b)) otherwise.
(6)

In order to limit the length of transitive paths considered, we
introduce a limiting parameter, δ, which limits the recursive
depth by which medical concepts will be smoothed (if δ = 0,
no smoothing will occur). This smoothing allows us to
predict the likelihood of a certain medical test or treatment
for a given patient by considering the dependencies encoded
in the EMRs across all assertion values without disregarding
the semantics of each assertion.

5. Experimental Results
To produce the data-driven Clinical Markov Network
(CMN), we used the same EMRs that enabled us to build a
patient cohort retrieval system for the medical records track
(TRECMed) of the Text REtrieval Conference (TREC) in
2011 and 2012 (Voorhees and Tong, 2011; Voorhees and
Hersh, 2012). This dataset includes 95,703 de-identified
EMRs which were generated from multiple hospitals during
2007. The EMRs were grouped into hospital visits con-
sisting of one or more medical reports from each patient’s
hospital stay. Thus, the EMRs were organized into 17,199
different patient hospital visits. Each visit had the patient’s
admission diagnoses, discharge diagnoses, and related ICD-
9 codes. We also used the 826 discharge summaries used
during the 2010 i2b2/VA challenge which contained 72,896
medical concepts and their assertions.
As illustrated in Figure 3, in addition to the hospital visits
and associated EMRs, we have also used annotations which
we produced on the EMRs resulting for three patient co-
horts targeted by the queries (Q1) “patients who presented
with cellulitis,” (Q2) “patients diagnosed with abscess,” and
(Q2) “patients suffering from both cellulitis and abscess.”

M↔E 
161,511 

M↔R 
139,159 

E↔R 
65,421 

V↔M 
9,286 

Figure 5: Distribution of edges in the CCG.

Cellulitis Cellulitis & Abscess Abscess
Precision 50% 71% 64%
Accuracy 58% 98% 84%

Table 2: Precision and accuracy for the top 15 treatments
for each cohort.

We annotated these EMRs with the medical concepts and
assertions described in Section 2.
By automatically processing the medical language in this
subset of EMRs, we were able to generate the Clinical
Markov Network (CMN) described in Section 4, which
corresponds to a cohort of patients with cellulitis or abscess.
The distribution of edge classes in the CMN for these cohorts
is not uniform, as illustrated in Figure 5.
Figure 5 plots the distribution of edges in the CCG by type.
Note that the distribution of edges in the CCG corresponds
to the un-normalized probability mass of each factor in the
CMN. It is clear from this distribution, that the majority of
edges involve medical problems, with a nearly equal num-
ber of inferred dependencies between medical problems and
tests. In Figure 5, the number of edges between medical
problems and tests, TME (denoted as M↔ E), and between
medical problems and treatments, TMR, denoted as M↔ R,
are nearly equal. As such, the number of edges between med-
ical tests and treatments, TER, denoted as E ↔ R, makes
up a smaller portion, indicating that there are an abundance
of medical problems listed in each EMR. This reinforces to
the fact that physicians typically document all the historical,
possible, and related or even unrelated medical problems
observed during a patient’s physical or other examinations.
In order to evaluate the validity of the inference that the
CMN enables, we asked two inferential questions: (1) “what
are the most probable medical treatments for a certain pa-
tient cohort?” and (2) “which tests are most likely to be
conducted on patients with the given medical problem(s)?”.
We answered the first question by computing the conditional
probability distribution for all treatments conditioned on
the medical problems associated with the cohort retrieved
for Q1, Q2, and Q3. These probability distributions are
computed according to Equation 4.
The second question was answered by calculating the condi-
tional probability distribution over all tests conditioned on
the hospital visits associated with each cohort, as computed
with Equation 3.
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Cellulitis 

Treatments 

vancomycin/ONGOING 6.06% 

zosyn/ONGOING 4.46% 

aspirin/ONGOING 3.38% 

procedure/CONDUCTED 3.30% 

emergency department/ONGOING 3.29% 

diovan/ONGOING 3.17% 

antibiotics/ONGOING 2.61% 

lisinopril/ONGOING 2.57% 

colace/ONGOING 2.45% 

protonix/ONGOING 2.02% 

sinemet/ONGOING 2.01% 

keflex/ONGOING 1.80% 

prednisone/ONGOING 1.66% 

hydrochlorothiazide/ONGOING 1.46% 

Tests 

pressure blood/CONDUCTED 15.13% 

physical examination/CONDUCTED 11.39% 

pulse/CONDUCTED 8.89% 

temperature/CONDUCTED 5.39% 

systems review/CONDUCTED 3.95% 

vital signs/CONDUCTED 3.83% 

hemoglobin/CONDUCTED 2.92% 

respirations/CONDUCTED 2.57% 

creatinine/CONDUCTED 2.52% 

exam/CONDUCTED 2.51% 

Cellulitis & Abscess 

Treatments 

vancomycin/ONGOING 58.06% 

emergency department/ONGOING 12.61% 

procedure/CONDUCTED 8.75% 

linezolid/ONGOING 4.43% 

eradication protocol /ONGOING 3.92% 

drainage/CONDUCTED 2.12% 

zosyn/ONGOING 1.83% 

antibiotics/ONGOING 1.51% 

colace/ONGOING 0.74% 

drain/ONGOING 0.43% 

lasix/ONGOING 0.42% 

ibuprofen/ONGOING 0.38% 

drainage/ONGOING 0.35% 

aspirin/ONGOING 0.31% 

Tests 

blood pressure/CONDUCTED 32.30% 

pulse/CONDUCTED 20.88% 

vital signs/CONDUCTED 8.79% 

temperature/CONDUCTED 7.14% 

physical examination/CONDUCTED 6.20% 

systems review/CONDUCTED 5.87% 

bun/CONDUCTED 3.14% 

palpation/CONDUCTED 2.50% 

creatinine/CONDUCTED 2.48% 

auscultation/CONDUCTED 2.23% 

Abscess 

Treatments 

vancomycin/ONGOING 13.51% 

linezolid/ONGOING 9.17% 

emergency department/ONGOING 5.40% 

eradication protocol/ONGOING 5.32% 

procedure/CONDUCTED 3.74% 

drainage/CONDUCTED 3.01% 

iv dilaudid/ONGOING 2.87% 

pain control/ONGOING 2.68% 

vanco/HISTORICAL 2.44% 

cipro/CONDUCTED 2.42% 

protocol/ONGOING 2.24% 

tetanus/ONGOING 2.24% 

⋮ (12 rows omitted) 

zosyn/ONGOING 0.49% 

Tests 

pulse/CONDUCTED 5.65% 

vital signs/CONDUCTED 5.53% 

pressure blood/CONDUCTED 5.14% 

systems review/CONDUCTED 3.57% 

bun/CONDUCTED 3.39% 

palpation/CONDUCTED 3.26% 

temperature/CONDUCTED 3.19% 

auscultation/CONDUCTED 3.00% 

⋮ (3 rows omitted) 

physical exam/CONDUCTED 2.12% 

Figure 6: Treatment and test recommendations for present medical problems “cellulitis”, “abscess”, and both “cellulitis &
abscess.”

The distributions of the 15 most-likely treatments and 10
most-likely tests for each cohort are illustrated in Figure 6.
We have evaluated the recommendations, as shown in Ta-
ble 2, based on (1) the Infectious Diseases Society of Amer-
ican (IDSA)’s Practice Guidelines for the Diagnosis and
Management of Skin and Soft-Tissue Infectious (Stevens
et al., 2005), (2) Howe and Jones Guidelines for the Man-
agement of Periorbital Cellulitis/Abscess (Howe and Jones,
2004), (3) Uzcategui et. al’s Clinical Practice Guidelines
for the Management of Orbital Cellulitis (Uzcategui et al.,
1997), and (4) the National Library of Medicine’s MED-
LINEplus Web Service (Miller et al., 2000).

According to these sources, we achievement a precision
within the first 15 treatments of 50% for cellulitis, 71% for
cellulitis & abscess, and 64% for abscess. In this measure-
ment, we considered a treatment as relevant if it should be
directly associated with the patient cohort. Note: we do not
consider treatments for associated symptoms (e.g. pain) as
relevant. Additionally, because precision does not take into
the probability associated with each item, we have also cal-
culated the accuracy of each distribution as the proportion
of probability mass assigned to relevant treatments. Using
this definition, we achieve an accuracy of 58.2% for celluli-
tis, 98.1% for cellulitis & abscess, and 83.6% for abscess.
Before discussing specific treatments, we list the following
abridged definitions from MEDLINEplus:

abscess a pocket of white blood cells, germs, and dead
tissues on the skin resulting from an infection.

cellulitis an infection of the skin and underlying tissues
caused by bacteria (typically streptococcal).

The most common treatment across all patient cohorts is
Vancomycin which is the most recommended treatment for
methicillin-resistant Staphylococcus aureus (MRSA), the
most common cause of cellulitis and abscess. However,
after Vancomycin, the treatment distributions begin to dif-
fer. We have highlighted the treatment Zosyn (a mixture
of Piperacillin and Tazobactam) which is an antibiotic ap-
proved to treat for infections such as cellulitis and abscess.
Despite being commonly given to patients with cellulitis
(4.46%, the second highest-ranked treatment), it is ranked
twentieth for treating abscess, at only 0.49%. This corre-
sponds to the most typical treatment for abscessing concern-
ing draining the cyst, corresponding to entries four and six.
Additionally, more general antibiotics, such as Linezolid and
Ciprofloxacin are more commonly given for abscess, as they
treat a variety of underlying infections.

However, for the cohort of patients suffering from both
conditions, Zosyn rises to position 7 at 1.83% reflecting
the fact that it is able to effectively treat both conditions.
This shows the ability of the CMN to capture the interaction
between treatments for combinations of medical problems.

As our dataset is represented by primarily hospitalized pa-
tients (rather than outpatient procedures), many of the rec-
ommended treatments are general purpose medications per-
scriped during the patients hospital stay, such as pain reliev-
ers (e.g. aspirin, ibuprofen, pain control), stool softeners
(e.g. colace), diaretics (e.g. lasix) and blood thinners (e.g.
lisinopril).

We have also evaluated the top 10 tests most likely to be
conducted for patients in each cohort, as illustrated in Fig-
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ure 6. We observed that the likelihood of conducting a
physical examination has a distribution rank which varies
across all cohorts. Although it is ranked second for cel-
lulitis (at 11.39% likelihood), it is ranked much lower for
abscess at position 12 (at 2.12% likelihood). This reflects
the recommendation in the guidelines for cellulitis: because
cellulitis leaves a patient vulnerable to secondary conditions,
a thorough physical examination should be performed. As
such, for patients suffering from both cellulitis & abscess,
the likelihood of conducting a physical examination moves
up to rank 5 (6.20%), reflecting the interaction between the
two conditions in EMRs.
We also observed that the first three most-commonly con-
ducted tests (i.e. blood pressure, pulse, and vital signs)
constitute the majority of the probability mass. This reflects
a critical observation on the utility of medical test annota-
tions: that the mere mention of a medical test is not sufficient
for statistical reasoning. EMRs document a wide battery of
tests and their results for each patient allowing physicians to
ascess not only their primary medical problem, but also any
secondary conditions or co-morbidities. In order to improve
the capability of clinical reasoning enabled by the CMN, the
value of tests should be considered and associated with the
identification of the mention of each test.

6. Conclusions
In this paper, we show how medical language processing
enables the automatic derivation of clinical pictures and
therapies for entire patient cohorts. We explain how this
knowledge can inform a data-driven probabilistic graphical
model on which inference can be performed in a rigorous
way for determining the most probable treatments for a
given set of medical conditions. Further, we observe that
the utility offered by medical test mentions is limited for
probabilistic reasoning. Despite this, we evaluated the most
likely treatments against (1) the Infectious Diseases Society
of American (IDSA)’s Practice Guidelines for the Diagnosis
and Management of Skin and Soft-Tissue Infectious (Stevens
et al., 2005), (2) Howe and Jones Guidelines for the Man-
agement of Periorbital Cellulitis/Abscess (Howe and Jones,
2004), (3) Uzcategui et. al’s Clinical Practice Guidelines
for the Management of Orbital Cellulitis (Uzcategui et al.,
1997), and (4) the National Library of Medicine’s MED-
LINEplus Web Service (Miller et al., 2000) and confirmed
the validity the probabilistic information encoded by our
model.
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