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Abstract

This paper empirically evaluates the performances of different state-of-the-art distributional models in a nominal lexical semantic clas-
sification task. We consider models that exploit various types of distributional features, which thereby provide different representations
of nominal behavior in context. The experiments presented in this work demonstrate the advantages and disadvantages of each model
considered. This analysis also considers a combined strategy that we found to be capable of leveraging the bottlenecks of each model,

especially when large robust data is not available.
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1. Introduction

Lexical semantic classes are generalizations that aim to
capture similarities among meanings of different lexical
entities. Nominal lexical semantic class information rep-
resents crucial input for many Natural Language Process-
ing (NLP) applications, such as Information Extraction, the
building and extending of semantic ontologies, Machine
Translation and Question Answering, as well as for tasks
such as the acquisition of selectional preferences of pred-
icative expressions. Yet, the lexical semantic tagging of
nouns in large lexica is still mostly done manually, thus the
high cost of this task can hinder the production of rich lex-
ica for different languages and/or domains.

Distributional models that infer the meaning of words from
similarity of contexts can highly reduce the cost of this task
by capturing the indicative properties of lexical semantic
classes. Recent work has demonstrated the usefulness in
applying the Distributional Hypothesis (Harris, 1954) to
create predictive models that are representative of the be-
havior of a lexical semantic class (cf. for instance: (Steven-
son et al., 1999; Lin and Pantel, 2001; Joanis et al., 2007;
Baroni and Lenci, 2010; Bel et al., 2012; Boleda et al.,
2012; Romeo et al., 2012; Lenci, in press). In this way, the
distributional behavior of some class members is utilized
to make further predictions on class membership. How-
ever, distributional spaces can vary greatly with different
models, and thus far, there has been little consensus on the
conditions that prefer one model over another.

This paper empirically evaluates the performances of differ-
ent distributional models in a nominal lexical semantic clas-
sification task. Our goal is to provide empirical evidence to
determine what features produce a more accurate classifica-
tion, which can thus increase the reliability of automatically

constructed resources and simultaneously reduce the prob-
lems of the high costs to build large, domain-tuned lexica.

We consider models that exploit different types of distri-
butional features, which thereby produce different repre-
sentations of nouns, as found in context. Thus, the aim
of this paper is to explore different distributional models
used for nominal lexical semantic classification. In the next
sections, we describe each of the models considered (Sec-
tion 2) as well as the methodology followed (Section 3).
We present the classification results obtained (Section 4)
and explore how the performance of the classifier varies be-
tween distributional models (Section 5). We conclude with
final remarks and future research regarding the use of dis-
tributional models in classification tasks (Section 6).

2. Related Work

Nominal lexical semantic classes gather together properties
that appear to be linguistically significant for a number of
linguistic phenomena. According to the linguistic tradition,
words that can be inserted in the same contexts can be said
to belong to the same class (Harris, 1954). Thus, we define
lexical classes to be linguistic generalizations drawn from
the characteristics of the contexts where a number of words
tend to appear.

Classification approaches propose training a classifier with
distributional information about their occurrences in se-
lected contexts where words belonging to a class can oc-
cur (e.g. certain quantifiers, such as numerals, can directly
modify count nouns but not mass nouns (Gillon, 1992)).
The whole set of occurrences of a word are then considered
to be features which define its class membership, either be-
cause the word is observed in a number of particular con-
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H DM LING ‘ LINE ‘
sub-int-happen-V x-NN when-WRB car
accident sub-int-occur-v | until-IN the-DT x-NN | injury
obj-cause-v | since-IN the-DT x-NN road

Table 1: Example of features used for each model for the event noun accident. In DM, features represent the syntactic
position of a target noun as a combination of dependency (’sub-int”) or its dependent head ("happen-V”); in LINE, features
represent linguistically-motivated class indicatory lexico-syntactic contexts, such as a target noun (“x-NN”) preceding a
specific adverb ("when-WRB”); in LINE, features represent simple co-occurring words in a 5-word context window.

texts or because it is not. However, distributional represen-
tations can vary greatly, depending on the specific aspects
of meaning they are designed to model. Thus, selecting the
most useful and/or indicative features is one of the most
important tasks in nominal lexical semantic classification,
as the features considered in a distributional model directly
affect the classification predictions produced.

Along this line, distributional models can be considered ei-
ther structured, if they collect corpus derived information
in the form of word pairs and dependency relations (se-
lected references include: Grefenstette (1994), Pad6 and
Lapata (2010), and Baroni and Lenci (2010)), unstructured,
if they consider simple word co-occurrence statistics (se-
lected references include: Lund and Burgess (1996), Lan-
dauer and Dumais (1997) and Bullinaria and Levy (2007;
2012)) or linguistic, if they collect distributional informa-
tion with hand-written pattern based features (selected ref-
erences include: Bel et al. (2007; 2012)).

As previously mentioned, in the context of this paper, we
consider distributional models that exploit different repre-
sentations of features. Along this line, we consider a struc-
tured distributional semantic resource, an unstructured lin-
ear model and a linguistic model. We acknowledge that
there is a variety of distributional models currently in the
state of the art (for a general survey see Turney and Pantel
(2010)). However, we consider the aforementioned models
because they are representative of the main state-of-the-art
models currently used for noun classification, which is the
focus of the work presented here. In this way, we do not
consider these models to be the only approach to this task,
although, as mentioned, we do consider them the most rep-
resentative. The following subsections detail each of the
models considered.

2.1.

Distributional Memory (DM: Baroni and Lenci (2010)) is
representative of a structured distributional model. DM is
proposed as a general purpose resource for semantic mod-
elling. It consists of work-link-word tuples, which are ex-
tracted with different levels of lexicalization using different
types of pre-defined lexico-syntactic patterns. The frame-
work of DM was designed to exploit corpus data to its full
extent for any type of semantic task. Thus, the information
considered in DM attempts to overcome the limitations of
ad-hoc or manually constructed patterns, especially in the
wake of exponential growth of availability of corpus data.
In this way, by collecting one set of statistics from the cor-

Distributional Memory

pus, this model can exploit different views of extracted data
and different algorithms to tackle various tasks.

Extensive and systematic studies have been conducted with
DM, including but not limited to similarity judgments, syn-
onynym detection, noun categorization, detection of selec-
tional preferences, etc., which demonstrate that it is both
versatile and comprehensive enough to address a variety of
semantic tasks. Overall, in the large battery of experiments
considered in their seminal work regarding DM, Baroni and
Lenci (2010) report that in nearly all of the considered test
sets, their best implementation is at least as good as other
algorithms reported in the state of the art, or among the top
of the state-of-the-art ranking.

It is also noted that although DM performs on par with other
models, it is a general model, thus its parameters are not
modified for any specific task which can result in a less ac-
curate performance when considering specifically tailored
models for a given task. The discussion in Section 5. con-
tains a detailed analysis regarding how the features con-
sidered in DM provide distributional information that suc-
cessfully overcomes bottlenecks, such as noise and spar-
sity, which are characteristic of other distributional models
used in nominal lexical semantic classification tasks. In the
work presented in this paper, we used the TYPEDM instance
of DM, which is readily available for download and use.!

2.2. Linear Models

Bullinaria and Levy (2007; 2012) and Bullinaria (2008).
have extensively explored unstructured distributional mod-
els. Considering that aspects of word-meaning can be in-
duced using simple word co-occurrence counts from corpus
data, they studied semantic word categorization as a func-
tion of window type and size, semantic vector distribution,
as well as corpus size.

Bullinaria and Levy (2012) report the best performance us-
ing their models for semantic categorization at approxi-
mately 80%. However, they noted that their model becomes
compromised with smaller corpora, as it demonstrated sen-
sitivity to a reduction in data when used for semantic cat-
egorization tasks. We, too, observed such a sparsity effect
on the performance of our LINE model in our classification
experiments on smaller corpus data (see section 5. for de-
tails). However, it is not exclusive to unstructured models,
as structured models can also be subject to problems con-
cerning sparse data (Turney and Pantel, 2010).

"http://clic.cimec.unitn.it/dm/
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2.3. Linguistic models

Linguistic models consider manually identified lexico-
syntactic patterns that represent generalizations upon dif-
ferent contexts where a number of words belonging to a
class tend to occur. These patterns cue a semantic property
that a set of words, or class, may have in common, which is
then used as an indicator for members of that class. Besides
the inclusion of lexical information (e.g. a set of prototyp-
ical verbal lemmas of which a target noun is recurrently a
subject), linguistic models take into account the crucial role
that syntax can have in defining the distributional properties
of classes by specifying patterns made of a combination of
lemmas and PoS.

This approach has been used for the lexical semantic clas-
sification of verbs (Merlo and Stevenson, 2001), which
selected very specific ad-hoc linguistic cues for classify-
ing verbs undergoing different types of diathesis alterna-
tions, while Joanis et al. (2007) considered general lin-
guistic information, such the frequency of filled syntactic
positions or slots, tense and voice of occurring verbs, etc.,
to classify English verbs into a number of Levin (1993)
classes. Although much more work has been done regard-
ing the classification of verbs (see Korhonen (2010) and
Schulte im Walde (2009) for a survey of the state of the
art), this approach has also had success with the classifi-
cation of nouns. For instance, Baldwin and Bond (2003)
and Baldwin (2005) considered different syntactic cues for
nominal classification, such as the PoS tags of neighboring
words that take into account head number, modifier num-
ber, subject-verb agreement, the occurrence in N of N con-
structions, etc. In their experiments with nominal classi-
fication, Bel et al. (2007) considered local contexts in a
PoS-tagged corpus as features.

More recently, Bel et al. (2012) expanded on the previous
work in nominal lexical semantic classification and consid-
ered classes such as EVENT, HUMAN, CONCRETE, SEMI-
OTIC, LOCATION and MATTER. They identified lexico-
syntactic patterns indicative of semantic properties of a
given class (such as: a prepositional phrase headed by ”dur-
ing” is indicative for eventive nouns). Although achieving
an accuracy of around 80%, they concluded that the se-
lection/identification of particular lexico-syntactic informa-
tion can, on one hand, limit the amount of data considered
resulting in sparse vectors and nouns in the gold standard
that were not found in any of the contexts that were taken
as cues. On the other hand, they can introduce noise into
the vectors as the cues may not be indicative for a single
class (for a detailed analysis of the results obtained by this
model see Section 4.1.).

2.4. Combining linear and linguistic information

In an attempt to further explore the potential of models
that use surface information, we also considered the com-
bination of features of the unstructured linear model and
the linguistic model into a fourth model that uses both
linguistically-motivated information as well as linear con-
text as features.

In combining the features from these two models, we can
determine whether the distributional information of one

model can be compensated with the distributional informa-
tion of the other, especially in the case that one of the mod-
els provides insufficient data for classification (see Section
5. for a detailed discussion of this combinatory strategy).

3. Methodology

The goal of this work is to empirically evaluate the perfor-
mance of different distributional models in a nominal lexi-
cal semantic classification task. In this way, we considered
models that exploit different types of distributional features,
thereby providing different representations of nominal be-
havior in context.

As described in detail above, the first model considered is
the structured Distributional Memory model (DM: (Baroni
and Lenci, 2010)), which is a generalized framework for
distributional semantics that uses word by link—word tuples
from a dependency parse of a corpus as features. This is the
only model considered that incorporates syntactic informa-
tion provided by a dependency parser.

The second model considered is an unstructured linear
model (henceforth: LINE), built by extracting tokens in con-
text windows of a target noun. In this model, features con-
sist of tokens extracted from a standard 5-word context win-
dow (Evert, 2008), to the right and to the left of each target
word.

The third model considered is a linguistically-motivated
model (henceforth: LING), which uses as features the
lexico-syntactic information considered indicative of a
given lexical semantic class. These features are manually
selected and include lexico-syntactic information such as
selectional preferences, grammatical marks, prepositions
and suffixes (as detailed in Bel (2012)).

Finally, the combinatory strategy that we consider (hence-
forth: LINGLINE) uses the feature information from both
the LING and the LINE models. Table 1 presents examples
of features from each of the models considered.

3.1. Data Preparation

Each of the models was trained on a concatenation of the
ukWaC corpus (Baroni et al., 2009), a mid-2009 dump of
the English Wikipedia, and the British National Corpus
(Burnard, 2007), following Baroni and Lenci (2010), for
a total size of approximately 2.83 billion tokens. Although
the same corpus was used to extract each of the models,
DM considers the full syntactic annotation (tokens, PoS tags
and syntactic dependency information). The features con-
sidered for the DM model were extracted from corpus data
using the DM methodology to extract tuples, as defined by
Baroni and Lenci (2010)

LINE considers only tokens as features. To extract the fea-
tures for this model, all PoS and punctuation were removed
from the corpus data and 5-word windows containing a to-
ken of at least 3 characters were extracted for each target
noun, as defined in our gold standard.

LING considers only tokens and corresponding PoS tags.
To extract the features for this model from corpus data,
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each of the lexico-syntactic patterns identified were spec-
ified through regular expressions with PoS tags given after
each token to identify occurrences of nouns in the indicated
contexts. See Table 2 for the number of features considered
per model and class.

’ H Targets \ DM \ LING \ LINE ‘
COM 208 775,747 16 27,095
EVT 211 687,019 20 27,086
HUM 208 656,023 17 27,078
LOC 114 572,191 22 27,073
ORG 111 535,675 16 27,042

Table 2: Number of target nouns per class and number of
features per class for each model considered

3.2. Experiments

We use positive Local Mutual Information (pLMI: Evert
(2008)) as our weighting scheme because it is an approx-
imation of the log-likelihood ratio measure that has been
shown to be a very effective weighting scheme, especially
in the case of sparse frequency counts (see Baroni and
Lenci (2010) for more details). The pLMI was calculated
using the DISSECT toolkit (Dinu et al., 2013). Follow-
ing standard practice (Bullinaria and Levy, 2007), negative
weights are raised to 0. The information for each class and
model was compiled into a sparse matrix consisting of four
elements: target word, feature, weight and class member-
ship information, which was provided to the classifier.

The work presented here consists of classification ex-
periments conducted with the following lexical seman-
tic classes in English: INFORMATIONAL OBJECT (COM),
EVENT (EVT), HUMAN (HUM), LOCATION (LOC), ORGA-
NIZATION (ORG). Each class was selected because of on-
going research on nominal regular polysemy (Pustejovsky,
1995), which also serves to provide insight to interpret re-
sults obtained.

Gold standards that consist of nouns containing a sense
from WordNet (Fellbaum, 1998) that correspond to a class
considered in our experiments (e.g. people in the case of
HUM) were used for evaluation. The gold standards were
balanced with respect to class members and elements not
belonging to the class (see targets in Table 2, which presents
the number of class members, each appearing n times in
any corpus). The actual occurrences of target nouns in the
corpus determined the final lists.

We performed each binary classification experiment using
a CART Decision Tree (DT) classifier, a k Nearest Neigh-
bor (kNN) classifier and a Support Vector Machine (SVM)
classifier, as implemented in the Scikit-Learn toolkit (Pe-
dregosa et al., 2011). For a baseline, we implemented a
dummy-classifier which generates predictions uniformly at
random. We selected this classifier to compare the success
of our classifiers against a random decision.

All evaluations were conducted in a 10-fold cross validation
setting. Due to space constraints, hereafter, we report on

the results obtained using only DT. We focus on the results
obtained using DT because they provide a balance between
the characteristics of different machine learning classifica-
tion algorithms. Also, DT tend to perform better when deal-
ing with categorical features, which is important for binary
classifications (Kotsiantis, 2007).

4. Results

The results in Table 3 show that overall the F1 score of each
model demonstrates a statistically significant improvement
(p < 0.05) over the baseline. In regards to the performance
of the individual models, we observed that DM obtains the
highest overall results, with its F1 score demonstrating a
statistically significant improvement (p < 0.05) over the
F1 score of both LING and LINE. We attribute this result
to the inclusion of syntactic information provided by a de-
pendency parse in the model, which is the main difference
between the DM model and the LING and LINE models. We
reflect on this point in more detail in Section 5.

Interestingly, the LING and the LINE models, which both
consider more shallow features, achieve an F1 score of 0.76
and 0.77, respectively, which can already be considered for
use in NLP tasks. However, there is no statistical signif-
icance between the F1 scores of theses models, although
there is a slight difference in their recall and precision, es-
pecially when considering individual classes. This implies
that each model has different advantages in regards to the
lexical semantic classification of nouns (the Error Analysis
in Section 4.1. and the resulting Discussion in Section 5.
reflect upon this point in detail).

With respect to the individual classes, we observe that HUM
and ORG obtain a better classification from LING while
COM, EVT and LOC obtain better classification results with
LINE, thus indicating that the distributional model selected
for classification should consider the indicative properties
of the class being classified (Bel et al., 2012). For instance,
the LING model benefits classes, such as ORG and HUM,
that have readily identifiable class-specific features, such as
morphological or grammatical marks while the LINE model
benefits classes in which the features considered to be in-
dicative of a class in linguistically-motivated models may
fail to handle the heterogeneity of members as they occur
in actual language use. For these types of classes, the infor-
mation provided by linguistic cues may be too disperse in
feature vectors to be accurately captured by classifiers, thus
the simple linear features that are used in the LINE model
are more appropriate to capture the basic patterns of occur-
rences of lemmas of those more broadly defined classes (i.e.
classes with a larger internal variation), as found in corpus
data.

In Table 3, we also observed that the combined LINGLINE
model demonstrates a statistically significant improvement
(» < 0.05) over both the LING and the LINE models, re-
spectively. As there is no statistical difference between
the LING and the LINE models, individually, these results
demonstrate the benefit of simultaneously considering the
features of both models.
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DM LING LINE LINGLINE Baseline
P R[F | P|R|FA|]P][R][F|]P|[R]|F|P]R]EF
COM 0.87 | 0.88 | 0.88 || 0.68 | 0.67 | 0.67 || 0.79 | 0.78 | 0.78 || 0.81 | 0.80 | 0.80 || 0.52 | 0.58 | 0.54
EVT 0.85 | 0.81 | 0.83 || 0.81 | 0.79 | 0.79 || 0.83 | 0.85 | 0.84 || 0.80 | 0.85 | 0.81 || 0.47 | 0.54 | 0.50
HUM 092 | 091 | 091 || 0.88 | 09 | 0.88 || 0.76 | 0.78 | 0.76 || 0.89 | 0.84 | 0.86 || 0.53 | 0.58 | 0.55
LOC 0.83 | 0.81 | 0.81 || 0.73 | 0.77 | 0.74 0.8 | 0.77 | 0.78 || 0.84 | 0.84 | 0.83 || 0.48 | 0.54 | 0.50
ORG 0.84 | 0.82 | 0.83 || 0.72 | 0.74 | 0.72 || 0.72 | 0.76 | 0.73 || 0.79 | 0.77 | 0.77 || 0.51 | 0.54 | 0.52

MacroAvg || 0.86 | 0.84 [ 0.84 [| 0.76

077 [ 076 || 0.78 | 0.78 [ 0.77 [ 0.82 [ 0.82 | 0.81 || 0.52 | 0.50 | 0.55

|

Table 3: Precision (P), Recall (R), and F-Measure for classification using each model of each class when considering larger

corpus data

This improvement underlines the compensatory effect of
using information provided by the combination of features
from LING and LINE. For instance, LING includes indica-
tive yet potentially sparse and/or noisy features while LINE
includes a simply large amount of co-occurrence informa-
tion. In the scope of the work presented here, noise refers to
an effect that is attributed to the fact that for many features
there is not an 1-1 association with a specific class, which
causes many of the surface patterns to be ambiguous.

In this way, where the distributional information provided
by the features of the LING model is not sufficient for the
classifier to make a decision regarding class membership,
LINE can provide extra information to the classifier to arrive
at a generally more reliable decision (see the Discussion
regarding the confusion matrices in Section 5. for more de-
tails) and vice versa. However, we acknowledge that LING-
LINE still does not outperform DM, which again emphasizes
the potential of the added value provided by the richer syn-
tactic information available in DM. This result also con-
firms the bias of structured DSMs to identify paradigmati-
cally similar words, which is important to note, especially
as paradigmatic similarity forms the basis for semantic clas-
sification.

The evaluation of our distributional models also considers
the effect of corpus size. Hence, we also conducted classi-
fication experiments on a smaller amount of corpus data”.
Along this line, we used a 95 million token excerpt of the
corpus (approx. 20 times smaller than the large corpus) to
train each model. Following the previously described pro-
cedure, we obtained the results depicted in Table 4.

Again, the F1 score of each of the models, when trained on
smaller corpus data, demonstrates a statistically significant
improvement (p < 0.05) over the baseline. In regards to the
performance of the individual models, we can observe that
LINGLINE, obtains the highest overall results, with its F1
score demonstrating a statistically significant improvement
(p < 0.05) over the F1 measure of both LING and LINE.

However, when considering smaller corpus data, LING pro-
duces a significantly higher F1 score than LINE which im-
plies that the reduction of corpus data effectively reduces

2Given that the DM tensor is distributed as a readily available
semantic resource that was pre-trained on the full corpus, the anal-
ysis on smaller corpus data was not performed for this model.

the distributional data needed by LINE to accurately pre-
dict class membership. Thus, the performance of LINGLINE
when using smaller corpus data, again affirms the compen-
satory benefit of combining the features of both models,
especially in the case where one model lacks sufficient in-
formation to make an accurate classification decision, such
as observed in the results obtained by the LINE model in
Table 4.

4.1.

In order to better interpret the scores obtained by each
model, we conducted an error analysis based on the con-
fusion matrices that resulted from each classification ex-
periment. In this way, we have been able to identify the
bottleneck of each model as a function of its resulting False
Positives (FPs: the items incorrectly classified as members
of the target class) and False Negatives (FNs: the items
incorrectly classified as not belonging to the target class).
Roughly speaking, FPs can be interpreted as a consequence
of “noisy” feature vectors, while FNs can be interpreted as
a consequence of sparsity, or lack of evidence in the feature
vectors. In what follows, we summarize the observations
that can be drawn from the error patterns showed by each
model in the different corpus settings.

Error Analysis

Larger corpus data (2.83 billion tokens): We first look
at the types of features that are being considered. As de-
scribed in detail in Section 2.3., the LING model consists of
manually-identified linguistic features that are considered
indicative of semantic properties of a class. However, as
explained in Bel et al. (2012), these features are not in-
dividually indicative of a given class, as their predictive
power arises through correlations between a set of these
features. Although these features provide specific informa-
tion regarding the behavior of a given lemma as found in
corpus data, the information provided by a single individ-
ual feature is not necessarily class-specific, which can in-
troduce noisy information into the feature vector, hindering
the ability of the classifier to make an accurate decision.

To further inspect this, we considered the semantic class
to which a given FP belongs. We noticed that there was
a large amount of EVT nouns that were classified as COM
nouns and vice-versa, a large amount of COM nouns that
were classified as EVT nouns. For example, the COM noun
reservation was incorrectly classified as an EVT noun in
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LING LINE LINGLINE Baseline
P R|[F|P|R|FA[]P[R]F|]P]|R]|F
COM 0.66 | 0.68 | 0.66 || 0.74 | 0.73 | 0.73 || 0.72 | 0.73 | 0.72 || 0.49 | 0.54 | 0.51
EVT 0.71 | 0.71 | 0.71 || 0.66 | 0.64 | 0.65 || 0.74 | 0.71 | 0.71 || 0.47 | 0.53 | 0.50
HUM 0.87 | 0.86 | 0.86 || 0.70 | 0.70 | 0.69 || 0.91 | 0.87 | 0.89 || 0.53 | 0.59 | 0.56
LOC 0.69 | 0.64 | 0.64 || 0.64 | 0.62 | 0.61 || 0.74 | 0.74 | 0.73 || 0.48 | 0.56 | 0.51
ORG 0.81 | 0.76 | 0.78 || 0.70 | 0.70 | 0.69 || 0.77 | 0.77 | 0.76 || 0.55 | 0.56 | 0.56

MacroAvg || 0.74 [ 0.73 [ 0.73 || 0.68 | 0.67 | 0.67 || 0.77 [ 0.76 [ 0.76 || 0.50 | 0.55 | 0.52 |

Table 4: Precision (P), Recall (R), and F-Measure for classification using LING, LINE, and LINGLINE for each class when

considering smaller corpus data

the LING model, while the EVT noun discrepancy was in-
correctly classified as a COM noun. This trend was also
observed with ORG and HUM nouns. For instance, we saw
that a large part of the FPs of ORG are members of the HUM
class (such as: comedian and graduate) and a large part of
FPs of HUM are members of the ORG class (such as: choir
and regime). A high amount of confusion between FPs of
the LOC and EVT classes was also observed. The binary
setting of the classification task did not allow for an analo-
gous analysis to be conducted on FNs. Table 5 presents the
overall results of this analysis.

COM | EVT | HUM | LOC | ORG
coMm || 0 36 43 29 26
EVT || 49 0 27 49 26
HUM || 20 20 0 22 52
LoC || 23 37 16 0 18
ORG || 21 21 33 27 0

Table 5: Confusion matrix of true semantic classes of FPs
with the larger corpus data

On the one hand, the FPs can be due to the fact that HUM
nouns, for instance, are explicitly marked, either grammat-

CIINRT) [l

ically or morphologically (i.e. suffixes such as ~-er”, "or”,
”ir” or the subject of psychological-type verbs), while ORG
nouns can be considered collective HUM nouns, or a subset
of this class (see Romeo et al. (2012) for a detailed discus-

sion of this phenomenon).

On the other hand, these mis-classifications are also related
to very particular cases of lexical ambiguity. For instance,
COM and EVT nouns, as well as LOC and EVT nouns, have
been considered in literature as examples of regular poly-
semy (see Pustejovsky (1995)), in which a lemma can be
selected for as more than one sense. Under this assump-
tion, some misclassifications can be caused by the fact that
the lemma is also a member of another (potentially related)
semantic class. Nonetheless, a discussion of polysemy goes
beyond the scope of this paper, although, it is important to
note that there is a systematicity in the mis-classification of
the nouns which can be attributed to the lexical ambiguity
of certain nouns.

Smaller Corpus Data (90 million tokens): When training
with smaller corpus data, we observed that the results of
the LING model were quite similar to its results on the full
corpus data. However, the most significant difference was
observed in the results of the LINE model. With smaller cor-
pus data, we can directly see where the unstructured infor-
mation of the LINE model is compensated with the linguis-
tic information of the LING model, highlighting the value of
combining the distributional information from both models
in LINGLINE (see differences between models in precision
and recall in Table 4), especially in the case that a model can
not obtain sufficient distributional data to make an accurate
classification decision. In this way, our results show that
the LINGLINE model effectively reduces the overall ratio of
FPs and FNs, resulting in more accurate classifications, as
well as reflects a broader coverage.

In regards to the semantic classes of the obtained FPs, we
observed trends similar to those discussed with regard to
the results obtained with the larger corpus data. Along this
line, we can say that although the amount of distributional
information is reduced, the tendencies of the behavior of the
nouns as found in general corpus data remain consistent.

5. Discussion

The goal of the work presented here is to empirically eval-
uate the performances of different distributional models in
a nominal lexical semantic classification task. Overall, the
DM model consistently obtains the strongest performance.
We attribute this, on one hand, to the inclusion of syntac-
tic information provided by the dependency parse in the
model, which provides structure to the lexical information
considered as features. On the other hand, we consider that
general structural information (e.g. syntactic parse patterns,
copulative structures, position with relation to a verb link,
attribute nouns, prepositional phrases, etc.), provided by the
features contemplated in the DM model, become indicative
of a given lexico-semantic class with the incorporation of
specific lexical information, especially when a given fea-
ture occurs many times with several members of a given
lexico-semantic class. Thus, our results indicate that the
quality of classification tasks increases with the inclusion
of syntactic annotation, as demonstrated by DM.

In regards to the other distributional models that we con-
sidered, the results demonstrate that the LING model is de-
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pendent on the availability of specific lexico-syntactic in-
formation in corpus data and the accuracy of a classifier
to correlate the relations between a set of individual fea-
tures that together are indicative of a given semantic class.
Howeyver, as the results in Table 4 indicate, unlike the LINE
model, the LING model does not necessarily require a large
amount of corpus data, thus indicating that when available,
the linguistic cues of the LING model, do provide sufficient
information to the classifier to make accurate classification
decisions.

The LINE model, however, is dependent on the availabil-
ity of a large amount of corpus data to ensure a sufficient
amount of surface information. Consequently, when a large
amount of data is not available, the LINE model looses its
predictive capacity. Moreover, as the model considers the
use of many shallow features, there is a risk that many of
those features are uninformative, thus providing no useful
indicative information to the classifier. Although we did not
test the DM model on the smaller corpus data, our intuition
is that it would behave like the LINE model with respect
to data sparsity. Therefore, we consider sensitivity to data
sparseness as a general problem of distributional models,
independently of their being structured or not.

Moreover, we must also consider that not all lexical classes
may be equally identifiable through surface features (see
the differences in the F1 scores of each individual class
in Table 3 and 4). In this way, the availability of contex-
tual distributional information, such as that considered in
LINE, can help to overcome limitations of manually identi-
fied class-indicative features, such as low frequency of tar-
get occurrences or simply a sheer lack of class-indicative
marks. Along this line, we can consider the LING model
to be ideal when trained on smaller corpora while the LINE
model is more predictive when trained on large general cor-
pus data.

However, we also consider the results obtained when com-
bining information from the LING and the LINE models in
the LINGLINE model. We observed that this combination of
information produced a compensatory effect in which each
of the models provides information that may be lacking
when considering the distributional information provided
by only one model, especially in the case of the LINE model
when trained on smaller corpus data. Thus, we consider
that the combined LINGLINE model obtains state-of-the-
art results (Bel et al., 2012) and on different-sized corpora.
Along this line, as a large, robust, syntactic dependency-
parsed (large) corpus is not always available for all lan-
guages, domains and/or tasks being considered, the joint
exploitation of linguistically-motivated cues and linear co-
occurrence features, as demonstrated by LINGLINE, is a vi-
able alternative.

6. Final Remarks

Overall, our study provides an empirical evaluation of clas-
sifications produced by distributional models that exploit
different degrees of feature extraction criteria. The exper-
iments presented in this work demonstrate the advantages
and disadvantages of each model considered. Our results

consistently indicate that the quality of classification in-
creases with the complexity of syntactic information con-
sidered in the features of distributional models. Along this
line, the analysis conducted in this work resulted in a strat-
egy that, by combining distributional linguistic and linear
features, is capable of leveraging the bottlenecks of each
model, especially when large robust data is not available.
The results obtained serve to increase the reliability of au-
tomatically constructed resources that require nominal lex-
ical semantic class information.

A limitation of this work is the assumption that the lexical
semantic classes considered are monosemous, which, as we
demonstrated in the Error Analysis in Section 4.1., can have
a negative effect on the results, especially when consider-
ing ambiguous entities as members of a given class. Future
research will address the inclusion of polysemy in our mod-
els (Pustejovsky, 1995; Bullinaria and Levy, 2007; Bel et
al., 2012), as we consider it a ubiquitous phenomenon that
must be accounted for in any distributional semantic space
as well as in any classification scenario.
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