
The WaveSurfer Automatic Speech Recognition Plugin

Giampiero Salvi and Niklas Vanhainen
KTH, School of Computer Science and Communication,

Department of Speech Music and Hearing, Stockholm, Sweden
{giampi, niklasva}@kth.se

Abstract
This paper presents a plugin that adds automatic speech recognition (ASR) functionality to the WaveSurfer sound manipulation and
visualisation program. The plugin allows the user to run continuous speech recognition on spoken utterances, or to align an already
available orthographic transcription to the spoken material. The plugin is distributed as free software and is based on free resources,
namely the Julius speech recognition engine and a number of freely available ASR resources for different languages. Among these are
the acoustic and language models we have created for Swedish using the NST database.

Keywords: Automatic Speech Recognition, Free Software, WaveSurfer

1. Introduction

Automatic Speech Recognition (ASR) is becoming an im-
portant part of our lives, both as a viable alternative for
humans-computer interaction, but also as a tool for linguis-
tics and speech research. In many cases, however, it is trou-
blesome, even in the language and speech communities, to
have easy access to ASR resources. On the one hand, com-
mercial systems are often too expensive and not flexible
enough for researchers. On the other hand, free ASR soft-
ware often lacks high quality resources such as acoustic and
language models for the specific languages and requires ex-
pertise that linguists and speech researchers cannot afford.

In this paper we describe a plugin for the popular sound
manipulation and visualisation program WaveSurfer1

(Sjölander and Beskow, 2000) that attempts to solve the
above problems. Firstly, the plugin, as the WaveSurfer pro-
gram, is free software. We chose to release the plugin un-
der the GPL License. Secondly, it makes the functionality
of the Julius2 recognition engine available to the user in a
simple way, without the need to learn how Julius works.
Finally, we use ASR resources that are freely available,
and we promote the development of such resources for lan-
guages with a relatively small number of speakers, such as
Scandinavian languages.

To support this effort, we created an ASR dedicated web-
site3 where we will collect all the resources that we develop
or that become available to us. We recently trained acoustic
and language models for large vocabulary speech recogni-
tion in Swedish (Vanhainen and Salvi, 2014) that are avail-
able for download at that site and that are included in the
plugin.

Although still in a early stage of development, this plugin
should enable linguists and speech researchers to take ad-
vantage of the possibilities offered by speech recognition. It
should, e.g., simplify the task of annotating speech material
as well as provide a useful tool for educational purposes.

1http://www.speech.kth.se/wavesurfer/
2http://julius.sourceforge.jp/
3http://www.speech.kth.se/asr

Figure 1: The Speech Recognition plugin adds an entry in
the Create Pane menu.

1.1. Related Work
Many free software packages are available that implement
general ASR functionality. The most popular, besides the
already mentioned Julius, are CMU Sphinx4 (Lamere et al.,
2003), and Kaldi5 (Povey et al., 2011). Although these
provide the fundamental building blocks to perform speech
recognition, they usually require a certain degree of exper-
tise from the user for setting up and running.
A few software packages provide tools for speech an-
notation and speech analysis in a user friendly manner.
Probably the best known are Praat6 (Boersma, 2002), and
WaveSurfer. However, at the time of writing, we are not
aware of any ASR functionality implemented for neither of
these software packages.
Recently, Bigi (2012) developed a tool for phonetic seg-
mentation of speech that is available on Linux, Mac OSX
and MS Windows7. The tool, as our plugin, is dependent

4http://cmusphinx.sourceforge.net/
5http://kaldi.sourceforge.net/
6http://www.fon.hum.uva.nl/praat/
7http://aune.lpl-aix.fr/˜bigi/sppas/

3067

http://www.speech.kth.se/wavesurfer/
http://julius.sourceforge.jp/
http://www.speech.kth.se/asr
http://cmusphinx.sourceforge.net/
http://kaldi.sourceforge.net/
http://www.fon.hum.uva.nl/praat/
http://aune.lpl-aix.fr/~bigi/sppas/

Figure 2: The properties window for the automatic speech recognition plugin. Left: basic properties, right: advanced
properties.

on the Julius speech recogniser and is used to facilitate the
annotation of speech material at the phonetic level.
The goal of our plugin is to provide user-friendly, but highly
configurable speech recognition functionality in a software
package that is already equipped with many other speech
related functions. In this way, the user can take advantage
of the power and flexibility of popular software packages,
all integrated in the same tool.

2. The Plugin
WaveSurfer’s functionality is organised in panes. For each
sound object, the user can add different panes with the de-
sired functions, ranging from waveform display, to spectro-
gram, multiple transcriptions, and so forth.
Once installed, the Speech Recognition plugin adds an
entry called Speech Recognition in the Create
Pane menu (see Figure 1).
The Speech Recognition pane is a transcription pane with
embedded ASR functionality. If we choose to create a
Speech Recognition pane, the plugin will use the default
settings to attempt to recognise the content of the current
sound object and will display the results in the transcrip-
tion.

2.1. Options and Functionality
By right clicking on this special transcription pane, and se-
lecting Properties, the user has access to the recog-
nition parameters (see Figure 2). Two tabs are added to
WaveSurfer property window. The first, entitled ASR (Fig-
ure 2 left), contains basic settings for the recogniser. The
second, entitled ASR Adv (Figure 2 right), contains ad-
vanced settings.
The first option in the basic settings allow the user to se-
lect among the installed languages. The plugin has been
designed in a modular way, so every time a new language
is installed, a new entry will automatically be created in the
ASR Language selector.

The Grammar type option lets the user choose among
few example grammars that were provided by the language
package. Examples can be digits, 1kwords for 1000
word grammar, and so on. These examples are provided
as a starting point to test the recogniser. Depending on the
recogniser performance in the specific language, it may be
necessary to constrain the recognition grammar to the spe-
cific task the user is interested in. At the moment of writing,
defining new grammars is not possible through the plugin,
but we release scripts that may help users achieving this of-
fline and then using the custom grammar files with the help
of the advanced options.
The Transcription level option lets the user select
if the recognition output should be displayed at the word or
phoneme level.
If the Show confidence checkbox is activated, the plu-
gin will display the confidence of the recognizer for each
word by varying the font colour. Black fonts correspond
to high confidence, whereas red fonts to low confidence.
This options is based on the normalised confidence measure
called “cmscore1” in Julius and is therefore only available
for word-level transcriptions. An example of words recog-
nised with different levels of confidence is shown in Fig-
ure 3.
The next section in the ASR property tab, defines the opera-
tion of the recogniser. If the Forced alignment check-
box is selected, an orthographic transcription of the speech
file (with equal file name and default extension ort) will
be loaded, and the recogniser will attempt to align this tran-
scription in time to the speech file. The extension of the
optional orthographic transcription can also be configured.
If the checkbox is deselected, on the other hand, the recog-
niser will use a predefined grammar to run free recognition.
The advanced option tab (Figure 2 right), contains config-
uration parameters that allow the user to change any option
of the recogniser. In order to properly change any of these
configurations, however, the user needs to be familiar with

3068

the functionality of the Julius recogniser in details. The
full command that is run by the plugin is also displayed to
simplify the task of debugging problems whenever the user
decides to change any advanced option.
The design of these two property tabs was motivated by the
attempt to keep the plugin simple for non expert users, but
to give at the same time full control for the expert users. By
means of the advanced options, users can even use their
own language resources, provided they are able to save
them in a format that is compatible with Julius.
Finally, all the options can be saved using WaveSurfer
Save Configuration... standard command, mak-
ing it easy to recover them at a later stage.

3. Installation
The simplest way to install plugins in WaveSurfer is to copy
the relevant files into the WaveSurfer preference directory.
In order to do this, WaveSurfer has to be already installed,
and executed at least once. Note that the plugin installation
files come with a binary version of the Julius recogniser, so
it is not necessary to install Julius separately. The follow-
ing sections give instructions depending on the architecture,
however you should always refer to the instructions coming
with the latest version of the plugin:

GNU Linux:

1. download the plugin package including the word
linux in the file name

2. extract the files into the directory
˜/.wavesurfer/<version>/plugins/

Where ˜ is an alias for the user’s home directory, and
<version> is the WaveSurfer major version number
(1.8 at the time of writing)

Mac OS X:

1. download the plugin package including the word osx
in the file name

2. same as point 2 for Linux

MS Windows:

1. download the plugin package including the word win
in the file name

2. extract the files into the directory
$HOME\.wavesurfer\<version>\plugins\

Where $HOME points to the user’s home directory, and
<version> is the WaveSurfer major version number
(1.8 at the time of writing)

4. Language Support
4.1. How to add new languages
As mentioned in Section 2.1., the plugin architec-
ture makes it easy to add resources for different lan-
guages whenever these are available in Julius for-
mat. The simple way to add support for a lan-
guage is to store the relevant files in a directory un-
der ˜/.wavesurfer/<version>/plugins/asr/.

The directory name should correspond to the language
name or any string the users wishes to be displayed in the
ASR Language selector (Figure 2 left). This directory
should also contain the file lang.conf specifying all the
default parameters for the recogniser. Any Julius compat-
ible files can be included in the new language directory,
provided that the file lang.conf contains enough infor-
mation for the plugin to understand how to run Julius prop-
erly. Probably the easiest way to achieve this is by simply
defining a Julius configuration file with all the proper pa-
rameters, and then pointing to that file in the lang.conf
file.
Note that the same goal can be achieved by defining a
standard WaveSurfer configuration file with all the proper
definitions, and storing the language specific files in any
location on your filesystem. The advantage of using the
lang.conf method is that the new language will auto-
matically show up in the language selection option.

4.2. Currently available languages
In general, freely available resources for automatic speech
recognition (ASR) are scarce. Julius and CMU Sphinx
come with acoustic and language models for the English
language trained on the Voxforge corpus8. Unfortunately
this corpus is rather limited if compared to the corpora used
for commercial ASR systems. Other models, available for
download, may not be freely distributed because they are
trained on commercial corpora.
We are making an effort to provide high quality language
resources that may be freely used by the community. Re-
cently, we have trained acoustic and language models for
Swedish (Vanhainen and Salvi, 2014) on the NST corpus.
This corpus is freely distributed after bankruptcy of the
company that collected it (Nordisk Språkteknologi, NST),
and is comparable in size and quality with commercially
used corpora. This makes Swedish, to our knowledge, the
first language for which high-quality ASR resources are
truly freely available.
Additionally, models for American English were trained by
Keith Vertanen on the Wall Street Journal data set9. We
converted these models to Julius format and packaged them
for the plugin as well.
In the future, we plan to build acoustic and language models
for Danish and Norwegian, for which similar NST corpora
are available.

5. Plan for Future Versions
The plugin presented in this paper is at a functional, but
early stage of development. In order to make this software
useful for the widest possible audience, a number of im-
provements should be developed. In the following we will
make a list of the ones we believe should have highest pri-
ority. However, we are aware of the fact that with free soft-
ware, it is often the user community that decide in which
direction development should go.

8http://www.voxforge.org/
9http://www.keithv.com/software/htk/us/

3069

http://www.voxforge.org/
http://www.keithv.com/software/htk/us/

Figure 3: Example of automatically generated transcription for a speech utterance in Swedish. The confidence for each
word is expressed by font colour in the labels. Black font corresponds to high confidence, red font to low confidence.

5.1. Installation
Although the plugin installation is fairly easy, it would be
beneficial to take advantage preexisting software packaging
systems available in some architectures. In Debian-derived
GNU Linux distributions, for example, software can be
conveniently packaged into deb packages with the possi-
bility to define dependencies. The plugin package could
be made dependent on the already existing Julius package,
and the language specific files could be distributed as stan-
dard language packages for Julius. This would not only
greatly simplify the installation process, but it would make
sure that those resources are not duplicated on the computer
disk and can be used for other applications as well as this
specific plugin.

5.2. Language Models
Whereas acoustic models can usually be applied to different
speech recognition tasks without modification, it is critical
for an application such as this to allow the user to define the
recognition grammar for the current task. Large vocabulary
speech recognition without specific context has a level of
performance that is not adequate for most applications. In
the current version, changing the recognition grammar can
be done through the advance options of the plugin, and with
the help of some scripts that we provide. This however
requires knowledge of the details of how Julius works, and
is not accessible to all users. A user-friendly interface to
introduce constraints to the list of words to be recognised,
for example, would be beneficial.

5.3. Forced Alignment
The forced alignment option in the plugin is at the moment
rudimentary. Two areas that are fundamental for forced
alignment to work properly are:

1. handling out-of-vocabulary words

2. handling reduction and assimilation within and be-
tween words

Both these functions require language dependent knowl-
edge that should be included in future releases of the plugin.

5.4. Adaptation
As with many tools that make use of speech technology,
it is very important to adapt the recognition models to the
situation they are applied to. In order to make this possible
with minimum effort from the user, it would be beneficial
to develop a number of extensions to the plugin.
Firstly it should be possible to easily add words and their
pronunciations to the lexicon. It should be possible to cor-
rect recognition errors from the transcription pane, and at
the same time inspect and correct the cause of these errors,
e.g., by adding alternative pronunciations in the lexicon. It
should be possible to adapt the acoustic models to the cur-
rent data, based on the corrected transcriptions. The user
should finally be able to upload the modifications to the
models to our web site, making them available for future
versions of the plugin.

6. Conclusion
The work presented in this paper is part of a greater effort to
make speech technology publicly available, especially for
languages with a relatively small number of native speakers
and therefore a limited commercial appeal. We presented
an extension to the WaveSurfer software that makes auto-
matic speech recognition (ASR) available to users with no
particular expertise in the field. This should allow speech
researchers and linguists to take advantage of the possibil-
ities offered by ASR technology. It will simplify the ef-

3070

fort of transcribing speech material, and hopefully enable a
wide range of possibilities in speech research.

7. References
Bigi, B. (2012). Sppas: a tool for the phonetic segmenta-

tion of speech. In Calzolari, N., Choukri, K., Declerck,
T., Dogan, M. U., Maegaard, B., Mariani, J., Odijk, J.,
and Piperidis, S., editors, LREC, pages 1748–1755. Eu-
ropean Language Resources Association (ELRA).

Boersma, P. (2002). Praat, a system for doing phonetics by
computer. Glot international, 5(9/10):341–345.

Lamere, P., Kwok, P., Gouvea, E., Raj, B., Singh, R.,
Walker, W., Warmuth, M., and Wolf, P. (2003). The cmu
sphinx-4 speech recognition system. In IEEE Intl. Conf.
on Acoustics, Speech and Signal Processing (ICASSP
2003), Hong Kong, pages 2–5. Citeseer.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glem-
bek, O., Goel, N., Hannemann, M., Motlicek, P., Qian,
Y., Schwarz, P., et al. (2011). The kaldi speech recogni-
tion toolkit. In Proc. ASRU, pages 1–4.

Sjölander, K. and Beskow, J. (2000). Wavesurfer - an open
source speech tool. In Proc. of Interspeech, pages 464–
467.

Vanhainen, N. and Salvi, G. (2014). Free Acoustic
and Language Models for Large Vocabulary Continu-
ous Speech Recognition in Swedish. In Calzolari, N.,
Choukri, K., Declerck, T., Loftsson, H., Maegaard, B.,
Mariani, J., Odijk, J., and Piperidis, S., editors, LREC.
European Language Resources Association (ELRA).

3071

	Introduction
	Related Work

	The Plugin
	Options and Functionality

	Installation
	Language Support
	How to add new languages
	Currently available languages

	Plan for Future Versions
	Installation
	Language Models
	Forced Alignment
	Adaptation

	Conclusion
	References

