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Abstract
Recent years show the development of large scale resources (e.g. FrameNet for the Frame Semantics) that supported the definition of
several state-of-the-art approaches in Natural Language Processing. However, the reuse of existing resources in heterogeneous domains
such as Human Robot Interaction is not straightforward. The generalization offered by many data driven methods is strongly biased
by the employed data, whose performance in out-of-domain conditions exhibit large drops. In this paper, we present the Human Robot
Interaction Corpus (HuRIC). It is made of audio files paired with their transcriptions referring to commands for a robot, e.g. in a
home environment. The recorded sentences are annotated with different kinds of linguistic information, ranging from morphological
and syntactic information to rich semantic information, according to the Frame Semantics, to characterize robot actions, and Spatial
Semantics, to capture the robot environment. All texts are represented through the Abstract Meaning Representation, to adopt a simple
but expressive representation of commands, that can be more easily translated into the internal representation of the robot.
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1. Human Robot Interaction

Robots are slowly becoming part of everyday life, as they
are being marketed for commercial applications (viz. telep-
resence, cleaning or entertainment). The Human Robot In-
teraction (HRI) research field aims at realizing robotic sys-
tems that offer an interaction level as much natural as pos-
sible (Scheutz et al., 2011). Several issues arise in trans-
lating human generated commands into suitable robotic ac-
tions. First, the underlying meaning of an utterance needs
to be understood, and then mapped into robot-specific com-
mands, in order to fill the gap between the robot world rep-
resentation and the linguistic information conveyed in user
utterances. In a sense, this is a typical form of semantic
parsing.
Semantics is the crucial support for grounding linguistic ex-
pressions into objects, as they are represented in the robot
set of beliefs (i.e. robot knowledge). The complexity of
this task largely increases in less restricted scenarios, such
as house serving tasks, where people do not follow a-priori
known subsets of linguistic expressions. This requires ro-
bust command understanding processes, in order to face the
flexibility of natural language. In many Natural Language
Processing tasks, where robustness and domain adaptation
are crucial, e.g. Open Domain Question Answering as dis-
cussed in (Ferrucci et al., 2010), methods based on Statisti-
cal Learning (SL) theory have been successfully applied.
In this perspective, we are investigating the combination
of different state-of-the-art textual inference technologies
aimed at modeling and making use of semantic aspects
mostly relevant for HRI. We started from the idea that
robotic systems are firstly required to exhibit two main fea-
tures: in order to be useful they are expected to perform ac-
tions and these take place in a physical environment. Mul-
tiple semantic theories can be applied to describe the as-
pects of the world that should be taken in account for a ro-

bust HRI. In this work we point out Frame Semantics (Fill-
more, 1985) and Holistic Spatial Semantics (Zlatev, 2007)
as relevant to our goal. Frame Semantics generalizes the
notion of action by making reference to a situation, i.e. an
experience usually represented by a Frame, i.e. a micro-
theory about a real world situation, such as movement
actions. Holistic Spatial Semantics (Zlatev, 2007) de-
fines the basic concepts in the domain of natural language
spatial expressions. It helps to make reference to the lo-
cation or the trajectory of a motion, usually involving one
referent in a discourse.
In recent years the adoption of sound linguistic theories
brought to the development of large scale resources (e.g.
FrameNet (Baker et al., 1998) for the Frame Semantics or
the CLEF Corpus for Spatial Semantics) to support the def-
inition of several state-of-the-art Statistical Learning ap-
proaches for NL tasks. However, the reuse of these re-
sources in heterogeneous domain is not straightforward.
The generalization offered by ML algorithms is strongly
biased by the employed data, whose performance in out-of-
domain conditions may exhibit large drops. This is a crucial
problem and a specific research topic, i.e. Domain Adap-
tation (Daumé and Marcu, 2006), deals exactly with these
classes of problems. For example, as reported in (Prad-
han et al., 2008; Johansson and Nugues, 2008), a Semantic
Parsing system trained over a specific application-domain
corpus shows a significant performance drop, when applied
to different domains.
In this paper, we will present the Human Robot Interac-
tion Corpus (HuRIC) we are collecting1. It is made of 570
audio files paired with their transcriptions referring to com-
mands for a robot. The recorded sentences are also anno-
tated with different kinds of linguistic information, rang-
ing from morphological and syntactic information to rich

1Available at http://sag.art.uniroma2.it/huric
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semantic information, according to Frame Semantics and
Spatial Semantics theories. It has to be noticed that the two
representations look at independent properties and can co-
operate to fully express a model of the sentence meaning,
useful for the HRI domain. The integration of these in-
formation is not straightforward. In order to accommodate
different dimensions in the semantic annotation we are fos-
tering the adoption of the Abstract Meaning Representation
(AMR) (Banarescu et al., 2013). AMR is a novel repre-
sentation language that allows to generalize several aspects
of the NL semantics. In this representation schema, sen-
tences having different syntactic structures, but basically
sharing the same meaning, are seemingly expressed and
represented by the same structure. It is very useful to pro-
vide a simple but expressive representation of commands,
that can be easily translated into the internal representation
of the robot.
In the rest of the paper we will first introduce the corpus
gathering process (Section 2.) Section 3. then reports in-
depth details about the corpus, also discussing some ex-
amples and issues raised during the annotation process. A
first set of evaluation experiments involving HuRIC are pre-
sented and discussed in Section 4.

2. Corpus Collection
During the recent years the effort of providing resources
useful for the automatic understanding robot commands
has yielded the definition of corpora for Natural Language
HRI, as (Kuhlmann et al., 2004; Tellex et al., 2011; Dukes,
2013). However, these corpora are highly domain or sys-
tem dependent. The basic idea of this work is to build a
corpus containing information that are yet oriented to a spe-
cific application domain, e.g. the house service robotics,
but at the same time inspired by sound linguistic theories,
that are by definition decoupled from such a domain. The
aim is to offer a level of abstraction that is totally indepen-
dent from the platform, but yet motivated by supported the-
ories. We exploited three different situations to start gather-
ing user utterances representing possible commands given
to a robot in a house environment. Two groups of utterances
have been recorded during the Speaky for Robots project2,
while a third one has been collected by interviewing mem-
bers of the teams participating at the Robocup 2013 com-
petition. At the end of the gathering, three datasets have
been collected, each representing a different working con-
dition. Each dataset is mainly characterized by: the com-
plexity of the language used by the user, in terms of de-
gree of variability of syntactic structures and lexicon; back-
ground noise conditions; device used for recording. Each
utterance is coupled with its correct transcription, directly
inserted by the user under an operator’s control. Utterances
have been pronounced by different users, so that multiple
spoken versions of the same sentence are included. In the
following, the gathering process is discussed for each of the
three datasets.
The Grammar Generated (GG) dataset contains sen-
tences that have been generated by the speech recognition
grammar developed for the Speaky For Robots project. The

2
http://labrococo.dis.uniroma1.it/?q=s4r

Figure 1: The web portal used for the gathering through
crowd-sourcing

generation procedure of this grammar is presented in (Car-
lucci Aiello et al., 2013). The generated sentences have
then been pronounced by three speakers and recorded us-
ing a push-to-talk microphone. The acquisition process
took place inside a small room, thus with low background
noise. Moreover, the push-to-talk mechanism helped in
precisely segmenting the audio stream, and further reduc-
ing the noise. Due to its constrained nature, the language
represented here is free of colloquial forms of interaction.
The S4R Experiment (S4R) dataset has been gathered in
two distinct phases of the Speaky for Robots project ex-
periment. In the first phase, the users were asked to give
commands to a real robot operating in rooms set up as a
real home, thus capturing all the interferences generated by
talking people or sounds of other working devices nearby.
The users were aware about the robot capabilities in terms
of action it could perform and about the rooms and all the
objects the robot was able to recognize. The same device
used for the GG dataset has been employed here for the in-
teraction. In a second phase, the users could access the Web
portal showed in Figure 1 to record other commands. Gen-
eral situations involved in an interaction were described in
the portal by displaying text and images. Each user was
asked to give a command inherent to the depicted situa-
tion. This time the internal microphone of the pc running
the portal has been used for recording. Since the users
were only partially constrained (they had knowledge only
about capabilities of the robot and lexicon handled by the
Speech Recognition Engine), the language represented in
this dataset is characterized by features that are more simi-
lar to free spoken English with respect to the one reported
in the GG dataset, including richer syntactic structures.
The Robocup (RC) dataset has been collected during the
Robocup@Home (Wisspeintner et al., 2009) competition
held in 2013, in the context of the RoCKIn3 project. The
same Web portal used for the S4R dataset has been em-
ployed, and the recording took place directly in the com-
petition venues or in a cafeteria, thus with different levels
of background noise. Again, the internal microphone of
the pc running the web portal has been employed. Expres-
sions uttered here exhibit large flexibility in lexical choices

3
http://rockinrobotchallenge.eu/
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and syntactic structures, since the users did not received
any constraint about what to command to the robot, ex-
cept for the description of the situation. As a consequence,
this dataset is much more variable representing a realistic
“open” application with respect to the previous two com-
mand collections.
All the sentences from each dataset have been then anno-
tated according to Frame Semantics and Holistic Spatial Se-
mantics by two annotators. POS-tags and syntactic depen-
dency types provided by the CoreNLP4 (Klein and Man-
ning, 2003) have been also validated during the annotation
process, and are provided together with the semantic infor-
mation. In the last phase of the annotation process, all the
tagged information have been validated by a third expert.
In order to facilitate the annotation and validation process,
a dedicated platform, the Data Annotation Platform (DAP),
has been implemented: its front-end is showed in Figure 2.
The tool provides the possibility to tag semantics, syntax in
term of dependency types, POS-tag as well as changing the
lemma of each word. Moreover, a specific functionality of
DAP allows the user to manually assign a quality score to
each audio file. Files with a score of 0 are automatically
rejected. In a similar way, it is possible to mark syntacti-
cally wrong sentences that have been inserted by mistake.
The annotations produced are then saved in a database con-
taining also all the information about the three datasets, in-
cluding speaker’s generalities (e.g. age, nationality, back-
ground experience in HRI) and the specific device used for
the recordings.

3. Corpus Details
In this Section a deep analysis of the corpus characteristics
is carried out. General statistics about the composition of
the corpus are reported, as well as accurate measurements
regarding the annotation process.

3.1. Corpus Statistics
Each of the three datasets composing HuRIC includes a set
of audio files representing a robot command, paired with
the correct transcription. Each sentence is annotated with
the same source of information: lemmas, POS-tags, depen-
dency trees, Frame Semantics and Spatial Semantics.
Table 3.1. reports the number of audio files for each dataset,
together with the number of sentences corresponding to
their transcriptions. We asked different speakers to pro-
nounce the same command more than one time, in order
to provide variable training material to optimize acoustic
models for ASR engines. Statistics about the nationality of
the different speakers involved are reported in Table 3.1..
As can be noticed, the distribution of the nationalities is
different depending on the dataset. For the S4R experiment
mainly native-speakers have been selected, or at least very
good English speakers, e.g. people that have been living in
Anglo-Saxon countries for several years. For the Robocup
dataset, instead, speakers from all the teams have been in-
volved, resulting in a more varied distribution. Table 3.1.
shows the average number of audio files per speaker for
each dataset.

4
nlp.stanford.edu/software/corenlp.shtml

#audio files #sentences #audio file per sentence
GG 137 48 ∼2.85
S4R 141 96 ∼1.46
RC 292 177 ∼1.64

Table 1: Number of audio files and sentences

Nationality GG S4R RC
Australia 0 0 3
Brazil 0 0 1
UK 0 6 2
Chile 0 0 2
China 0 0 1
Cyprus 0 0 1
Czech Republic 0 0 1
Holland 0 0 5
German 0 0 4
India 1 0 1
Indonesia 0 0 1
Italy 2 2 5
Japan 0 0 1
Mexico 0 0 1
Romania 0 1 0
Spain 0 0 2
Syria 0 0 1
Switzerland 0 1 0
USA 0 2 4
Total 3 12 36

Table 2: Distribution of the nationality of the speakers

The different experiment background also biased the prag-
matics of the pronounced sentences in the three datasets.
We classified them into three classes: imperative, repre-
senting the will of a user to have a robot performing an
action, e.g. every direct command as “bring me the bot-
tle of water”; descriptive sentences, used to describe a sit-
uation to the robot, e.g. “there is a bottle on the table”;
within this last set, a specific class is created for definitional
sentences, useful to teach the robot about the environment,
such as in assigning a category to an entity, e.g. “this is
the kitchen”. The CC and S4R datasets present only im-
perative sentences, since during the experiments the users
were asked only to give direct commands to the robot, as in-
formation about the environment was already acquired and
known a priori. Instead, in the Robocup dataset in some
cases we also asked the users to give descriptions of the
involved scene, in order to augment the robot knowledge
about the world. The number of sentences belonging to
each class are reported in Table 3.1..
With regard to morpho-syntactic information: lemmas,
POS-tags and dependency parse trees are uploaded in the
Data Annotation Platform and lately validated. Statistics
about the fine-grain POS-tags are reported in Table 3.1.. Ta-
ble 3.1. instead shows the distribution of the general coarse-
grain POS-tags, e.g. verbs or nouns.

3.2. Annotating Frame Semantics
The first aim that we had in mind about the realization of
this corpus was to provide linguistic information about spo-
ken commands useful to encode knowledge necessary to
have the robot to fully understand them. As a first step,
we started considering the actions a robot should be able
to perform according to a set of general commands. We

average audio
file per speaker

GG ∼45.7
S4R ∼11.8
RC ∼8.1

Table 3: Average number of audio files per speaker
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Figure 2: The Data Annotation Platform

Imperative Descriptive Definitional
GG 48 0 0
S4R 96 0 0
RC 150 14 13

Table 4: Distribution of utterance classes

POS GG S4R RC
CC 0 5 31
CD 0 0 16
DT 86 152 285
EX 0 0 11
FW 0 0 1
IN 49 66 134
JJ 0 7 43
JJS 0 0 1
MD 0 2 28
NN 87 188 365
NNS 3 2 22
POS 0 1 0
PRP 2 7 79

POS GG S4R RC
PRP$ 3 7 20
RB 5 5 16
RP 0 0 1
TO 12 38 66
UH 0 13 38
VB 47 97 165
VBD 0 4 6
VBG 0 1 2
VBN 0 1 1
VBP 0 1 11
VBZ 0 0 29
WDT 0 0 3
WRB 0 0 2

Table 5: Fine-grain morpho-syntactic information

decided to rely on frames as the bridge between the linguis-
tic knowledge contained in the utterances and the robotic
actions. Frame Semantics generalizes the notion of ac-
tion by making reference to a situation, i.e. an experi-
ence usually represented by a Semantic Frame (Fillmore,
1985). A frame is a micro-theory about a real world situ-
ation: movement actions, such as moving, events,
such as natural phenomena, or properties, such as be-
ing colored. A set of semantic roles is associated to each
frame, i.e. the descriptors of the different elements involved
in the described situation (e.g. the Agent of a movement).
Linguistic resources providing such information have been
produced over the years, as FrameNet (Baker et al., 1998).
Frames are interesting primitives in HRI as robot’s actions
can be linked to semantic frames. This semantic formal-
ism already inspired the RoboFrameNet (Thomas and Jenk-
ins, 2012) framework, where a set of semantic frames con-
textual to specific robot actions has been defined. The
main difference with our work is that in RoboFrameNet
the frames have been defined at a finer-grained level with
respect to our choices. Higher levels of abstraction of

POS GG S4R RC
CC 0 5 31
CD 0 0 16
DT 86 152 285
EX 0 0 11
FW 0 0 1
IN 49 66 134
J 0 7 44
MD 0 2 28

POS GG S4R RC
N 90 190 387
P 5 15 99
RB 5 5 16
RP 0 0 1
TO 5 38 66
UH 0 13 38
V 47 105 214
W 0 0 5

Table 6: Coarse-grain morpho-syntactic information

FrameNet frames allow to treat a more general set of phe-
nomena and have been settled as a starting point.

In our case, we selected the subset of FrameNet-inspired se-
mantic frames corresponding to the defined robot actions,
that are reported in Table 3.2.. Some frames have been
slightly adapted, e.g. the frame Scrutiny has been called
Searching. According to our set of frames, in the com-
mand “go near the table of the kitchen” the Motion frame
is evoked by the verb go. The frame element GOAL, rep-
resenting the destination of the motion action is assigned
to the sequence near the table of the kitchen. The frame
instantiated in this way finally encodes all the informa-
tion needed to the robot to understand what action to per-
form, and which are the arguments involved in the com-
mand, i.e. in this case which object to take and where
to find it. Besides the number of examples for each se-
mantic frame in the three datasets, Table 3.2. reports also
the number of examples of each frame element according
to its frame. Again, when speakers had more freedom, as
in the RC dataset, the expressivity has grown, resulting in
a higher number of different frames and related frame el-
ements. Furthermore, this aspect is reflected also by the
higher average number of roles per sentence that goes from
∼1.5 of the CC dataset to ∼2.0 for the RC dataset.

The automatic annotation process can be decomposed into
three subtask: the Frame Prediction (FP), the Boundary
Detection (BD) and the Argument Classification (AC). The
first is the task of recognizing the type of the intended ac-
tion, reflected by the events evoked by the targeted sen-
tence, that is recognizing the semantic frames evoked in
a sentence; the second is the task of identifying the spans
of the arguments of an action, i.e. the frame elements re-
lated to a given frame; the third aims at assigning a label
to each span identified during the BD step, e.g. THEME or
SOURCE. The Inter-Annotator-Agreement (IAA) between
the two annotators has been evaluated for each of these sub-
tasks, in terms of Precision, Recall and F-Measure. In turn
the tagging of one annotator has been evaluated against the
other (thus considering the second as the Gold Standard),
and the mean of the two scores has been reported as the IAA
for each measure. These scores are showed in Table 3.2..
For the BD and the AC subtasks, both the exact match and
the token match have been reported. The first represents the
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GG S4R RC
Attaching 1 0 2
ITEM 0 0 2
GOAL 1 0 0
Being in category 0 0 14
CATEGORY 0 0 14
ITEM 0 0 14
Being located 0 0 20
LOCATION 0 0 11
PLACE 0 0 6
THEME 0 0 20
Bringing 10 22 37
AGENT 0 1 6
BENEFICIARY 2 1 13
GOAL 8 21 24
MANNER 0 0 1
SOURCE 0 0 9
THEME 10 22 37
Change operational state 1 3 3
DEVICE 1 3 3
OPERATIONAL STATE 1 1 2
Closure 6 0 1
CONTAINER PORTAL 2 0 1
CONTAINING OBJECT 4 0 0
Entering 4 0 1
GOAL 4 0 1
Following 1 6 30
AREA 0 0 1
COTHEME 1 6 30
GOAL 0 1 5
MANNER 0 3 6
PATH 0 0 1
SPEED 0 0 1
THEME 0 0 6
Giving 0 0 2
RECIPIENT 0 0 2
THEME 0 0 2
Inspecting 0 1 3
DESIRED STATE 0 1 1
GROUND 0 1 3
INSPECTOR 0 1 1
Motion 9 25 39
AREA 0 0 1
GOAL 9 25 38
MANNER 2 1 1
PATH 0 1 1
THEME 0 0 8
Perception active 1 0 0
PHENOMENON 1 0 0
Placing 0 7 10
AGENT 0 0 1
GOAL 0 7 10
THEME 0 7 10
Releasing 0 2 0
GOAL 0 2 0
THEME 0 2 0
TIME 0 1 0
Searching 3 27 24
COGNIZER 0 0 5
GROUND 3 16 7
PHENOMENON 3 27 24
PURPOSE 0 0 5
Taking 12 6 12
AGENT 0 0 4
PURPOSE 0 0 2
SOURCE 10 3 5
THEME 12 6 12
Total # of frames 48 99 198
Av. frames per sentence 1.00 1.03 1.12
Total # of roles 74 16 36
Av. roles per sentence 1.54 1.67 2.02

Table 7: Distribution of Frames and related Frame Ele-
ments

percentage of roles that have been exactly tagged, meaning
that a frame element has been correctly tagged only if its
entire span matches the Gold Standard one. The second
measure refers to the percentage of token correctly tagged
inside the labeled spans. More details and examples about
the IAA are reported in Section 3.5.

3.3. Annotating Spatial Semantics

The first consideration that arose while modeling the se-
mantics of commands through Frame Semantics has been

FP BD AC
P R F1 P R F1 P R F1

Exact Match
GG 97.9 97.9 97.9 93.2 93.2 93.2 90.5 90.5 90.5
S4R 95.5 95.5 95.5 93.8 94.4 94.1 93.2 93.8 93.5
RC 95.2 95.2 95.2 84.5 84.5 84.4 82.8 82.8 82.7

Token Match
GG - - - 96.3 96.3 96.2 93.0 93.0 92.9
S4R - - - 94.6 95.4 94.9 92.8 93.6 93.2
RC - - - 89.9 89.9 89.8 85.0 85.0 85.0

Table 8: Frame Semantics Inter Annotators Agreement

that the related actions take place in an environment. We
then focused on the different spatial aspects involved in
such interactions, and how the spatial domain is represented
in the language. Even though Frame Semantics is able to
capture some of these aspects, we found out that in some
cases the granularity level offered by this theory was not
appropriate. Understanding the spatial relations that hold
between two or more entities and conveyed through natural
language can be crucial for HRI. For example, lets consider
the command “go near the table in the kitchen”. Frame Se-
mantics, as defined in FrameNet, is not able to capture the
relation holding between the table and the kitchen, as the
whole sequence near the table in the kitchen is supposed
to be considered as the destination of the motion trajectory,
i.e. the GOAL frame element. Identifying such relation
would allow a robot to understand which is the table we are
referring to, among all the tables the robot is aware of.
We then decided to rely on the Holistic Spatial Semantics
(Zlatev, 2007) to catch such phenomena. This theory de-
fines the basic concepts in the domain of natural language
spatial expressions. It helps to make reference to the lo-
cation or the trajectory of a motion, usually involving one
referent in a discourse. It defines the concept of spatial re-
lation, as a relation holding among different spatial roles
that can be identified in a sentence. This can be a TRA-
JECTOR, i.e. the entity whose location is of relevance, a
LANDMARK, i.e. the reference entity by which the location
of the trajectory of the motion is fully specified, or a SPA-
TIAL INDICATOR, i.e. the part of a sentence holding and
characterizing the nature of the whole relation. For exam-
ple, in the sentence “go near the table in the kitchen”, the
preposition “in” is the SPATIAL INDICATOR of the relation
between “table” and “kitchen”, respectively a TRAJECTOR
and a LANDMARK.
Spatial Semantics in term of these three roles have been an-
notated over the whole HuRIC, in line with the annotated
CLEF corpus discussed in (Kolomiyets et al., 2013). Table
3.3. reports the number of spatial relations annotated over
the three datasets, together with the total number of spatial
roles. It is worth noting that the number of LANDMARKs
is different from the other two roles because sometimes it
can be implicit, e.g. go near [the table]TRAJECTOR [on the
right]SPATIAL INDICATOR. The average number of spatial re-
lations and roles per sentence is also reported. The Inter-
Annotator-Agreement has been evaluated for each spatial
role. It has been measured in the same way as for the Frame
Semantics, and is reported in Table 3.3., considering both
the exact match and the token match measures.
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GG S4R RC
Spatial relation 24 15 47
TRAJECTOR 24 15 47
SPATIAL INDICATOR 24 15 47
LANDMARK 18 14 41
Av. relation per sentence 0.50 0.16 0.27
Av. role per sentence 1.38 0.46 0.76

Table 9: Distribution of Spatial Relations and Spatial Roles

TRAJECTOR SPATIAL INDICATOR LANDMARK

P R F1 P R F1 P R F1
Exact Match

GG 94.2 94.2 94.1 98.1 98.1 98.0 92.4 92.4 92.3
S4R 90.6 91.2 90.0 90.6 91.2 90.0 90.0 90.6 89.3
RC 85.8 88.6 85.7 81.4 81.4 81.3 84.7 84.7 84.6

Token Match
GG 93.2 93.2 93.2 99.1 99.1 99.1 88.1 88.1 88.1
S4R 90.6 91.2 90.0 93.8 94.0 93.5 90.5 91.0 89.8
RC 81.6 81.6 81.6 86.1 86.1 86.0 83.8 83.8 83.7

Table 10: Spatial Semantics Inter Annotators Agreement

3.4. Abstract Meaning Representation

From the considerations made in the previous Sections, it
arises that the two selected representations look at indepen-
dent properties and can cooperate to fully express the mean-
ing of a command. They both represent different forms of
annotation of relevant expressions useful for the HRI do-
main. In order to accommodate different dimensions in the
semantic annotation we are fostering the adoption of the
Abstract Meaning Representation (AMR) (Banarescu et al.,
2013). AMR is a novel representation formalism. It allows
to generalize several aspects of the NL semantics and it is
ideal to abstract some aspects that are currently less rele-
vant (such as quantification) and to focus on spatial (and
temporal) concepts, their instances and the individual rela-
tions among them. In AMR, sentences that have different
syntactic structures, but basically share the same meaning,
are seemingly expressed and represented by the same struc-
ture. A major advantage in robotic applications is that a
fully instantiated AMR annotation can be easily mapped to
the corresponding operational commands for the robot, i.e.
making a smooth notion of grounding already available.

go near the table in the kitchen
VB IN DT NN IN DT NN

ROOT

PREP

POBJ

DET PREP

POBJ

DET

Figure 3: Example of a dependency graph associated to
sentence “go near the table in the kitchen”

The AMR annotation provided within HuRIC is automati-
cally produced by translating the arguments expressing se-
mantic information. The syntactic tree is used to select the
semantic head in each argument in order to instantiate all
the variables within the AMR resulting structure. When a
spatial relation overlaps a frame element, the semantic head
expressing the first is linked to the second, so capturing the
spatial specification carried out by the Spatial Semantics.
For example starting from the two different annotations for
the sentence “go near the table in the kitchen”

[go]Motion [near the table in the kitchen]GOAL

go near [the table]TRAJECTOR [in]SPATIAL INDICATOR [the
kitchen]LANDMARK

the spatial relation is used to further specify the GOAL
frame element. The syntactic tree shown in Figure 3 sug-
gests that the table is the semantic head of the prepositional
construction underlying the GOAL role and, at the same
time, it reflects a TRAJECTOR. The spatial information can
be thus embedded in the GOAL role, recursively generating
the following structure.

(g1 / go− Motion

: Goal(i1/ in− Spatial relation

: trajector(t1/ table)

: landmark(k1/ kitchen)))

According to the AMR guidelines, the spatial relations can
been seen as a surrogate of the information that is repre-
sented by the AMR role be-located-at.
At the moment of writing, the generation script is able to
correctly build the AMR representation for about the 90%
of sentences of the whole HuRIC and further work is being
done to increase the coverage.

3.5. HuRIC Resulting Annotations
In this section a list of annotation examples is showed in
order to present some directives we adhered and to discuss
about issues we faced during the tagging. The main point
is that the level of knowledge the robots are today able to
manage is quite far and distant from the huge amount of lin-
guistic information that is present also in simple sentences
like the ones contained in HuRIC. To this end, we propose
to use the AMR as a container that can be enriched step
by step with all the necessary information, according to the
robot capabilities. For example, if the robot is not able to
deal with quantification, there will be no need of integrat-
ing such information inside the AMR. For this reason, we
are removing all those aspects that are currently negligible
from the final AMRs. For each frame role, we insert in the
structure only the semantic head of its textual span. The se-
mantic head is selected by navigating the dependency sub-
tree of the frame element text, and looking for the noun that
is closer to the root, as it is possible to see in the tagging of
the command “can you please bring the phone to the bath-
room”:

can [you]AGENT please [bring]Bringing [the phone]THEME [to
the bathroom]GOAL

(b1 / bring− Bringing

: Agent(y1/ you)

: Theme(p1/ phone)

: Goal(b2/ bathroom))

Here the semantic head phone and bathroom have been re-
spectively selected for the roles THEME and GOAL.
The AMR guidelines define an exhaustive set of non-core
roles used to deeply specify most of the semantic phenom-
ena occurring in texts. Since by now we want to capture just
the essential information that will allow the robot to under-
stand the commands here reported, we decided to integrate
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in the AMR only those features that are strictly necessary
for our tasks. Noun modifiers and adjectives are most of the
time needed in the discrimination process for a robot, in or-
der to correctly identify the referenced entity. For example,
in the command “carry the mug to the dining room”

[carry]Bringing [the mug]THEME [to the dining room]GOAL

(c1 / carry− Bringing

: Theme(m1/ mug)

: Goal(r1/ room

: mod(d1/ dining)))

the dining modifier of the noun room is crucial to under-
stand the specific room we are talking about. Without going
to deep in the definition of different non-core roles, we used
the :mod label in those cases.
One main issue, arose during the annotation procedure,
concerned the intrinsic ambiguity of some prepositional
phrase attachments. This phenomenon has been manifested
especially for the Taking frame, as showed by the command
“take the bottle on the table”. Here the preposition on can
be attached directly to the verb or to the noun bottle. This
gives rise to different interpretations in term of frames and
relative frame elements. According to the first case (1), the
bottle and on the table can be tagged respectively as the
THEME and the SOURCE for a Taking frame; it has to be
said that such approach may rise another issue, since on the
table might be interpreted as the GOAL frame element of
a Bringing frame, thus changing the whole meaning of the
command. In the second case (2), the whole sequence the
bottle on the table can be labeled as a unique THEME.

1) [take]Taking [the bottle]THEME [on the table]SOURCE

2) [take]Taking [the bottle on the table]THEME

take [the bottle]TRAJECTOR [on]SPATIAL INDICATOR [the ta-
ble]LANDMARK

(t1 / take− Taking

: Theme(o1/ on− Spatial relation

: trajector(b1/ bottle)

: landmark(t2/ table))

: Source(t2))

As it is possible to notice from the AMR example above,
we decided to adhere to the first interpretation (1). This
choice has been mainly driven by the CoreNLP syntactic
parsing, that uses to attach such prepositions directly to the
verb. Moreover, we considered the verb take as source from
a Bringing frame only in those cases in which a frame ele-
ment introduced by non ambiguous prepositions as to or to-
wards was present. Another important fact outlined by the
Spatial Semantics annotation of this example is that the two
semantic representations may add information that seem re-
dundant. Since we are still dealing with these kind of is-
sues, we decided to report both the representations in such
cases.
Regarding the Inter Annotator Agreement, one of the main
source of disagreement in the annotation of the Frame

Semantics concerned the tagging of the role CATEGORY
frame element for the Being in category frame. Expecially,
what differs in the two annotation approaches is the span to
which the frame element has been associated. For exam-
ple, for the command this is a bedroom with pictures on
the wall, one annotator considered only the portion of text
corresponding to the direct entity representing the category,
i.e. a bedroom in the following example.

[this]ITEM [is]Being in category [a bedroom]CATEGORY with four
pictures on the wall

The second annotator incorporated the whole span corre-
sponding to the sub-tree starting from the entity represent-
ing the category, i.e. a bedroom with pictures on the wall.

[this]ITEM [is]Being in category [a bedroom with four pictures on
the wall]CATEGORY

This generated a significant drop in the Boundary Detection
and Argument Classification agreement, as it is possible to
see in Table 3.2..

4. A First Empirical Evaluation
As a support to our thesis about the need of liguistic re-
sources for Natural Language HRI and in order to verify
their possible impact in the development of HRI systems,
we ran some preliminary experiments involving HuRIC.
We designed a processing chain able to annotate Frame Se-
mantics according to the schema described in Section 3.2.
The chain is realized as a cascade of processors exploit-
ing different Statistical Learning algorithms, and it is ex-
plained in depth in (Croce et al., 2012). The Frame Predic-
tion task is designed as a multi-classification process, us-
ing the SVMMulticlass algorithm (Joachims et al., 2009).
Both Boundary Detection and Argument Classification sub-
tasks are realized as a sequential labeling task through the
SVMHmm (Altun et al., 2003), i.e. a Markovian extension
of the SVM . In the first subtask, the labeler gives a label to
each word indicating whether this is part or not of a frame
element. In the second, the labeler assigns a label to each
word, corresponding to the associated frame element.
First, we trained the system over the FrameNet corpus, and
evaluate its performances over the three dataset compos-
ing HuRIC (reported in the FN column of Table 4.). In
the second experiment, 66% of annotated examples of each
subsets of HuRIC have been added to the FrameNet ma-
terial for training. In this way a 3-fold evaluation schema
has been enabled: cyclically, three different tests have been
made possible on the remaining 33% of each test corpus.
The macro-average achieved over three measures have been
computed as the final performance, and is reported under
the HuRIC column in Table 4..
In the labeling chain, we fed each module with gold stan-
dard input. The results reported in Table 4. show how
adding training from HuRIC results in a significant im-
provement of the performances, expecially for the BD and
the AC phases. Results show the percentage of correctly as-
signed frame (the FP column), the percentage of correctly
recognized roles (the BD column) and correctly classified
with respect to the role labels (the AC column). A con-
stant improvement is shown when adding HuRIC annotated
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Gold information at each step
FP BD AC

FN HuRIC FN HuRIC FN HuRIC
GG 0.826 0.833 0.684 0.871 0.589 0.822
S4R 0.812 0.817 0.743 0.872 0.736 0.912
RC 0.732 0.758 0.696 0.817 0.701 0.898

Table 11: Semantic Role Labeling analysis with HuRIC

examples, especially in the S4R and RC dataset. It con-
firms the positive impact of using specialized material, i.e.
reflecting the syntactic/semantic peculiarity of robot com-
mands.

5. Conclusion
This paper presents the Human Robot Interaction Corpus
(HuRIC), a first collection of robot commands to support
the HRI research. First, sentences have been recorded as
audio files. Then, transcriptions have been annotated with
different kinds of linguistic information, ranging from mor-
phological and syntactic information to rich semantic in-
formation, according to Frame Semantics and Spatial Se-
mantics. Finally, the texts annotated in this way have
been represented through the Abstract Meaning Represen-
tation (AMR) formalism, a novel and flexible representa-
tion schema. First experimental evaluations underline the
positive impact of this resource in the adoption of data
driven methods for the Semantic Parsing of natural lan-
guage commands. Moreover, the adoption of an open rep-
resentation schema as AMR will enable for extensions of
the corpus according to other semantic theories, as explicit
temporal annotations. Such information could be useful for
HRI in order to better support the planning of sequences of
(and not individual) actions.
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