
Locating Requests among Open Source Software Communication Messages

Ioannis Korkontzelos, Sophia Ananiadou
National Centre for Text Mining

School of Computer Science
The University of Manchester

{Ioannis.Korkontzelos, Sophia.Ananiadou} @manchester.ac.uk

Abstract
As a first step towards assessing the quality of support offered online for Open Source Software (OSS), we address the task of locating
requests, i.e., messages that raise an issue to be addressed by the OSS community, as opposed to any other message. We present a
corpus of online communication messages randomly sampled from newsgroups and bug trackers, manually annotated as requests or
non-requests. We identify several linguistically shallow, content-based heuristics that correlate with the classification and investigate the
extent to which they can serve as independent classification criteria. Then, we train machine-learning classifiers on these heuristics. We
experiment with a wide range of settings, such as different learners, excluding some heuristics and adding unigram features of various
parts-of-speech and frequency. We conclude that some heuristics can perform well, while their accuracy can be improved further using
machine learning, at the cost of obtaining manual annotations.

Keywords: online dicussion threads, online message classification, corpus of online messages

1. Introduction
Assessing the quality of Open Source Software (OSS) is
useful for deciding whether a project meets certain stan-
dards for adoption. It is a complex task, since a multitude
of evaluation aspects, such as maturity, activity of devel-
opment and user support need to be considered (Spinellis
et al., 2009; Bianco et al., 2010; Samoladas et al., 2008;
Fuggetta, 2003). The task becomes even more challeng-
ing when one needs to choose among many OSS projects
that offer similar functionality, based on objective evidence
(Dahlander and Magnusson, 2005). For example, there are
more than 20 open source XML parsers for the Java pro-
gramming language1.
Analysing source code repositories can provide information
about evaluation aspects, such as software maturity, activity
of development and quality of comments. Exploring rele-
vant communication channels, such as newsgroups and bug
tracking systems, is useful for assessing the level of user
support, interest and satisfaction for an OSS project (Scac-
chi, 2007). For example, we can compute metadata such
as the number of experts and active users, the number of
open bugs, the rate of fixing bugs and whether user ques-
tions are answered timely and satisfactorily (Lakhani and
von Hippel, 2003).
Computing such metadata requires knowing firstly which
messages pose questions or requests as opposed to answers,
comments, announcements and other messages. Requests
are messages that raise an issue to the OSS community, ask-
ing for help, reporting some installation problem or other
bug or proposing an improvement. We present a corpus of
1, 030 messages relevant to OSS, randomly selected from
a variety of channels, and also our experiments to classify
request vs. non-request messages. We investigate the ex-
tent to which simple, linguistically shallow, content-based,
observational heuristics can serve as unsupervised classi-

1Open source XML parsers in Java:
java-source.net/open-source/xml-parsers

fiers to locate requests. Then, we use these heuristics to
train supervised learners. Results show that some heuris-
tics achieve accuracies that exceed significantly the major
class baseline. Machine learning can improve this accuracy
at the cost of obtaining manual annotations. In the future,
we plan to investigate features based on information other
than message content, such as the position of a message
in a thread. We also plan to investigate how non-request
messages can be further classified in more fine-grained cat-
egories.
The remainder of this paper is structured as follows: In sec-
tion 2., we summarise related literature and in section 3.,
we present the corpus of OSS-related online communica-
tion messages, with details about the annotation of requests
and non-requests and some examples indicating that the bi-
nary classification task is non-trivial. Section 4. describes
heuristic methods that correlate with the request vs. non-
request classification and can be used as unsupervised clas-
sifiers or as features for trainable classifiers. Section 5.,
presents evaluation settings and results, and we conclude in
section 6..

2. Related literature
The most relevant work in the literature is Wang et al.
(2010), which performed thread-level analysis of CNET
technical forums. They performed classification experi-
ments based on a corpus and a classification scheme. In
contrast, we exploit OSS-related forums specifically and we
investigate only content-based features. Wang et al. (2011)
and Wang and Rosé (2010) used an extended set of features
to predict discourse relations in forum threads.
Other relevant work includes Ding et al. (2008) that used
conditional random fields to match answers and content
messages to questions in online forums. Baldwin et al.
(2007) and Baldwin et al. (2010) classified entire Linux fo-
rum threads in classes related to task specificity, complete-
ness and solvedness. Messages were classified as problems,
solutions or miscellaneous and then classified into further

1347

Syst
em

Chan
nels

M
ess

ag
es

Req
uest

s

Non
-re

quest
s

NNTP 4 208 77 131
Bugzilla 8 410 131 279
Github 22 412 98 314
Total 34 1030 306 724

Table 1: Online communication corpus statistics. Chan-
nels correspond to NNTP newsgroups, Bugzilla products
or GitHub projects.

subclasses.
Ding et al. (2008) proposed a general framework based on
Conditional Random Fields to detect context messages and
answers of questions in forum threads. Kim et al. (2010)
attempted to classify forum posts according to dialogue acts
and, then, structured thread messages as a discourse. Has-
san et al. (2010) proposed a method for detecting attitudi-
nal sentences in threads, as well as types of attitude. Lui
and Baldwin (2009) drew the profile of users based on the
properties of their activity in online forums.
Krishnamurthy (2005) presented empirical evidence from
100 mature OSS projects and drew associations between
the number of software developers per project, its age and
its popularity. Crowston and Howison (2005) and Bagozzi
and Dholakia (2006) presented similar studies focussing on
social and communication structures concerning OSS.

3. Corpus of online communication
messages

1, 030 online communication messages2 were randomly
selected from Network News Transfer Protocol (NNTP)
newsgroups, Bugzilla and Github. NNTP is a protocol for
transporting, posting and sending articles between servers
and client applications. Bugzilla is a bug tracking sys-
tem, while GitHub is a web-based hosting service for soft-
ware development, which hosts its own bug tracking sys-
tem, GitHub Issue Tracker. NNTP articles, Bugzilla and
GitHub comments were selected randomly so that the sam-
ple exhibits similar characteristics to the population as a
whole.
Table 1 presents high level statistics of the corpus3, while
table 2 shows the NNTP newsgroups, Bugzilla and GitHub
projects that were selected. The corpus is stored in XML
format. For each message, apart from the textual content,
additional identity information and metadata, such as au-
thor and date, are stored.

3.1. Corpus annotation
Each message was annotated manually as request or non-
request by a computational linguist. The fundamental cri-

2The corpus is freely available, under the Apache License.
Please, contact the authors for details.

3Fewer newsgroup articles than Bugzilla and Github com-
ments were selected, because the corresponding projects were
among the interests of the industrial partners involved in OSS-
METER (STREP EU project, grant number 318736).

server URL news.eclipse.org
newsgroup eclipse.hudson

re
qu

es
t1 text I just started the Tomcat server,

which is hosting Hudson, using
jdk1.6.0 27 as JAVA HOME. I still
get the error, when Hudson at-
tempts to send mails.

server URL news.eclipse.org
newsgroup eclipse.hudson

re
qu

es
t2

text I do have the groovy-support plu-
gin installed. I reduced the groovy
script to only a single println and
even that failed.

server URL bugzilla.redhat.com
project Red Hat Linux

re
qu

es
t3 text tin in its default configuration tries

to read usr/lib/news/active, when a
newsspool operation is requested.
This is incorrect, active is in
/var/lib/news under RH.

server URL news.eclipse.org
project eclipse.hudson

no
n-

re
q.

1
text What version of jboss as are you

deploying to (According to the
stack trace it’s version 5x)?

Table 3: 3 examples of a requests, where no question mark
or WH question word is used, and an example of a non-
request that includes a question mark and a WH question
word. The latter is a question asked by a developer to the
user that has previously submitted a request.

terion for annotating a message as request is whether it
raises a new topic to the OSS community. Namely, a re-
quest might:

- report a newly discovered bug.
- ask whether a previously reported bug has been fixed.
- report a difficulty in installing or using the OSS project.
- state that the user is facing a previously reported prob-

lem, bug or difficulty.
- propose an improvement for the OSS project.

All other messages are considered as non-requests. As
shown in the two rightmost columns of table 1 there are
more non-requests than requests. The main reason is that
the corresponding content range is wider, since it con-
tains:

- All communication between developers and users after
a bug is reported and before it is fixed.

- User non-requests after the bug is fixed or it is decided
that it cannot be fixed.

- Communication between developers about their
progress on fixing bugs and improving the OSS.

- Communication between developers for assigning bugs
and jobs to each other.

- Notices and announcements about news, new releases
or other changes concerning an OSS.

These definitions are driven by the usability of this classi-
fication towards evaluating OSS projects. Since the over-
all target is to score online communications in terms of
quality of provided user support, we choose to classify to-

1348

NNTP server NNTP newsgroups (# articles)
news.eclipse.org eclipse.technology.subversive (52), eclipse.hudson (52), eclipse.platform (52)
news.gmane.org gmane.comp.java.sonar.general (52)
Bugzilla server Bugzilla projects (# articles)
bugzilla.redhat.com gmane.comp.java.sonar.general (52), Bugzilla (52), Fedora (52), Issue-Tracker (52)

Pulp (52), Red Hat Database (46), Red Hat Enterprise Linux 7 (52)
Red Hat Linux (52), Topic Tool (52)

GitHub server GitHub projects (# comments)
api.github.com/ acts as geocodable (5), amazon-ec2 (6), attachment fu (43), audited (15), braid (6)

repositories capsize (4), cache fu (3), chronic (56), enum field (1), eycap (11), forgery (16), git-wiki (4)
god (23), grit (24), low-pro-for-jquery (1), resource controller (8), restful-authentication (23)
rubinius (56), ruby-git (23), ruby-on-rails-tmbundle (25), signal-wiki (3), thin (56)

Table 2: NNTP newsgroups, Bugzilla and GitHub projects included in the online communication corpus. The number of
NNTP articles, Bugzilla and GitHub comments appears within parentheses.

gether messages that contribute similarly to the evaluation
score, positively or negatively. In particular, request mes-
sages are considered to negatively affect the quality score:
many requests paired with few non-requests probably indi-
cate that the developers cannot adequately support users. In
contrast, many non-requests indicate increased activity lev-
els and probably the successful handling of user requests.
However, very few or zero requests may indicate absence
of user interest, and thus, have a negative impact on the
quality score. The effect of the number of request and non-
request messages will feed into a thread classification sys-
tem. Then, we will be able to measure the number of unad-
dressed requests and the actual time between a request and
the corresponding non-request.

3.2. Classification challenges
Classifying messages automatically is challenging for a
number of reasons. Question marks and/or WH question
words, i.e. words that introduce questions, such as “what”,
“who” and “where”, can indicate requests. Question marks
are only present in direct interrogative sentences, how-
ever, in written form, questions are typically expressed in-
directly. In indirect questions, WH question words are
present.
The corpus contains noteworthy exceptions to the hypoth-
esis that request messages contain question marks or WH
question words. Table 3 presents 3 request messages, none
of which contains direct or indirect interrogative sentences.
In request 1, it is mentioned that the user encountered some
error. Similarly, request 2 and 3 express deficiencies by
the words “failed” and “incorrect”. In contrast, table 3
presents a non-request that contains both a question mark
and a WH question word. It is a direct interrogative sen-
tence that concerns communication between the developer
that attempts to address a request and the user that reported
the deficiency.
Table 4 shows an example non-request and 2 example re-
quests. Non-request 2 expresses a question submitted by a
developer that attempts to address a request submitted pre-
viously. The actual request message is included in the mes-
sage body, indented with the greater-than symbol (>). This
feature is typical in email replies and also adopted many
bug tracking systems and newsgroups. To prevent text of

previous messages from fooling a classifier, a cleaning step
can be applied to exclude these lines of text, before present-
ing message content to the classifier.
Requests 4 and 5 in table 4 are difficult to recognise au-
tomatically. Request 4 contains no question mark or WH
question words. It consists of a copied and pasted descrip-
tion of an error and a note of the sender that describes how
the problem should be addressed, in their opinion. Request
5 consists of an installation log in which an error has oc-
curred. The last line of the message is manually typed and
mentions pieces of software already installed. The user in-
tends to point out a contradiction: the installation fails al-
though prerequisite software is already installed.

4. Heuristic classification methods
In this section, we present heuristic methods that correlate
significantly with the classification scheme, inspired by ob-
serving instances, such as the ones presented in section 3..
Then, we discuss the feature set based on these heuristic
methods, that has been used to train machine learners.
We investigate how well simple characteristics of online
communication messages can serve as classification crite-
ria. Since they require no linguistic preprocessing, the re-
sulting classification methods are fast and suitable for on-
line processing. The basic classification methods are:

Question mark method Classifies as requests messages
that contain question marks, or as non-requests otherwise.

RE method Classifies as non-requests messages whose
subjects start with “RE: ” or “Re: ”, or as requests oth-
erwise. This method can be applied to NNTP newsgroup
articles, only, since Bugzilla and GitHub comments have
no subject.

Question words method A generalisation of the ques-
tion mark method, so as to capture indirect questions in
addition to direct ones. Messages that contain the WH
question words what, when, where, which, who, whom,
whose, why and how are classified as requests, otherwise
as non-requests. Observing the corpus, we also added the
words help and please, that are typically present in requests.
Matching is performed in a case insensitive manner.
These three methods can be combined with a preprocess-
ing step to clean text indented with the greater than symbol

1349

server api.github.com/repositories
project rubinius

no
n-

re
qu

es
t2

text > is that needed at all for this change?
No, this is feature from ruby 2.0. Each element in ‘$LOAD PATH ‘ is frozen and ‘$LOAD PATH‘ is cached
in exactly the same way. So I think we can remove that part from pull request.
> Also, is there a reason for all the synchronization in it?

I’m not sure - I was based on the implementation of ‘$LOAD FEATURES‘
> I think we should address that separately so we don’t mix different changes,
> which makes discussing and reviewing them harder.

Agree, I will update this pull request and I will remove all changes related to ‘$LOAD PATH‘
server bugzilla.redhat.com
project Topic Tool

re
qu

es
t4

text Description of problem:
Tool gracefully ignores the fact that a topic could not be read (sometimes due to a validity issue) and keeps
on retrieving subsequent topics:
[Fatal Error] :234:6: The element type “step” must be terminated by the matching end-tag “</step >”.
ERROR: Unable to load topic (http://topicrepo.englab.bne.redhat.com/TopicRepository/
Tasks/IPA/Installing the IPA Server.xml).
ERROR: Unable to parse ’Installation Guide Export/en-US/Infrastructure.xml’.
Ideally I think we want to allow this but keep track of which topics couldn’t be read and display a list at the
end of the run to highlight that it wasn’t successful.

server bugzilla.redhat.com
project Red Hat Linux

re
qu

es
t5

text checking host system type... i586-pc-linux
checking target system type... i586-pc-linux
checking for gcc... gcc
checking whether the C compiler (gcc) works... no
configure: error: installation or configuration problem: C
compiler cannot create executables.
I have egcs and gcc installed.

Table 4: Examples of a non-request and 2 requests. Non-request 2 contains the request text submitted previously indented
with the greater-than symbol (>). Request 4 contains a copied and pasted description of an error. Request 5 consists of just
an installation log in which an error has occurred.

(>). As discussed in section 3.2., this symbol is indica-
tive of previous messages included in the current message.
Cleaning is a method component rather than a method it-
self.
In addition, the basic classification methods can be com-
bined with each other:

Question mark or words method Classifies as requests
messages that contain question marks or WH question
words, or as non-requests otherwise.

RE Question mark method Classifies messages as re-
quests if their subjects do not start with “RE: ” or “Re: ”.
The remaining messages are classified as requests if they
contain a question mark, or as non-requests otherwise. This
method applies to NNTP newsgroup articles, only.

RE Question mark or words method A combination of
the two methods above. NNTP newsgroup articles that are
not classified as requests by the RE method are classified
as requests if they contain question marks or WH question
words. Otherwise, articles are classified as non-requests.
All methods are developed for messages in English. How-
ever, they can be applied to other languages directly or af-
ter some minor modifications. In particular, Cleaning can
be applied directly to any language, because greater-than
(>) indentation is language independent. The remaining
methods can be applied to other languages after transla-

tion. The Question mark method should be modified to
capture the symbols that encode direct questions. The RE
method should be modified to capture initials or prefixes
that denote non-requests and are used in the subject of non-
request emails. The Question words method should be
modified to capture words that introduce questions in other
languages.
Apart from applying the above heuristics as independent
classification methods, we also use them as features for
trainable machine learning classifiers. The feature set is
of heuristic-based features is enriched by unigram features,
hypothesising that occurrence of particular words might be
indicative of request or non-request messages.

5. Evaluation
In this section, we present our experimentation with simple
heuristics, disucssed in section 4., as independent unsuper-
vised classification criteria. Then, we combine these cri-
teria with unigram features to train machine learners. The
motivation for our experiments is to inspect whether simple
heuristics can successfully address the task and whether it
is worth training machine learners to investigate correla-
tions between the criteria and/or unigram features. In sec-
tion 5.1. we discuss evaluation details, in section 5.2. we
present evaluation results and in section 5.3. we discuss our
experimentation conclusions.

1350

Method Classification accuracy (%)
Cleaning Bugzilla Github Newsgroups Bugzilla Github Newsgroups Corpus
1 7 qm 67.56 75.00 51.92 67.38
2 7 qw 69.76 63.84 44.71 62.33
3 7 qm qw 67.81 63.59 47.12 61.94
4 7 qm qm re 67.56 75.00 81.73 73.40
5 7 qm qm re qm 67.56 75.00 55.77 68.16
6 7 qm qw qm qw re qm qw 67.81 63.59 47.12 61.94
7 3 qm 67.56 75.49 64.90 70.19
8 3 qw 70.49 64.08 52.40 64.27
9 3 qm qw 68.54 64.08 54.81 63.98

10 3 qm qm re 67.56 75.49 81.73 73.59
11 3 qm qm re qm 67.56 75.49 68.27 70.87
12 3 qm qw qm qw re qm qw 68.54 64.08 54.33 63.88
- Baseline: Major class 68.05 76.21 62.98 70.29

Table 5: Evaluation results of heuristic methods used as classification criteria. qm, qw and re stand for the question mark
method, the question words method and the RE method, respectively. Concatenations of these symbols denote combined
methods. The last row reports the major class baseline. Scores that exceed the baseline are in bold face.

5.1. Experimental settings
We evaluated all heuristic methods with or without Clean-
ing as a preprocessing step. Since the RE method is appli-
cable to newsgroup articles only, we paired it with others
applicable to Bugzilla and Github comments, in order to
allow the computation of results over the entire corpus.
For machine learning experiments, we employed the Sup-
port Vector Machine (SVM) (Cortes and Vapnik, 1995) and
Random Forest (Breiman, 2001) implementations of the
WEKA toolkit (Hall et al., 2009) and considered 10-fold
cross validation. We employed the linear and radial basis
function (RBF) SVM kernels, and used the default parame-
ter Gamma value, 0.01, for the latter kernel. In addition to
all 6 heuristics as features, we experimented with all combi-
nations of omitting one or more during training. The num-
ber of experiments is equal to the number of all possible
combinations for our 6 methods plus one experiment for no
omissions:

5∑
i=1

(
6
i

)
+ 1 = 63 (1)

The feature space was enriched with unigrams that do not
occur in a typical English stoplist and occur more fre-
quently than a threshold T. We evaluated a range of values
for T: [1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50]. Apart
from all parts-of-speech (AllPoS), we experimented with
unigram features of some parts-of-speech, only, i.e. just
nouns (N), nouns and adjectives (NJ), nouns, adjectives
and verbs (NJV). Moreover, we considered three feature
value types for unigram features: binary, frequency and tf-
idf (Salton and Buckley, 1988).
Due to the binary classification nature of these experiments,
accuracy, i.e. the number of correctly predicted instances
over the total number of instances is adequate to measure
performance. To compute accuracy we used the Java class
PrecisionRecallEvaluation, part of the LingPipe API4.

4LingPipe 4.1.0 URL: alias-i.com/lingpipe

5.2. Experimental results

Table 5 shows accuracies achieved by 12 methods evalu-
ated on the corpus of online communication messages, in-
troduced in section 3.. The RE method and combined meth-
ods that use it are only evaluated on newsgroup articles,
because the subject field is not available for Bugzilla and
Github messages. To measure the effect of these methods
on the entire corpus, we classified the Bugzilla and Github
comments using other applicable methods. For example,
experiment 4 classified Bugzilla and Github comments ac-
cording to the question mark method and newsgroup arti-
cles according to the RE method. In these cases, the accu-
racy scores are copied in grey.
Heuristics that employ question words exceed the major-
ity class baseline for Bugzilla comments, while no method
exceeds it for GitHub comments. For newsgroup articles,
the question mark and RE method exceed the baseline. On
the entire corpus, the highest accuracy, 73.59%, is achieved
by the question mark method for Bugzilla and GitHub and
the RE method for newsgroups after Cleaning. The im-
provements over the baselines are statistically significant,
according to Fisher’s, McNemar’s and Chi-square tests.
The best performing heuristic on Bugzilla comments is
question words with Cleaning as a preprocessing step.
However, the score is only slightly better than the scores
achieved by other methods that use question words. In con-
trast, the same methods tested on the Github comments lead
to more variable results. The best accuracy achieved by the
question mark method after Cleaning does not exceed the
major class baseline. For newsgroup articles, methods that
employ question marks exceed the major class baseline.
The highest accuracy is achieved by methods that consider
subject line prefixes.
In our supervised experiments, initially we trained machine
learners with heuristic features only, and then we included
unigram features. Experiments with heuristic features con-
sidered 3 classifiers, 63 feature settings and included or ex-
cluded Cleaning (378 experiments in total, as discussed in
section 5.1.). Then, our experiments that included unigram

1351

number of Accuracy(%)
feature value constraints experiments min avg max
1 all experiments 63882 66.21 72.89 78.16
2 Cleaning 31941 66.21 73.41 78.16
3 no Cleaning 31941 67.48 72.36 77.67
4 include unigrams 63504 67.48 72.89 78.16
5 exclude unigrams 378 66.21 71.50 74.18
6 SVM, linear kernel 21294 67.48 73.48 78.16
7 SVM, RBF kernel 21294 66.21 72.19 77.57
8 RandomForest 21294 67.48 72.99 77.67
9 omit no heuristic feature 1014 69.42 73.78 77.77
10 #2 + #6 + #9 169 71.17 74.90 77.77
11 #2 + #4 + #6 + #9 168 71.17 74.90 77.77
12 #2 + #5 + #6 + #9 1 73.98 73.98 73.98
13 #2 + #6 + #9 + noun unigram features 42 72.04 75.41 77.77
14 #2 + #6 + #9 + noun and adjective unigram features 42 72.14 75.35 77.77
15 #2 + #6 + #9 + noun, adjective and verb unigram features 42 72.33 74.81 77.48
16 #2 + #6 + #9 + unigram features of all parts-of-speech 42 71.17 74.04 77.57
17 #2 + #6 + #9 + frequency feature values for unigrams 56 74.18 76.46 77.77
18 #2 + #6 + #9 + binary frequency feature values for unigrams 56 71.94 74.30 77.18
19 #2 + #6 + #9 + tf-idf frequency feature values for unigrams 56 71.17 73.96 76.21
- Baseline: Major class 70.29
- Baseline: Best Unsupervised Method (table 5) 73.59

Table 6: Minimum, maximum and average accuracy achieved by experimental settings that contain the corresponding
feature value. Numbers in constraints refer to the inclusion of other constraints mentioned earlier. The last rows reports the
major class baseline and the best accuracy achieved by heuristic methods.

features also considered 3 feature value types, 4 parts-of-
speech and 14 frequency settings (63,504 experiments in
total). The experiment that achieved the highest accuracy,
78.16%, used the linear SVM kernel and included heuris-
tic features for methods: question mark, question mark or
question words and RE. It used frequency values for noun
and adjective unigram features of frequency 1 or higher af-
ter the Cleaning preprocessing step.
Although the best accuracy was achieved excluding some
heuristic features, this is not the case on average. Exper-
iments where no heuristic features were omitted achieved
on average ∼0.8% higher accuracy than experiments that
omitted heuristic features.
Since it is impractical to present all experimental results,
we attempt to judge the importance of feature values by ob-
serving the average accuracy achieved by experiments that
used each. The unigram frequency threshold does not affect
results significantly, since average accuracies per frequency
threshold value lie in [72.62%, 73.47%].
Table 6 shows the minimum, average and maximum accu-
racy achieved for various experiment sets. Each set is de-
fined by feature value constraints shown in the second col-
umn. For example, set #1 refers to all experiments, i.e. no
constraint is applied, set #2 refers to all experiments that
considered the Cleaning preprocessing step, and set #10
refers to the cut of sets #2, #6 and #9. The most useful
feature values are in bold. Sets #2 to #9 show that Clean-
ing is a useful preprocessing step. Equally useful is the
inclusion of all heuristics and choosing the SVM classifier
with linear kernel. Making this selections, sets #10 to #19
show that the next important selection is to include unigram
features encoded as frequency feature values. The improve-

ment achieved over the baseline and the heuristic methods
is statistically significant.

5.3. Discussion
The main experimental finding is that simple content-based
textual characteristics are useful in classifying a commu-
nication message as request or non-request. Using them
as unsupervised classifiers provides encouraging classifica-
tion accuracy without any training.
Machine learners trained on these heuristics and unigrams
can improve performance by approximately 3%, without
any particular feature selection. However, this improve-
ment comes with the cost of annotating communication
messages manually for training purposes. The increase re-
quires no costly feature selection, apart from selecting an
SVM classifier with linear kernel, including unigrams repre-
sented as frequency feature values and taking into account
all heuristics including Cleaning as a preprocessing step.
Choosing the exact best performing setting can improve ac-
curacy further up to 1.5%.
Definitely, the actual accuracy levels depend on the com-
munication messages included in the corpus. However,
since the selection was performed entirely at random, not
associated with threading information, the sample accu-
rately represents the population.

6. Conclusion and future work
In this paper we addressed the task of classifying online
newsgroup articles or bug tracking system comments in the
domain of Open Source Software (OSS) as requests or non-
requests. We consider messages that raise a new issue to an

1352

OSS community as requests and all other messages as non-
requests. This binary classification is driven by the overall
target of assessing the quality of support offered by these
means of communication.
We presented a corpus of 1, 030 communication messages
selected randomly from NNTP newsgroups and bug track-
ing systems: Bugzilla and GitHub and annotated manually
as requests or non-requests. We identified several heuris-
tics that correlate with this classification and evaluated how
well they can perform classification as independent crite-
ria. Then, we combined them together in a feature set to
train machine learning classifiers. We evaluated a very
wide range of parameters concerning these heuristic fea-
tures, different machine learners, and unigram features of
various parts-of-speech and frequencies. We conclude that
heuristic features can perform well for this task, but accu-
racy needs to be improved for real-life applications. As
expected, machine learners can perform significantly better
than heuristic based methods.
In the future, we plan to examine if using observations re-
lated to the position of a message in a thread can increase
accuracy. Usually, threads start with a request. Knowing
who submitted the initial request can be useful for classify-
ing messages of that user in the same thread. In addition,
it is common that long time after a problem or bug is ad-
dressed, some user submits another relevant request. We
can also consider other observations that are not based on
the content of messages. For example, the fact that fre-
quent users are more likely to be developers and to con-
tribute non-requests than requests. Moreover, often some
user submits another relevant request a long time after a
problem or bug has been addressed.

Acknowledgements
This work was funded by the European Community’s Sev-
enth Framework Program (FP7/2007-2013) [grant number
318736 (OSSMETER)].

7. References
Bagozzi, R. P. and Dholakia, U. M. (2006). Open source

software user communities: A study of participation in
linux user groups. Management Science, 52(7):1099+.

Baldwin, T., Martinez, D., and Penman, R. B. (2007). Au-
tomatic thread classification for Linux user forum infor-
mation access. In Proceedings of the 12th Australasian
Document Computing Symposium (ADCS 2007), pages
72–79, Melbourne, Australia.

Baldwin, T., Martinez, D., Penman, R. B., Kim, S. N.,
Lui, M., Wang, L., and MacKinlay, A. (2010). Intelli-
gent linux information access by data mining: the ILIAD
project. In Proceedings of the NAACL HLT 2010 Work-
shop on Computational Linguistics in a World of Social
Media, WSA ’10, pages 15–16, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Bianco, V., Lavazza, L., Morasca, S., Taibi, D., and Tosi,
D. (2010). An investigation of the users’ perception of
OSS quality open source software: New horizons. In
Ågerfalk, P., Boldyreff, C., González-Barahona, J. M.,
Madey, G. R., and Noll, J., editors, Open Source Soft-
ware: New Horizons, volume 319 of IFIP Advances in

Information and Communication Technology, chapter 2,
pages 15–28. Springer Boston, Berlin, Heidelberg.

Breiman, L. (2001). Random forests. Machine Learning,
45(1):5–32.

Cortes, C. and Vapnik, V. (1995). Support-vector net-
works. Machine Learning, 20(3):273–297.

Crowston, K. and Howison, J. (2005). The social struc-
ture of free and open source software development. First
Monday, 10(2).

Dahlander, L. and Magnusson, M. G. (2005). Relation-
ships between Open Source Software Companies and
Communities: Observations from Nordic Firms. Re-
search Policy, 34(4):481–493.

Ding, S., Cong, G., Lin, C. Y., and Zhu, X. (2008). Us-
ing conditional random fields to extract contexts and an-
swers of questions from online forums. In Proceedings
of ACL-08: HLT, Columbus, Ohio, USA. Association for
Computational Linguistics.

Fuggetta, A. (2003). Open source software–an evaluation.
Journal of Systems and Software, 66(1):77–90, April.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reute-
mann, P., and Witten, I. H. (2009). The WEKA data
mining software: An update. SIGKDD Exploration
Newsletter, 11(1):10–18.

Hassan, A., Qazvinian, V., and Radev, D. (2010). What’s
with the attitude? identifying sentences with attitude in
online discussions. In Proceedings of the 2010 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 1245–1255, Cambridge, MA. Association
for Computational Linguistics.

Kim, S. N., Wang, L., and Baldwin, T. (2010). Tagging and
linking web forum posts. In Proceedings of the Four-
teenth Conference on Computational Natural Language
Learning, CoNLL ’10, pages 192–202, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Krishnamurthy, S. (2005). Cave or community?: An em-
pirical examination of 100 mature open source projects.
Social Science Research Network Working Paper Series.

Lakhani, K. R. and von Hippel, E. (2003). How open
source software works: free user-to-user assistance. Re-
search Policy, 32(6):923–943.

Lui, M. and Baldwin, T. (2009). You are what you post:
User-level features in threaded discourse. In Proceed-
ings of the 14th Australasian Document Computing Sym-
posium (ADCS 2009), Sydney, Australia.

Salton, G. and Buckley, C. (1988). Term-weighting ap-
proaches in automatic text retrieval. Information Pro-
cessing and Management, 24(5):513–523.

Samoladas, I., Gousios, G., Spinellis, D., and Stamelos,
I. (2008). The SQO-OSS quality model: Measurement
based open source software evaluation. In Russo, B.,
Damiani, E., Hissam, S., Lundell, B., and Succi, G., edi-
tors, Open Source Development, Communities and Qual-
ity, volume 275 of IFIP International Federation for In-
formation Processing, pages 237–248. Springer Boston.

Scacchi, W. (2007). Free/open source software develop-
ment: recent research results and emerging opportuni-
ties. In The 6th Joint Meeting on European software en-
gineering conference and the ACM SIGSOFT symposium

1353

on the foundations of software engineering: companion
papers, ESEC-FSE companion ’07, pages 459–468, New
York, NY, USA. ACM.

Spinellis, D., Gousios, G., Karakoidas, V., Louridas, P.,
Adams, P. J., Samoladas, I., and Stamelos, I. (2009).
Evaluating the quality of open source software. Elec-
tronic Notes in Theoretical Computer Science, 233:5–28.

Wang, Y.-C. and Rosé, C. P. (2010). Making conver-
sational structure explicit: Identification of initiation-
response pairs within online discussions. In Human Lan-
guage Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Compu-
tational Linguistics, pages 673–676, Los Angeles, Cali-
fornia. Association for Computational Linguistics.

Wang, L., Kim, S. N., and Baldwin, T. (2010). Thread-
level analysis over technical user forum data. In Pro-
ceedings of the Australasian Language Technology Asso-
ciation Workshop 2010, pages 27–31, Melbourne, Aus-
tralia.

Wang, L., Lui, M., Kim, S. N., Nivre, J., and Baldwin, T.
(2011). Predicting thread discourse structure over tech-
nical web forums. In Proceedings of the 2011 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 13–25, Edinburgh, Scotland, UK. Associ-
ation for Computational Linguistics.

1354

