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Abstract
Sentiment analysis is genre and domain dependent, i. e. the same method performs differently when applied to text that originates
from different genres and domains. Intuitively, this is due to different language use in different genres and domains. We measure such
differences in a sentiment analysis gold standard dataset that contains texts from 1 genre and 10 domains. Differences in language
use are quantified using certain language statistics, viz. domain complexity measures. We investigate 4 domain complexity measures:
percentage of rare words, word richness, relative entropy and corpus homogeneity. We relate domain complexity measurements to
performance of a standard machine learning-based classifier and find strong correlations. We show that we can accurately estimate its
performance based on domain complexity using linear regression models fitted using robust loss functions. Moreover, we illustrate how
domain complexity may guide us in model selection, viz. in deciding what word n-gram order to employ in a discriminative model and
whether to employ aggressive or conservative word n-gram feature selection.
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1. Introduction
Sentiment Analysis (SA) is—just like natural language pro-
cessing in general (Sekine, 1997; Escudero et al., 2000)—
genre and domain dependent (Wang and Liu, 2011), i.e.
the same SA method performs differently when applied to
different genres and domains. Intuitively, this is due to dif-
ferent language use in different genres1 and domains2.
In this paper, we measure such differences in an SA gold
standard dataset that contains texts from 1 genre—product
reviews—and 10 domains, e. g. apparel and music. Differ-
ences in language use are quantified using certain language
statistics, viz. domain complexity measures.
We relate domain complexity to performance of a standard
Machine Learning (ML)-based classifier and find strong
correlations. We show that we can accurately estimate its
performance based on domain complexity. Moreover, we
illustrate how domain complexity may guide us in model
selection.

1.1. Related Work
Related to our work are Ponomareva and Thelwall (2012),
who estimate—using domain complexity and domain
similarity—the accuracy loss when transferring an SA
method from a source to a target domain. Van Asch and
Daelemans (2010) estimate—using domain similarity—the
accuracy loss when transferring a part of speech-tagger
from one domain to another. Blitzer et al. (2007) compute
an A-distance proxy and show that it correlates with accu-
racy loss when transferring their SA method from a source
to a target domain.

1A genre is an identifiable text category (Crystal, 2008, p. 210)
based on external, non-linguistic criteria such as intended audi-
ence, purpose, and activity type (Lee, 2001) as well as textual
structure, form of argumentation, and level of formality (Crystal,
2008, p. 210).

2A domain is a genre attribute that describes the subject area
that an instantiation of a certain genre deals with (Steen, 1999;
Lee, 2001).

1.2. Outline
This paper is structured as follows: In Section 2. we de-
scribe domain complexity measures that we use to quantify
differences in language use. In Section 3. we relate domain
complexity to performance and show what we can learn
from their relationship. In Section 4. we conclude and point
out directions for future work.

2. Domain Complexity
Domain complexity is a measure that “reflects the difficulty
of [a] classification task for a given data set” (Ponomareva
and Thelwall, 2012). We use 4 approximations of domain
complexity: 3 approximations proposed by Ponomareva
and Thelwall (2012) and 1 proposed by Remus (2012).

2.1. Ponomareva and Thelwall (2012)
Ponomareva and Thelwall (2012) proposed 3 measures as
approximations of domain complexity:

Percentage of rare words. The percentage of rare words
is defined as in Equation (1)

PRW =
|{w ∈W | c(w) < 3}|

|W |
(1)

where W is the vocabulary, vocabulary size |W |
equals the number of types, i. e. the number of dif-
ferent words in a text sample, and c(w) is the number
of occurrences of w in a text sample.

Word richness. The word richness is defined just as the
type/token ratio TTR in Equation (2)

TTR =
|W |∑

w∈W c(w)
(2)

where
∑

w∈W c(w) equals the number of tokens, i. e.
the total number of words in a text sample (Crystal,
2008, p. 498). From hereon, we refer to word richness
by type/token ratio.
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Relative entropy. The relative entropy is defined as in
Equation (3)

Hrel =
H

Hmax
(3)

where H as in Equation (4)

H = −
∑
w∈W

p(w) log2 p(w) (4)

is the entropy of W ’s distribution and Hmax as in Equa-
tion (5)

Hmax = −
∑
w∈W

1

|W |
log2

1

|W |

= log2 |W |
(5)

is the maximum entropy of W ’s distribution, i. e. its
entropy if W was distributed uniformly.

2.2. Remus (2012)
Remus (2012) proposed corpus homogeneity (Kilgarriff,
2001) as another approximation of domain complexity.
Corpus homogeneity or corpus self-similarity uses repeated
random subsampling validation and is estimated as shown
in Pseudocode 1.

Pseudocode 1: Corpus homogeneity.
1 for i = 1, . . ., k {
2 shuffle corpus c
3 split c into 2 equally-sized subcorpora c1, c2
4 selfsimilarity si:= sim(c1, c2)
5 }
6 homogeneity Hom := average(s1, . . . , sk)

We use Jensen-Shannon (JS) divergence as similarity func-
tion sim(c1, c2). The JS divergence (Lin, 1991) is based
on the Kullback-Leibler (KL) divergence DKL (Kullback
and Leibler, 1951) as given in Equation (6)

DKL(Q||R) =
∑
w∈W

Q(w) log
Q(w)

R(w)
(6)

where Q and R are probability distributions over a finite set
W , e.g. words. The JS divergence DJS is then defined as
shown in Equation 7

DJS(Q||R) =
1

2
[DKL(Q||M) + DKL(R||M)] (7)

where M = 1
2 (Q + R) is the average distribution of Q

and R and 0 ≤ DJS(Q||R) ≤ 1. The larger DJS, the more
the probability distributions diverge. For k → ∞, the ho-
mogeneity estimate approaches the “actual” corpus homo-
geneity. We set k to 10 (Remus, 2012).

2.3. Sample Size Normalization
The domain complexity measures described in the previ-
ous sections are sample size dependent (Remus and Bank,
2012). Therefore, we compute percentage of rare words,
type/token ratio, and relative entropy on fixed length sub-
samples rather than on the full sample as shown in Pseu-
docode 2.

Pseudocode 2: Sample size-normalized domain complexity
1 for i = 1, . . ., k {
2 subsample si := extract random word window of size

1000 from full sample
3 measurement mi := domain complexity(si)
4 }
5 normalized domain complexity := average(m1, . . . ,mk)

Using a sufficient number of iterations k—10,000 in our
case—we obtain a stable approximation of the expected do-
main complexity value, which is normalized with respect to
sample size.
To compute sample size-normalized homogeneity, we pro-
ceed as shown in Pseudocode 1. But instead of shuffling the
corpus and splitting it into 2 equally-sized subcorpora, we
randomly extract 2 fixed length subsamples s1i , s

2
i analo-

gously to Pseudocode 2 with the constraint that s1i , s
2
i must

not overlap. We then measure sim(s1i , s
2
i). In deviation

from corpus homogeneity as described in Section 2.2. we
here set k to 10,000 instead of 10.

3. Learning from Domain Complexity
In this section we learn from an SA gold standard dataset’s
domain complexity: In Section 3.1. we relate differences in
domain complexity in an SA gold standard dataset to the
differences in performance of a standard ML-based classi-
fier evaluated on the same SA gold standard dataset. In Sec-
tion 3.2. and Section 3.3. we let domain complexity guide
us in model selection, viz. in deciding what word n-gram
order to employ in a discriminative model. In Section 3.3.
we let domain complexity guide us in deciding whether to
employ aggressive or conservative word n-gram feature se-
lection.
We analyze a common SA subtask: document-level polarity
classification. Our experimental setup for this subtask is as
follows: We use Blitzer et al. (2007)’s Multi-Domain Senti-
ment Dataset v2.0 (MDSD v2.0)3 as gold standard dataset.
MDSD v2.0 contains star-rated product reviews of various
domains. We chose 10 domains: apparel, books, dvd, elec-
tronics, health & personal care, kitchen & housewares, mu-
sic, sports & outdoors, toys & games, and videos. Those are
exactly the domains for which a balanced amount of 1,000
positive and 1,000 negative reviews is available. Blitzer et
al. (2007) considered reviews with more than 3 stars posi-
tive, and less than 3 stars negative; so do we.
For sentence segmentation and tokenization of MDSD v2.0
we use OpenNLP4. As classifiers we employ Support Vec-
tor Machines (SVMs) (Vapnik, 1995) as implemented by
LibSVM5 using a linear kernel with their optimal cost fac-
tor C chosen from {2.0E-3, 2.0E-2, 2.0E-1, 2.0, 2.0E1,
2.0E2, 2.0E3} via 10-fold cross validation (CV) on the
training data. As features we use word uni-, bi-, and/or
trigrams extracted from the training data by a purely data-
driven feature induction (Remus and Rill, 2013). We sim-
ply encode presence or absence of those word n-grams. We
perform no feature selection; neither stop words nor punc-

3http://www.cs.jhu.edu/˜mdredze/datasets/
sentiment/

4http://opennlp.apache.org
5http://www.csie.ntu.edu.tw/˜cjlin/

libsvm/
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Table 2: Pearson correlation r between domain complex-
ity measurements and accuracies of SVM models based on
word unigrams as well as r’s significance level p.

Domain complexity measure r p
Percentage of rare unigrams -0.673 0.023
Unigram type/token ratio -0.723 0.012
Unigram relative entropy -0.425 0.192
Unigram homogeneity -0.708 0.015

tuation characters are removed. From hereon we refer to
this classifier as our SA method.
All classification experiments are binary and construed as
10-fold CVs. In each fold 9/10th of the available data are
used for training, the remaining 1/10th is used for testing.
Training and testing data never overlap. As performance
measure we report accuracy A.

3.1. Performance Estimation
In this section we relate differences in domain complex-
ity of an SA gold standard dataset to differences in perfor-
mance of our SA method evaluated on the same SA gold
standard dataset. Table 1 depicts the differences in perfor-
mance when we evaluate our SA method—viz. SVM mod-
els based on word unigrams, uni- and bigrams, and uni-,
bi-, and trigrams—on different domains from MDSD v2.0.
Table 1 also depicts the differences in domain complexity
of the same domains.
We correlate the accuracies achieved by our SVM mod-
els based on word unigrams and the corresponding do-
main complexity measurements. Table 2 shows the results.
All correlations—except of unigram relative entropy—are
strong (|r| > 0.67) and statistically significant (p < 0.05).
From Table 2 we learn that

• the smaller the percentage of rare unigrams, i. e. the
less hapax legomena and dis legomena,

• the smaller the unigram type/token ratio, i. e. the more
tokens per type,

• the smaller the unigram relative entropy, i. e. the far-
ther the distribution from a uniform distribution and

• the smaller the unigram homogeneity value, i. e. the
more homogeneous the corpus,

the higher the accuracy of our SA method.
Given such strong correlations, we perform an ordinary
Linear Regression (LR) using squared error loss with single
domain complexity measurements as predictors6 and sin-
gle accuracies as responses. We measure the mean resid-
ual standard error (MRSE) of the LR models in leave-one-
domain-out CVs7.

6We do not use more than one predictor in our LR models
in accordance with Harrell (2001, p. 61), who suggests to obey
the rule of thumb p < n/10 where p is the number of predictors
and n is the total sample size. In our leave-one-domain-out CV
experiments n = 9 (and hence 1 > 9/10).

7Leave-one-(domain)-out CV (Hastie et al., 2009, p. 242) is a
special case of a K-fold CV, where K = n and n is the number

Table 3: MRSEs of ordinary LR models fitted using
squared error loss in leave-one-domain-out CVs with do-
main complexity measurements as predictors and accura-
cies of SVM models based on word unigrams as responses.

Predictor MRSE p
Percentage of rare unigrams 1.238 0.033
Unigram type/token ratio 1.116 0.018
Unigram relative entropy 1.837 0.221
Unigram homogeneity 1.058 0.007
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Figure 1: Accuracy of an SVM model based on word uni-
grams vs. unigram homogeneity plus LR models fitted us-
ing squared error loss, Huber loss, and Tukey’s biweight.

Table 3 shows the resulting MRSEs as well as the signifi-
cance level p of the predictor’s influence on the response.
All predictors’ influences on the response—except of un-
igram relative entropy—are statistically significant (p <
0.05).
From Table 3 we learn that—analogously to the correla-
tions we found—3 out of 4 domain complexity measures
allow us to accurately estimate our SA method’s perfor-
mance based solely on domain complexity measurement.
Unigram homogeneity appears to be the most informative
domain complexity measure: it yields the smallest MRSE
(1.058).
As we can see in Figure 1 our data contains (at least) one
outlier: the domain MUSIC with an accuracy of 76.4 and
a unigram homogeneity of 0.451. Outliers such as MUSIC
affect the slope of the LR fit. We counteract outliers by em-
ploying loss functions that are more robust than ordinary
squared error loss: Huber loss (Huber, 1964) and Tukey’s
biweight (Holland and Welsch, 1977). Using these robust
loss functions in LR leads to small improvements in esti-
mating accuracy—i. e. reduces the MRSEs—as shown in
Table 4.
Figure 1 depicts LR models fitted to our data using squared

of instances—e. g. domains—in the data: we fit a model to n− 1
parts of the data and validate it on the held out n-th part. The n
results are then averaged.
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Table 1: Accuracies on MDSD v2.0 of SVM models based on word unigrams, uni- and bigrams, or uni-, bi-, and trigrams
as well as domain complexity measurements.

Domain Our SA method’s accuracy Domain complexity measure
uni uni, bi uni, bi, tri PRW TTR Hrel Hom

APPAREL 83.25 85.55 85.05 0.6801 0.4294 0.8891 0.3923
BOOKS 79.25 79.65 79.5 0.7261 0.4595 0.8871 0.4640
DVD 78.55 79.8 79.25 0.7244 0.4631 0.8897 0.4695
ELECTRONICS 80.65 82.05 81.6 0.6916 0.4409 0.8888 0.4292
HEALTH 80.35 83.55 83.45 0.6813 0.4306 0.888 0.4156
KITCHEN 81.15 82.1 81.85 0.6857 0.4369 0.8879 0.4137
MUSIC 76.4 78.45 78.9 0.7175 0.4600 0.8926 0.4507
SPORTS 81.65 83 82.95 0.687 0.4361 0.88789 0.4240
TOYS 81.55 83.15 82.75 0.6765 0.4308 0.8916 0.4112
VIDEO 81 81.65 81.65 0.7248 0.4618 0.8882 0.4624

Table 4: MRSEs of robust LR models fitted using Huber
loss and Tukey’s biweight in leave-one-domain-out CVs
with domain complexity measurements as predictors and
accuracies of SVM models based on word unigrams as re-
sponses.

Predictor Huber Tukey’s
Percentage of rare unigrams 1.205 1.208
Unigram type/token ratio 1.054 1.073
Unigram relative entropy 1.959 2.050
Unigram homogeneity 1.027 1.082

error loss, Huber loss, and Tukey’s biweight. Both robust
LR models are less influenced by outliers. Thus, they result
in a more accurate fit of the data, especially when applied
to subsamples of the data as in our leave-one-domain-out
CVs.
Performance estimation does not only work for SVM mod-
els based on word unigrams, but also for SVM models
based on higher order word n-grams, i. e. SVM models
based on word uni- and bigrams and SVM models based
on word uni-, bi-, and trigrams: we just use higher order
word n-gram domain complexity measurements as addi-
tional predictors in our LR models. E. g., to estimate the
accuracy of an SVM model based on word uni- and bi-
grams, we measure both word unigram relative entropy and
word bigram relative entropy, or both unigram type/token
ratio and bigram type/token ratio etc. These additional pre-
dictors are either kept separately or averaged. Averaging
predictors, e. g. averaging word uni-, bi-, and trigram rela-
tive entropy, results in a single predictor in our LR models.
Keeping predictors separately results in multiple predictors
in our LR models.
We then proceed as described earlier. Results of the accu-
racy estimation for SVM models based on word uni- and
bigrams are shown in Table 5. Results of the accuracy es-
timation for SVM models based on word uni-, bi-, and tri-
grams are shown in Table 6.
For accuracy estimation of SVM models based on word
uni- and bigrams using percentage of rare words as separate
(i. e. not averaged) predictors and an LR model fitted using
Tukey’s biweight yields the smallest MRSE (0.472). For
accuracy estimation of SVM models based on word uni-,

Table 5: MRSEs of LR models fitted using squared er-
ror loss, Huber loss, and Tukey’s biweight in leave-one-
domain-out CVs with domain complexity measurements as
predictors and accuracies of SVM models based on word
uni- and bigrams as responses. “sep” denotes separately
kept predictors, “avg” denotes averaged predictors.

Predictor(s) Squared Huber Tukey’s

PRW
sep 0.94 0.506 0.472
avg 0.963 0.905 0.907

TTR
sep 0.942 0.591 0.579
avg 0.921 0.777 0.765

Hrel
sep 0.902 0.882 0.87
avg 1.604 1.514 1.464

Hom
sep 1.02 1.063 1.067
avg 0.927 0.925 0.958

Table 6: MRSEs of LR models fitted using squared er-
ror loss, Huber loss, and Tukey’s biweight in leave-one-
domain-out CVs with domain complexity measurements as
predictors and accuracies of SVM models based on word
uni-, bi-, and trigrams as responses. “sep” denotes sepa-
rately kept predictors, “avg” denotes averaged predictors.

Predictor(s) Squared Huber Tukey’s

PRW
sep 1.143 0.867 0.738
avg 0.913 0.943 0.928

TTR
sep 1.048 0.747 0.634
avg 0.781 0.713 0.75

Hrel
sep 1.002 1.022 1.049
avg 1.43 1.429 1.620

Hom
sep 1.037 0.996 0.904
avg 0.877 0.854 0.894

bi-, and trigrams using type/token ratio as separate (i. e. not
averaged) predictors and an LR model fitted using Tukey’s
biweight yields the smallest MRSE (0.634).

Discussion
Our performance estimates are not 100% accurate: on av-
erage we over- or underestimate our SA approach’s perfor-
mance by about 1 accuracy point. Partly, this is because
a discriminative model’s power ultimately also depends on
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Table 7: Accuracies of our model selector for word n-gram model order. “1–2” denotes first vs. second order, “2–3”
denotes second vs. third order. “sep” denotes separately kept predictors, “avg” denotes averaged predictors.

Predictor(s) Squared Huber Tukey’s
1–2 2–3 1–2 2–3 1–2 2–3

PRW
sep 100 80 90 90 70 80 80 50 65
avg 100 80 90 100 70 85 100 40 70

TTR
sep 90 90 90 90 80 85 90 80 85
avg 100 80 90 100 60 80 90 40 65

Hrel
sep 60 80 70 60 70 65 60 70 65
avg 90 80 85 90 70 80 80 60 70

Hom
sep 100 80 90 100 80 90 90 70 80
avg 100 80 90 100 90 95 90 90 90

e. g. whether the gold standard dataset contains erroneous
labels, its size, and its class boundary complexity (Ho and
Basu, 2002).

3.2. Model Selection: Word n-gram Model Order
In this section, we let domain complexity guide us in model
selection, viz. in deciding what word n-gram model or-
der to employ in our SA method for a given domain from
MDSD v2.0. For example, we decide whether to employ a
first order SVM model based on word unigrams, or a sec-
ond order SVM model based on word uni- and bigrams for
MDSD v2.0’s domain HEALTH.
An algorithm for model selection, viz. a model selector es-
timates the accuracies of n-th (n ≥ 1) order SVM models
for a given domain as described in Section 3.1. The model
selector then chooses the SVM model that yields the high-
est estimated accuracy as shown in Pseudocode 3.

Pseudocode 3: Model selector for word n-gram model or-
der.

1 input: dataset
2 for n = 1, 2, ..., k {
3 estimate accuracy of an SVM model based on word {1,

..., n}-grams on dataset
4 }
5 output: n that yields the highest estimated accuracy

3.2.1. Evaluation
We evaluate our model selector in a leave-one-domain-out
CV on MDSD v2.0’s 10 domains, in which for each run
we train our model selector on 9 domains and decide what
word n-gram model order to employ in an SVM for the
remaining 1 domain.

Data We decide between first, second and third order
word n-gram models, i. e. between SVM models based on
word unigrams, word uni- and bigrams, or word uni-, bi-,
and trigrams. To produce data for our leave-one-domain-
out CV, we evaluate 3 SVM models per domain in 10-fold
CVs: one SVM model based on word unigrams, one SVM
model based on word uni- and bigrams and one SVM model
based word uni-, bi-, and trigrams. The evaluation results
are shown in Table 1. SVM models based word uni- and
bigrams always outperform SVM models based solely on
word unigrams. SVM models based on word uni-, bi-, and
trigrams outperform SVM models based on word uni- and
bigrams only for 1 domain: MUSIC.

Experiments We vary 3 parameters of our model selec-
tor’s accuracy estimation. (i) We compare 4 predictors:
percentage of rare words, type/token ratio, relative entropy,
and homogeneity. (ii) We compare separately kept and av-
eraged predictors. (iii) We compare 3 LR loss functions:
squared error loss, Huber loss, and Tukey’s biweight. Eval-
uation results of our leave-one-domain-out CV are shown
in Table 7.

Results Our model selector yields an average accuracy
between 60–100 when deciding between first or second or-
der. It yields an average accuracy between 40–90 when
deciding between second or third order. It yields an overall
accuracy between 65–95.
The most reliable model selector uses averaged homogene-
ity as predictor and fits the LR model using Huber loss:
it yields an average accuracy of 100 when deciding be-
tween first or second order. It yields an average accuracy
of 90 when deciding between second or third order. Thus,
it yields an overall average accuracy of 95.
Note that for our data a naı̈ve baseline also yields an overall
average accuracy of 95: a naı̈ve model selector that always
decides for second order yields an average accuracy of 100
when deciding between first or second order. It yields an
average accuracy of 90 when deciding between second or
third order. Thus, its overall average accuracy is also 95.

3.3. Model Selection: Aggressive vs. Conservative
Word n-gram Feature Selection

In this section we let domain complexity guide us in an-
other model selection, viz. in deciding whether to employ
aggressive or conservative word n-gram feature selection in
our SA method for a given domain from MDSD v2.0. We
face 2 questions when we perform word n-gram feature se-
lection:

1. Which feature selection method should we use?

2. How many features should we select?

We answer question 1 up front: as feature selection method
we use Information Gain (IG) (Yang and Pedersen, 1997),
because it has been shown that IG is superior to other fea-
ture selection methods for word n-gram based text classifi-
cation (Yang and Pedersen, 1997; Forman, 2003).
We answer question 2 analogously to Section 3.2. A model
selector estimates—based on domain complexity—how
many features to select for our SA method.
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Table 8: Accuracies of SVM models based on word uni-
grams with (w/) and without (w/o) feature selection via IG
based on the ideal CO in percent (and word unigram types).

Domain w/o w/ ∆ CO
APPAREL 83.25 83.6 0.35 78% (7,927)
BOOKS 79.25 80.45 1.2 11% (3,136)
DVD 78.55 80.55 2 60% (18,169)
ELECTRONICS 80.65 81.75 1.1 85% (13,139)
HEALTH 80.35 80.85 0.5 90% (11,778)
KITCHEN 81.15 82.8 1.65 17% (2,214)
MUSIC 76.4 78.45 2.05 2% (506)
SPORTS 81.7 82.55 0.85 19% (2,715)
TOYS 81.5 82.45 0.95 4% (564)
VIDEO 81.05 81.6 0.55 80% (20,301)
average 80.39 81.51 1.12 45% (8,044)

Table 9: Pearson correlation r between ideal CO and do-
main complexity measurements as well as r’s significance
level p.

Domain complexity measure r p
Percentage of rare word unigrams -0.08 0.814
Word unigram type/token ratio -0.119 0.727
Word unigram relative entropy -0.35 0.291
Word unigram homogeneity -0.095 0.78

3.3.1. Evaluation
As in Section 3.2.1. we evaluate our model selector—which
we develop in our experiments—in a leave-one-domain-out
CV.

Data Feature selection methods such as IG produce an
implicit ranking with the most predictive features ranked
highest and the least predictive features ranked lowest. To
employ feature selection via IG we have to determine a cut
off (CO): features ranked above the CO are kept, while fea-
tures ranked below the CO are discarded.
To produce data for our leave-one-domain-out CV for each
domain we determine the CO for which our SVM model’s
accuracy peaks. First we rank a domain’s word unigrams
via IG. We then set the CO to 1, 2, . . . , 100% of the do-
main’s original word unigram vocabulary size. If it is set to
1% we keep its 1% highest ranked word unigrams, if it is
set to 2% we keep its 2% highest ranked word unigrams etc.
For each of the resulting 100 word unigram vocabularies we
evaluate an SVM model based on this word unigram vocab-
ulary in a 10-fold CV. We call the CO for which our SVM
model’s accuracy peaks ideal CO. Table 8 shows evalua-
tion results of SVM models based on word unigrams with
and without feature selection via IG. Feature selection is
based on the ideal CO.
With feature selection using the ideal CO average accuracy
is 1.12 higher than without feature selection. Ideal COs
are scattered, with 85% (13,139 word unigram types) being
the most conservative feature selection and 2% (506 word
unigram types) being the most aggressive feature selection.
The average ideal CO is 45% (8,045 word unigram types).

Experiments Table 9 correlates domain complexity mea-
surements of MDSD v2.0’s 10 domains with their ideal CO.
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Figure 2: Ideal CO vs. relative entropy.

Table 10: Ideal COs and COs estimated by our model se-
lector fitted using Huber loss as well as accuracies of SVM
models using feature selection based on ideal and estimated
CO.

Domain Ideal Estimated
CO A CO A

APPAREL 78% 83.6 41% 83.50
BOOKS 11% 80.45 74% 78.25
DVD 60% 80.55 38% 80.10
ELECTRONICS 85% 81.75 42% 80.45
HEALTH 90% 80.85 46% 80.50
KITCHEN 17% 82.8 59% 82.30
MUSIC 2% 78.45 39% 77.65
SPORTS 19% 82.55 60% 81.75
TOYS 4% 82.45 37% 81.00
VIDEO 80% 81.6 47% 80.00
average 45% 81.51 48% 80.55

Relative entropy correlates strongest with ideal CO (-0.35):
the smaller the domain’s relative entropy, the larger its ideal
CO. Hence, the less uniform a domain’s word unigram dis-
tribution, the more of its word unigrams are kept as features
in our SVM model. Figure 2 plots relative entropy vs. ideal
CO. Additionally, it shows an LR model fitted to the data
using squared error loss. It achieves no perfect fit, but it
still roughly estimates ideal CO.
Given its correlation with the ideal CO, we use as our model
selector a robust LR model with relative entropy as single
predictor and ideal CO as response. We compare LR mod-
els fitted using Huber loss and Tukey’s biweight. Table 10
shows the evaluation results of our leave-one-domain-out
CV for Huber loss, Table 11 shows the evaluation results
for Tukey’s biweight.

Results and Discussion Our model selector over- or un-
derestimates a domain’s ideal CO on average by 40%. But
SVM models with feature selection using the estimated CO
outperform SVM models without feature selection in 6 out
of 10 domains. SVM models with feature selection using
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Table 11: Ideal COs and COs estimated by our model se-
lector fitted using Tukey’s biweight as well as accuracies
of SVM models using feature selection based on ideal and
estimated CO.

Domain Ideal Estimated
CO A CO A

APPAREL 78% 83.6 41% 83.5
BOOKS 11% 80.45 78% 79.2
DVD 60% 80.55 37% 80.1
ELECTRONICS 85% 81.75 42% 80.45
HEALTH 90% 80.85 46% 80.5
KITCHEN 17% 82.8 62% 82.45
MUSIC 2% 78.45 39% 77.65
SPORTS 19% 82.55 62% 81.85
TOYS 4% 82.45 37% 81
VIDEO 80% 81.6 47% 80
average 45% 81.51 49% 80.67

the estimated CO yield an average accuracy of 80.55 (Hu-
ber loss) and 80.67 (Tukey’s biweight). Without feature
selection average accuracy is 80.39. Thus, feature selection
using the estimated CO yields an average accuracy gain of
0.16 and 0.28, respectively.
Compared to SVM models with feature selection using the
ideal COs (81.51), using the estimated CO performs 0.95
and 0.83 lower, respectively. SVM models with feature se-
lection using the average ideal CO (45%) yield an average
accuracy of 80.56, which is on par with SVM models with
feature selection using the estimated COs.

4. Conclusions & Future Work
We investigated domain dependencies in SA. We showed
that our ML-based SA method—an SVM model based on
word n-grams—performs differently when applied to dif-
ferent domains. We also showed that domains differ in their
textual characteristics, viz. their domain complexity. We
then showed that there is a clear relationship between per-
formance of our SA method in certain domains and their
domain complexity. Finally, we used their relationship to
(i) estimate our SA method’s accuracy in certain domains
based solely on its domains complexity and (ii) guide us in
model selection for different domains.
In future work domain complexity may guide us in even
more model selection or feature engineering tasks: whether
to use super- or sub-word character n-gram representa-
tions (Raaijmakers and Kraaij, 2008) instead of word n-
gram representations; whether to use non-binary word n-
gram weighting, e. g. weighting using tf-idf (Manning and
Schütze, 1999, p. 543); whether to employ non-lexical fea-
tures, e. g. part of speech tags or dependency parses.
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