
Converting an HPSG-based Treebank into
its Parallel Dependency-based Treebank

Masood Ghayoomi† ‡ Jonas Kuhn‡

†Department of Mathematics and Computer Science, Freie Universität Berlin
‡ Institute for Natural Language Processing, University of Stuttgart

Masood.Ghayoomi@fu-berlin.de Jonas.Kuhn@ims.uni-stuttgart.de

Abstract
A treebank is an important language resource for supervised statistical parsers. The parser induces the grammatical
properties of a language from this language resource and uses the model to parse unseen data automatically. Since
developing such a resource is very time-consuming and tedious, one can take advantage of already extant resources by
adapting them to a particular application. This reduces the amount of human effort required to develop a new language
resource. In this paper, we introduce an algorithm to convert an HPSG-based treebank into its parallel dependency-based
treebank. With this converter, we can automatically create a new language resource from an existing treebank developed
based on a grammar formalism. Our proposed algorithm is able to create both projective and non-projective dependency
trees.

Keywords: Treebank Conversion, the Persian Language, HPSG-based Treebank, Dependency-based Treebank

1. Introduction
Supervised statistical parsers require a set of annotated
data, called a treebank, to learn the grammar of the
target language and create a wide coverage grammar
model to parse unseen data. Developing such a data
source is a tedious and time-consuming task. The diffi-
culty of developing this data source is intensified when
it is developed from scratch with human intervention.
It is possible to develop different treebanks for a
language according to a grammar formalism, such
as Phrase Structure Grammar (PSG) (Marcus et
al., 1993), Head-driven Phrase Structure Grammar
(HPSG) (Oepen et al., 2002), Lexical Functional
Grammar (LFG) (Cahill et al., 2002), Combinatory
Categorial Grammar (CCG) (Hockenamier and Steed-
man, 2007), Tree Adjoining Grammar (TAG) (Shen
and Joshi, 2004), and Dependency Grammar (DepG)
(Rambow et al., 2002) for English.
It is also possible to create a new language resource
automatically from the existing treebank based on a
grammar formalism, i.e. a new treebank can be cre-
ated through the conversion of data developed based
on one grammar formalism into another. This method
of developing treebanks is less costly than developing
one from scratch in terms of both time and expense.
In this paper, we propose an algorithm that converts
an HPSG-based treebank into its parallel dependency-
based treebank automatically. This algorithm is ap-
plied on the PerTreeBank, the HPSG-based treebank
for Persian.
The structure of the paper is as follows: we describe
the background of treebanking via conversion in Sec-
tion 2. The properties of the PerTreeBank are de-
scribed in Section 3. The algorithm for converting the
existing treebank into its parallel dependency-based

treebank is introduced in Section 4. The properties
of the available dependency treebanks for Persian and
their pros and cons are explained in Section 5. The
tools and the experimental setup as well as the ob-
tained results are described and discussed in Section
6. The paper is summarized in Section 7.

2. Treebanking via Conversion
The common properties among grammar formalisms
make it possible for a monolingual treebank based on
one grammar formalism to be converted into another
formalism, for instance converting a treebank from
Lexicalized TAG into HPSG for English (Tateisi et al.,
1998; Yoshinaga and Miyao, 2002), PSG into HPSG
for English (Miyao et al., 2005), PSG into HPSG for
German (Cramer and Zhang, 2010), PSG into HPSG
for Chinese (Yu et al., 2010), DepG into HPSG for
Russian (Avgustinova and Zhang, 2010), HPSG into
DepG for Bulgarian (Chanev et al., 2006), PSG into
CCG for English (Hockenmaier, 2003; Hockenamier
and Steedman, 2007), DepG into CCG for Italian (Bos
et al., 2009) and Turkish (Çakici, 2005), PSG into
TAG for English (Chen et al., 2006), PSG into LFG
for English (Cahill et al., 2002; Burke, 2006) and Chi-
nese (Guo et al., 2007) and Arabic (Tounsi et al., 2009)
and French (Schluter, 2011), and PSG into DepG for
French (Candito et al., 2010).
In this paper, we aim at creating a dependency-based
treebank for Persian through an automatic conversion
of an existing HPSG-based treebank.

3. The PerTreebank
The PerTreeBank is an HPSG-based treebank for
Persian developed through a bootstrapping approach
(Ghayoomi, 2012). The backbone of this treebank is

802

Figure 1: Tree analysis of Example 1 from the PerTreeBank

the HPSG formalism (Pollard and Sag, 1994). The
constituent nodes of the phrase structure trees in this
treebank contain four basic syntactic relations, which
are the simulation of four basic schemas in HPSG to
represent the syntactic relations in the constituents,
such as the Head-Subject, Head-Complement, Head-
Adjunct, and Head-Filler relations. Furthermore, this
is a trace-based treebank, i.e. the canonical positions
of the extraposed elements are determined in the trees
with the empty node nid (non-immediate dominance)
to represent traces. Later it is converted into a trace-
less treebank such that the trace is removed and the
functional label -nid is used for representing a slashed
element in normal HPSG. Additionally, the provided
trees are projective.
Figure 1 represents the tree analysis of Example 1 from
the PerTreeBank.

(1) شخصیت پردازی، موعظه، از است ترکیبـͬ ͽدرواق مذهبی برنامه
. سیاست و دین ترویج
barnāme-ye
program-EZ

mazhabi
religious

darvāqeP

in_fact
tarkib-i
combination-INDEF

ast
is

az
of

moPeze
homily

šaxsiyatpardāzi
characterization

tarvij-e
promotion-EZ

din
religion

va
and

siyāsat
politics
‘A religious program is a combination of homily,
characterization, promotion of religion, and poli-
tics.’

As shown in the figure, the prepositional phrase which
is a complement of the noun ’ترکیب‘ /tarkib/ ‘combi-
nation’ is extraposed to the post-verbal position. The
Head-Filler relation is used to bind the slashed ele-
ment.

4. Treebank Conversion Algorithm
To convert the PerTreeBank into its parallel
dependency-based treebank, the structure of the tree-
bank in the original format should be changed into the
CoNLL shared task format. In this format, each lexical
entry of the sentence is represented on one line and its
relevant morpho-syntactic and semantic information is
organized in separate columns (10 columns in CoNLL
2006 data format, and 14 columns in CoNLL 2009
data format). Algorithm 1 is employed to convert the
PerTreeBank into its parallel dependency-based tree-
bank, called the Dependency PerTreeBank (DPTB).
In the conversion process, we employ a depth-first
searching approach to identify the constituents. In this
process, each tree is traversed to find sibling leaves.
Each pair of the sibling leaves comprises a dependency
relation in which the head is determined using a head
table. The head table is provided by extracting the
grammar rules from the original treebank. A modi-
fied version of the Stanford Typed Dependencies
(de Marneffe and Manning, 2008) is used for determin-
ing the types of the dependency relations. Appendix 1
represents the hierarchy of the dependency relations.
After recognizing each pair of the sibling leaves as a
dependency relation, the leaves are removed and the

803

Algorithm 1 Converting a constituency treebank into a dependency treebank
Input: A tree of a sentence from the HPSG-based treebank for Persian,

The Head Table (HT),
The modified version of Dependency Relations (DR) based on the Stanford Typed Dependencies (de Marneffe

and Manning, 2008)

if Projective option selected then
repeat

Step1: Traverse the tree to find a pair of sibling leaves
Step2: Select the head node of the sibling leaves based on HT
Step3: Detect the DR between the sibling leaves based on the head-daughter dependency relations
Step4: Write the corresponding DR according to the CoNLL format
Step5: Remove both of the leaves and transfer the head information to the parent node

until The tree root node is met
else if Non-projective option selected then

repeat
Do Step1
if The parent node has a slashed element then

Transfer the information of the leaf along with the slashed element to the parent node as ‘np-head’
else if The parent node has the Head-Filler relation then

Use the ‘np-head’ of the leaf with a slashed element instead of the head
end if
Do Steps 2 to 5

until The tree root node is met
end if
Write the ROOT relation for the head of the tree
Sort the CoNLL format according to the sequence of the words in the input sentence

..... سیاست.. و.. دین.. ترویج.. ..، شخصیت پردازی.. ..، موعظه.. از.. است.. ترکیبـͬ.. ..ͽدرواق مذهبی.. .برنامه..

ROOT

.

NMOD

.

NSUBJ

.

VMOD

.

COPCOMP

.
COMP

.

POBJ

.

NounCOOR

.

NounCOOR

.

NounCOOR

.

NounCOOR

.

NounCOOR

.

NN

.

NounCOOR

.

PUNC

Figure 2: Projective dependency relation of Example 1

..... سیاست.. و.. دین.. ترویج.. ..، شخصیت پردازی.. ..، موعظه.. از.. است.. ترکیبـͬ.. ..ͽدرواق مذهبی.. .برنامه..

ROOT

.

NMOD

.

NSUBJ

.

VMOD

.

COPCOMP

.

COMP

.

POBJ

.

NounCOOR

.

NounCOOR

.

NounCOOR

.

NounCOOR

.

NounCOOR

.

NN

.

NounCOOR

.

PUNC

Figure 3: Non-projective dependency relations of Example 1

information of the head node is transferred to the par-
ent node. The process of removing the leaves in each
step results in new leaves which are in fact the old par-
ents, and they need to be processed in the next steps.
The conversion step continues in a loop to process all
nodes of the tree, and it halts when the root of the tree
is reached.

Since the positions of the slashed elements are deter-
mined in the trees (displayed by the ‘−nid’ functional
label on trees as represented in Figure 1), it is possible
to convert them into non-projective trees as well. In
this conversion, after traversing a tree to find a pair
of sibling leaves, if a parent node contains a slashed

element, the information of the slashed element in ad-
dition to the head node is transferred to the parent
node. To draw a non-projective tree, it is important
to keep the information of the leaf that has a slashed
element. This information, which is related to the head
of a non-projective tree, is temporally kept in a vari-
able, which we called it ‘np-head’, and the information
in the variable is transferred to upper nodes until the
Head-Filler relation is met. When the slashed element
is bound, the ‘np-head’ information is retrieved, and it
is used for defining the dependency relation.

Algorithm 1 makes it possible to automatically create
a dependency-based treebank from an existing HPSG-

804

based treebank without any human intervention. The
size of the converted treebank depends on the size of
the original data set. The converted data set can be
used for training statistical dependency parsers.
Figures 2 and 3 represent the projective and non-
projective dependency trees of the constituency tree
in Figure 1 created through the automatic conversion.

5. Dependency Treebanks for Persian
In addition to our dependency-based treebank, there
are two other Persian dependency treebanks, namely
the Uppsala Persian Dependency Treebank (UPDT)
(Seraji et al., 2012) and the Persian Dependency Tree-
bank (PerDT) (Rasooli et al., 2013). Both of these de-
pendency treebanks are developed via bootstrapping
approaches. In this section, we briefly explain the gen-
eral properties of each treebank. Next, we focus on
four phenomena, namely clitics, multiple words, coor-
dination phrases, and determiner phrases along with
their corresponding annotation schemes.

Treebank Quantity and Dependency Relations:
Currently DPTB contains 1,028 sentences (27,026
word tokens), and 49 labels are used for defining the
dependency relations. UPDT contains 6,000 sentences
(151,671 word tokens), and the dependency relations
are defined by 102 labels. The dependency relations in
these two dependency treebanks are modified versions
of the dependency relations in de Marneffe and Man-
ning (2008). PerDT contains 29,982 sentences (498,081
word tokens), and 46 labels are used for defining the
dependency relations.
Part-of-Speech Tags and Lemmatization : In the
three treebanks, morpho-syntactic information about
the words is available in their Part-of-Speech (POS)
tags, but there are differences between the treebanks
regarding the granularity degree of this information.
DPTB contains more fine-grained POS tags from the
Bijankhan Corpus1 (Bijankhan, 2004) than the other
two treebanks. In terms of the availability of lemma
information, DPTB and PerDT contain lemmas, but
UPDT is not lemmatized.
Clitics : Clitics have two functions: morphological,
and syntactic. Ezāfe2 is an example of a morphological
clitic. Ezāfe is available in the POS tags of DPTB, but
this information is overlooked in UPDT and PerDT.
Possessive or object pronouns as well as copulative
verbs are examples of syntactic clitics. In DPTB, these
kinds of clitics are split from their hosts to represent
an accurate syntactic analysis, whereas in UPDT and
PerDT, these sorts of clitics remain unanalyzed.
Projectivity vs Non-projectivity : DPTB can have
both projective and non-projective trees for discontin-
uous constructions, whereas in UPDT and PerDT only
non-projective trees exist.

1http://ece.ut.ac.ir/dbrg/bijankhan/
2Ezāfe is an enclitic which is pronounced but mostly not

written.

Multiple Words : DPTB and UPDT provide an in-
ternal syntactic analysis for light verb constructions,
while light verb constructions are mostly considered
as one token in PerDT except the cases where there
is a long distance between the pre-verbal element and
the light verb. In these cases, the pre-verbal element
dominates the intervening elements as its argument.
For instance, کردن‘ ’تبدیل /tabdil kardan/ ‘to change’
and کردن‘ ’دچار /dočār kardan/ ‘to afflict’ are two com-
pound verbs that consist of a pre-verbal noun, which
might take intervening elements as its argument, and
a light verb. The auxiliary verb ’خواستن‘ /xāstan/
‘will, would’ might appear between the two elements as
well. This auxiliary verb is underlined in Examples 2
to 4 from DPTB, UPDT, and PerDT, respectively. In
DPTB and UPDT, the auxiliary is recognized as one
token and the dependency relation ‘AUX’ is defined
for it, whereas in PerDT the auxiliary is attached to
the light verb and it is remained unanalyzed.

(2) خوشبو طبیعͬ کود به جامد زباله تن ۴ روزانه کارخانه این در
. شد خواهد تبدیل
dar
in

in
this

kārxāne
plant

ruzāne
daily

4
4

ton
ton

zobāle-ye
garbage-EZ

jāmed
dry

be
to

kud-e
fertilizer-EZ

tabiPi-ye
natural-EZ

xošbu
sweet-smelling

tabdil
change

xāhad
will.3SG

šod
become.3SG

‘In this plant, 4 tons of dry garbage will be turned
into natural, sweet-smelling fertilizer daily.’

(3) تو به جاسوس و سخن چین و مغرض افراد را نادرست مطالب
. کنند تفرقه دچار را جامعه ͬ خواهند م که رسانده اند
matāleb-e
items-EZ

nādorost
incorrect

rā
DOM

afrād-e
individuals-EZ

moqrez
malevolent

va
and

soxančin
rumor-mongering

va
and

jāsus
prying

be
to

to
you

resānde-and
transmitted-3PL

ke
that

mi-xāh-and
IMPF-will-3PL

ǰāmePe
society

rā
DOM

dočār-e
cause-EZ

tafraqe
discord

kon-and
do-3PL

‘Malevolent, rumor-mongering, prying individuals
have transmitted incorrect items to you, desiring
to afflict society with discord.

(4) مرکب جهل دچار را شما غیرکارشناسͬ نقد و غلوآمیز تعریف های
. خواهدکرد
tPrif-hā-ye
praise-PL-EZ

qolovāmiz
exaggerating

va
and

naqd-e
criticism-EZ

qeyrekāršenāsi
unprofessional

šomā
you

rā
DOM

dočār-e
cause-EZ

jahl-e
bewilderment-EZ

morakkab
complex

xāhad_kard
will.3SG_did.3SG

‘Exaggerated praise and unprofessional criticism
will afflict you with deep bewilderment.’

Figures 4 to 6 represent the dependency trees of Ex-
amples 2 to 4 based on the annotation schemes and
dependency labels of DPTB, UPDT, and PerDT.

805

..... شد.. خواهد.. تبدیل.. خوشبو.. طبیعͬ.. کود.. به.. جامد.. زباله.. تن.. ..4 روزانه.. کارخانه.. این.. .در..

ROOT

.

VMOD

.
POBJ

.

DEPCOMP

.

VMOD

.

NSUBJ

.

NUM

.
ADJMOD

.

NMOD

.

IDOBJ

.
POBJ

.

NMOD

.

NMOD

.

MWE

.

AUX

.
PUNC

Figure 4: Dependency tree of Example 2 from DPTB

..... کنند.. تفرقه.. دچار.. را.. جامعه.. ͬ خواهند.. م که.. رسانده اند.. تو.. به.. جاسوس.. و.. سخن چین.. و.. مغرض.. افراد.. را.. نادرست.. .مطالب..

ROOT

.

dobj

.

amod

.

acc

.

nsubj

.

amod

.

cc

.

conj

.

cc

.

conj

.

prep

.
pobj

.

complm

.

aux

.

dobj

.

acc

.

acomp-lvc

.

poss

.

ccomp

.

PUNC

Figure 5: Dependency tree of Example 3 from UPDT

..... کرد.. خواهد مرکب.. جهل.. دچار.. را.. شما.. غیرکارشناسͬ.. نقد.. و.. غلوآمیز.. .تعریف های..

ROOT

.

SBJ

.

NPOSTMOD

.

NCONJ

.
POSDEP

.

NPOSTMOD

.
ACC-CASE

.

OBJ

.

MOS

.

NEZ

.

NPOSTMOD

.

PUNC

Figure 6: Dependency tree of Example 4 from PerDT

Coordination Phrases : In DPTB, a coordination is
the head of a coordination phrase as represented in Fig-
ure 2, whereas in UPDT a coordination is not a head
at all, and in PerDT a coordination is the head of the
second coordinated element. Figures 5 and 6 repre-
sent the annotation scheme of a coordination phrase
in UPDT and PerDT, receptively.
Determiner Phrases : In DPTB, a determiner, such
as ’همه‘ /hame/ ‘all, every’, is the head of a determiner
phrase, but this is not the case in UPDT and PerDT
where a noun is the head. The annotation scheme of
Examples 5 to 7, which contain the determiner ’همه‘
/hame/ ‘all, every’, is represented in Figures 7 to 9,
respectively.

(5) : بیفتد اتفاق ͬ تواند م چیز همه بورن دنیای در
dar
in

donyā-ye
world-EZ

born
Born

hame
every

čiz
thing

mi-tavān-ad
IMPF-can-3SG

ettefāq
happen

bey-oft-ad
SUBJ-fall-3SG

‘In Born’s world everything can happen :’

(6) . ͬ زند م دور مادیات حوش و حول چیز همه غرب در
dar
in

qarb
west

hame
every

čiz
thing

hol
about

va
and

hoš-e
periphery-EZ

māddi-yāt
material-PL

dor
around

mi-zan-ad
IMPF-hit-3SG

‘In the west, everything revolves around material
things.’

(7) ! بشور دوباره را چیز همه
hame
every

čiz
thing

rā
DOM

dobāre
again

be-šur
IMP-wash

‘Wash everything again!’

6. Evaluation
In this section, we report the performance of the Malt
(Nivre et al., 2006) and Mate (Bohnet, 2009) statis-
tical dependency parsers trained with the whole set
of data for the three Persian dependency treebanks.
We use the 10-fold cross-validation for the evaluation.
Table 1 represents the performance of the parsers for

806

....: بیفتد.. اتفاق.. تواند.. مͬ چیز.. همه.. بورن.. دنیای.. .در..

ROOT

.

VMOD

.

POBJ

.

NN

.

NSUBJ

.

DEPCOMP

.

AUX

.

MWE

.
PUNC

Figure 7: Dependency tree of Example 5 from DPTB

..... ͬ زند.. م دور.. مادیات.. حوش.. و.. حول.. چیز.. همه.. غرب.. .در..

root

.

prep

.
pobj

.

nsubj

.

det

.

dobj

.
cc

.

conj

.

poss

.

dobj-lvc

.
punct

Figure 8: Dependency tree of Example 6 from UPDT

....! بشور.. دوباره.. را.. چیز.. .همه..

ROOT

.

OBJ

.

ADV

.

NPREMOD

.
ACC-CASE

.
PUNC

Figure 9: Dependency tree of Example 7 from PerDT

DPTB, UPDT, and PerDT using gold POS tags in the
evaluations to reduce the impact of tagging on parsing.
As can be observed from the results, for all of the tree-
banks the Mate parser outperforms the Malt parser.
Moreover, the parsers trained with UPDT and PerDT
perform better than the parsers train with DPTB.
This is not a surprising result, because both UPDT
and PerDT contain more data to build more accurate
grammar models. PerDT performs the best due to
having more annotated data and more coarse-grained
dependency labels which result in a higher accuracy
rate in predicting the dependency labels. However,
the advantage of DPTB, compared with the other two
dependency treebanks, is that this language resource is
created without any human effort, whereas UPDT and
PerDT are developed with human intervention. Addi-
tionally, increasing the amount of data in the PerTree-
Bank will automatically increase the size of DPTB.

7. Summary
In this paper, we introduced an algorithm that
converts an HPSG-based treebank into its parallel
dependency-based treebank. This algorithm was ap-
plied on the PerTreeBank, an HPSG-based treebank
for Persian. The main advantage of the converted
dependency-based treebank over the other existing de-

Table 1: Dependency parsing results

Tool Treebank Labeled Unlabeled Label
Attachment Attachment Accuracy

Malt
DPTB 76.63 82.04 81.10
UPDT 79.13 83.71 86.98
PerDT 83.84 87.86 86.19

Mate
DPTB 80.17 84.38 85.64
UPDT 81.36 85.21 90.03
PerDT 90.29 92.69 92.53

pendency treebanks for Persian was that it was created
relatively effortlessly and without human intervention.
The converted dependency-based treebank could be
used for training statistical dependency parsers.

8. Ackowledgement
In this research, Masood Ghayoomi is funded by the
German Research Foundation (DFG) via the SFB 732
“Incremental Specification in Context”.

References
Avgustinova, Tania and Zhang, Yi. (2010). Conver-
sion of a Russian dependency treebank into HPSG
derivations. In The 9th International Workshop on
Treebanks and Linguistic Theories, pages 7–18.

807

Bijankhan, Mahmood. (2004). naqše peykarehāye
zabāni dar neveštane dasture zabān: mo‘arrefiye yek
narmafzāre rāyāneyi [“The role of corpora in writing
a grammar: Introducing a software”]. Journal of Lin-
guistics, 19(2):48–67.

Bohnet, Bernd. (2009). Efficient parsing of syn-
tactic and semantic dependency structures. In Pro-
ceedings of the 13th Conference on Computational
Natural Language Learning: Shared Task, pages 67–
72, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Bos, Johan, Bosco, Cristina, and Mazzei, Alessan-
dro. (2009). Converting a dependency-based tree-
bank to a categorial grammar treebank for Italian.
In Passarotti, M., Przepiórkowski, Adam, Raynaud,
S., and van Eynde, Frank, editors, Proceedings of the
8th Workshop on Treebanks and Linguistic Theories,
pages 27–38.

Burke, Michael. (2006). Automatic Treebank Anno-
tation for the Acquisition of LFG Resources. Ph.D.
thesis, Dublin City University.

Cahill, Aoife, Mccarthy, Mairead, Genabith,
Josef Van, and Way, Andy. (2002). Automatic
annotation of the Penn treebank with LFG f-
structure information. In LREC Workshop on
Linguistic Knowledge Acquisition and Representa-
tion: Bootstrapping Annotated Language Data, pages
8–15.

Candito, Marie, Crabbé, Benoît, and Denis, Pascal.
(2010). Statistical French dependency parsing: Tree-
bank conversion and first results. In Proceedings of
the 7th International Conference on Language Re-
sources and Evaluation, pages 1840–1847, La Valletta,
Malta. European Language Resources Association.

Çakici, Ruken. (2005). Automatic induction of a
CCG grammar for Turkish. In Proceedings of the ACL
Student Research Workshop, pages 73–78.

Chanev, Atanas, Simov, Kiril, Osenova, Petya, and
Marinov, Svetoslav. (2006). Dependency conversion
and parsing of the BulTreeBank. In Proceedings of
the LREC workshop Merging and Layering Linguistic
Information, pages 16–23.

Chen, John, Bangalore, Srinivas, and Shanker, Vi-
jay K. (2006). Automated extraction of tree-adjoining
grammars from treebanks. Natural Language Engi-
neering, 12(3):251–299.

Cramer, Bart and Zhang, Yi. (2010). Constraining
robust constructions for broad-coverage parsing with

precision grammars. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics,
pages 223–231, Stroudsburg, PA, USA. Association
for Computational Linguistics.

de Marneffe, Marie-Catherine and Manning, Christo-
pher D. (2008). The Stanford typed dependencies
representation. In Proceedings of the workshop on
Cross-Framework and Cross-Domain Parser Evalua-
tion, pages 1–8, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Ghayoomi, Masood. (2012). Bootstrapping the de-
velopment of an HPSG-based treebank for Persian.
Linguistic Issues in Language Technology, 7(1).

Guo, Yuqing, van Genabith, Josef, and Wang,
Haifeng. (2007). Treebank-based acquisition of LFG
resources for Chinese. In Proceedings of the 12th In-
ternational Lexical Functional Grammar Conference,
Stanford, California. CSLI Publications.

Hockenamier, Julia and Steedman, Mark. (2007).
CCGbank: A corpus of CCG derivations and depen-
dency structures extracted from the Penn treebank.
Computational Linguistics.

Hockenmaier, Julia. (2003). Data and Models for Sta-
tistical Parsing with Combinatory Categorial Gram-
mar. Ph.D. thesis, School of Informatics, University
of Edinburgh, Edinburgh, Scotland, UK.

Marcus, Mitchell P., Santorini, Beatrice, and
Marcinkiewicz, Mary Ann. (1993). Building a large
annotated corpus of English: the Penn treebank.
Computational Linguistics, 19(2).

Miyao, Yusuke, Ninomiya, Takashi, and Tsujii,
Jun’ichi. (2005). Corpus-oriented grammar devel-
opment for acquiring a head-driven phrase structure
grammar from the Penn Treebank. In Proceedings
of the 1st International Joint Conference on Natural
Language Processing, pages 684–693, Berlin, Heidel-
berg. Springer-Verlag.

Nivre, Joakim, Hall, Johan, and Nilsson, Jens.
(2006). MaltParser: A data-driven parser-generator
for dependency parsing. In Proceedings of the 5th In-
ternational Conference on Language Resources and
Evaluation, pages 2216–2219.

Oepen, Stephan, Flickinger, Dan, Toutanova,
Kristina, and Manning, Christoper D. (2002). LinGO
Redwoods. A rich and dynamic treebank for HPSG.
In Proceedings of the 1st Workshop on Treebanks and
Linguistic Theories, pages 139–149.

808

Pollard, Carl J. and Sag, Ivan A. (1994). Head-driven
Phrase Structure Grammar. University of Chicago
Press.

Rambow, Owen, Creswell, Cassandre, Szekely,
Rachel, Taber, Harriet, and Walker, Marilyn. (2002).
A dependency treebank for English. In 3rd Interna-
tional Conference on Language Resources and Evalu-
ation, pages 857–863.

Rasooli, MohammadSadegh, Kouhestani,
Manouchehr, and Moloodi, Amirsaeid. (2013).
Development of a Persian syntactic dependency
treebank. In Proceedings of the Human Language
Technology Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 306–314, Atlanta, Georgia.

Schluter, Natalie. (2011). Treebank-based Deep Gram-
mar Acquisition for French Probabilistic Parsing Re-
sources. Ph.D. thesis, Dublin City University.

Seraji, Mojgan, Megyesi, Beata, and Nivre, Joakim.
(2012). Dependency parsers for Persian. In Proceed-
ings of the 10th Workshop on Asian Language Re-
sources, pages 35–43.

Shen, Libin and Joshi, Aravind K. (2004). Extracting
deeper information from richer resource: EM models
for LTAG treebank induction. In International Joint
Conference on Natural Language Processing.

Tateisi, Yuka, Torisawa, Kentaro, Miyao, Yusuke,
and Tsujii, Jun’ichi. (1998). Translating the XTAG
English grammar to HPSG. In The 4th International
Workshop on Tree Adjoining Grammars and Related
Formalisms, pages 172–175.

Tounsi, Lamia, Attia, Mohammed, and van Gen-
abith, Josef. (2009). Automatic treebank-based ac-
quisition of Arabic LFG dependency structures. In
Proceedings of the European Chapter of the Associ-
ation for Computational Linguistics 2009, Workshop
on Computational Approaches to Semitic Languages,
pages 45–52, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Yoshinaga, Naoki and Miyao, Yusuke. (2002). Gram-
mar conversion from ltag to hpsg. In Proceedings of
the Sixth ESSLLI Student Session, pages 309–324.

Yu, Kun, Yusuke, Miyao, Wang, Xiangli, Mat-
suzaki, Takuya, and Tsujii, Junichi. (2010). Semi-
automatically developing Chinese HPSG grammar
from the Penn Chinese treebank for deep parsing.
In Proceedings of the International Conference on
Computational Linguistics, pages 1417–1425, Beijing,
China.

Appendix 1
BOT - bottom

ROOT - root
DEP - dependent

PUNC - punctuation
ARG - argument

COMP - complement
ADJCOMP - adjective complement
ADVCOMP - adverb complement
AUX - auxiliary
COPCOMP - copula complement
COORCOMP - coordination complement
CCOMP - clausal complement
DETCOMP - determiner complement
INTCOMP - interjection complement
NN - nominal complement

POSS - possession complement
POSSESSIVE - possessive complement
REFLCOMP - reflexive complement

OBJ - object
DOBJ - direct object
IDOBJ - indirect object
POBJ - preposition object
XOBJ - dropped object

SUBJ - subject
NSUBJ - nominal subject
RELSUBJ - relativizer subject
XSUBJ - dropped subject

MOD - modifier
ADJMOD - adjective modifier
CLMOD - clausal modifier
DETMOD - determiner modifier
MWE - multi-word expression modifier
INTMOD - interjection modifier
NMOD - noun modifier

NUM - numeric modifier
APPOS - appositional modifier
REFLMOD - reflexive modifier

NUMBER - element of compound number nu-
meric

PREPMOD - preposition modifier
PURPCL - purpose clause modifier
RCMOD - relative clause modifier
RES - residual modifier
VMOD - verb modifier

CC - coordination
ADJCOOR - adjective coordination
ADVCOOR - adverb coordination
CLCOOR - clause coordination
DETCOOR - determiner coordination
NOUNCOOR - noun coordination
NUMCOOR - number coordination
PREPCOOR - preposition coordination
RESCOOR - residual coordination
VERVCOOR - verb coordination

MARKER - marker
ACC - accusative marker
COMPM - complementizer marker
MARK - clausal marker

.

809

