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Abstract
Essential grammatical information is conveyed in signed languages by clusters of events involving facial expressions and movements
of the head and upper body. This poses a significant challenge for computer-based sign language recognition. Here, we present
new methods for the recognition of nonmanual grammatical markers in American Sign Language (ASL) based on: (1) new 3D
tracking methods for the estimation of 3D head pose and facial expressions to determine the relevant low-level features; (2) methods
for higher-level analysis of component events (raised/lowered eyebrows, periodic head nods and head shakes) used in grammatical
markings—with differentiation of temporal phases (onset, core, offset, where appropriate), analysis of their characteristic properties,
and extraction of corresponding features; (3) a 2-level learning framework to combine low- and high-level features of differing
spatio-temporal scales. This new approach achieves significantly better tracking and recognition results than our previous methods.
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1. Introduction

In signed languages generally, and American Sign Lan-
guage (ASL) specifically, many types of important linguis-
tic information are conveyed through facial expressions and
movements of the head and upper body, which occur simul-
taneously with manual signing and extend over linguistic
domains of varying length and duration. One particularly
important function of such markings is to convey specific
types of syntactic information, although the non-manual
channel is also used for other linguistic and non-linguistic
purposes. Computer-based sign language recognition must
be able to recognize information conveyed in this way. This
paper proposes a framework for automatic recognition of
nonmanual grammatical markers (NMMs) in ASL based on
an improved 3D face tracker and a 2-level feature extraction
and classification framework. These markers convey infor-
mation about the grammatical status of constituents, signal-
ing, e.g., topics, if/when clauses, relative clauses, negation,
and different types of questions (Baker-Shenk and Cokely,
1980; Coulter, 1979; Liddell, 1980; Neidle et al., 2000).
These markings, occurring in parallel with manual signing,
are built up, in part, out of component events, involving,
e.g., raising or lowering of the brows and periodic head
movements (nods, shakes). For example, raised eyebrows
are typically found with sentence-initial topics, if and when
clauses, relative clauses, and some types of questions. A
head shake is essential to the nonmanual marking for nega-
tion; a head shake (albeit of smaller amplitude and greater
frequency) can also mark indefiniteness, and thus is fre-
quently present in wh-question marking.

Previous approaches to NMM recognition have generally
relied on low-level features (Metaxas et al., 2012; Michael
et al., 2009) or alternatively have used those low-level fea-
tures to recognize higher-level gestures, such as specific

types of head movements, which in turn were used for
NMM detection (Nguyen and Ranganath, 2011). One sig-
nificant feature of the current approach is the use of learn-
ing methods to combine low-level features – derived from a
novel 3D face tracker that estimates the global head move-
ments and facial expressions – with higher-level features
of gestural events used (in varying combinations) to sig-
nal specific types of grammatical information. It is crit-
ical to separate out the preparatory phase of these high-
level events, to focus on the linguistically meaningful part.
For example, when raised/lowered eyebrows play a role
in signaling grammatical information, the eyebrow event
typically involves an “onset” phase, where the eyebrows
raise/lower progressively from neutral position to attain
their maximum/minimum height; the point where this oc-
curs generally aligns with the start of the linguistic do-
main associated with the marking. During the final “offset”
phase, the eyebrows return to neutral position. Through the
proposed two-level CRF-based learning framework, these
events are recognized and partitioned into the appropriate
temporal phases; see Figure 1.

In order for this framework to succeed, we need accurate
estimation of low-level features. The 2D trackers that have
been used previously, however, have had serious tracking
limitations in the presence of large head movements and
occlusions. In this paper, we address these limitations
through the use of a novel 3D face tracker. It is now also
possible to produce visualizations as in Figure 1, showing
changes in eyebrow height, eye aperture, and head position
in 3D, in relation to the production of manual signs. This
will be invaluable for linguistic research. Although instru-
mental measurements are now seen as essential for spoken
language phonology, comparable data have never before
been available on a large scale for sign language research.
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Figure 1: Eyebrow raise and head shake: “The new student, nobody has met (him/her).”

This will open up many new possibilities for linguistic re-
search on signed languages and for cross-modality compar-
isons. We plan to share such data visualizations in our pub-
licly accessible, linguistically annotated corpus (Neidle and
Vogler, 2012; Neidle et al., 2014).

2. Methodology

2.1. System Overview

The framework illustrated in Figure 2 includes:

(1) Face landmark point localization and tracking using a
novel 3D face model;

(2) Frame-based low-level feature extraction;

(3) Multiframe-based nonmanual event detection and par-
titioning; event-based high-level feature extraction;

(4) A CRF learning model trained by low- and high-level
feature combination for detection and discrimination
of nonmanual grammatical markers in ASL.

2.2. Facial Landmark Localization and Tracking by
Optimized Part Mixtures and Cascaded
Deformable Shape Model

As explained in Section 1, facial landmark localization and
tracking play a fundamental role in this framework and
largely determine system performance. For most current
facial landmark localization and tracking algorithms, the
point accuracy tends to be satisfactory for frontal faces
without occlusion. However, in sign language, occlusion
by the hands during sign production and large head pose
changes make facial landmark extraction challenging.

Traditional landmark alignment methods, such as the Ac-
tive Shape Model (ASM) (Cootes et al., 1995; Kanaujia
et al., 2006), have been used to analyze ASL nonman-
ual markers (Michael et al., 2011; Metaxas et al., 2012;

Metaxas and Zhang, 2013). Here, to improve landmark
accuracy, we adopt an approach based on Optimized Part
Mixtures and a Cascaded 3D Deformable Shape Model
(OPM-CDSM) (Yu et al., 2013).

We use: mixtures of parts models to roughly localize the
landmark points; a max-margin method to learn the weights
for the landmark detector; and then a two-step cascaded de-
formable model to refine the landmark locations. In the first
step, given each near-optimal landmark, we get the optimal
alignment likelihood by searching its neighborhood. In the
second step, external force constraints are used to push the
landmarks to the optimal position, while shape constraints
are added to preserve the shape structure. To reduce com-
putational cost, a group sparse learning method is used to
automatically select the optimized anchor points for track-
ing, and the selected points are reorganized into a new tree
structure.

For the quantitative comparison of facial landmark local-
ization between OPM-CDSM and other approaches, please
refer to Yu et al. (2013). Overall, the 3D tracker reduces
errors by at least 50% as compared to even the best 2D
methods. Figure 3 compares the ASM (used in Michael et
al. (2011), Metaxas et al. (2012), Liu et al. (2013), e.g.)
with the OPM-CDSM in dealing with occlusions. Land-
mark accuracy is greatly improved with the OPM-CDSM,
for the following reasons:

(1) The ASM relies mostly on local gradient search during
the landmark localization, which is sensitive to many
factors, including lighting conditions. It is also a 2D
method dealing poorly with occlusions and 3D pose
alignment.

(2) The ASM-based approach deals with head pose in
discrete views, limited in number, whereas the OPM-
CDSM, a 3D method, accommodates unlimited view-
points and automatically handles alignment and 3D
pose estimation.
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Figure 2: Flowchart of the proposed method.

Figure 3: Comparison of the results for face landmark points using the two methods with respect to handling occlusions.
The results on the top row are obtained by an ASM tracker, while the results on the bottom row are generated by our current
3D approach.

The approach outlined above allows us to estimate the
multi-scale features accurately, which in turn significantly
enhances NNM recognition, as discussed in Section 3.

2.3. Frame-based Low-level Feature Extraction

The comprehensive set of low-level features derived from
the 3D face tracker includes:

(1) Rigid 3D head pose angles (yaw, pitch, roll), veloci-
ties, and accelerations.

(2) Appearance and Geometry features (e.g., eyebrow
height, eye aperture, motion velocity and accelera-
tion); texture features (e.g., Local Binary Pattern and

Gabor response features extracted from the region of
interest (ROI)).

An example is shown in Figure 4.

2.4. Event-based High-level Feature Extraction

2.4.1. NMM Event Recognition and Partitioning

NMMs often involve significant component events. The
expression of many types of important grammatical infor-
mation includes some combination of raised or lowered
eyebrow events, where the eyebrows raise (or lower) and
then remain raised (or lowered) over the relevant syntac-
tic phrase. Similarly, periodic head movements, such as
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Figure 4: Illustration of low-level facial feature extraction.

nods and shakes, characterize certain NMMs. These types
of events occur, with particular patterns, over domains that
vary in duration. The current approach is designed to recog-
nize these multi-scale spatio-temporal patterns so that key
elements that make up NMMs can be identified and tem-
porally localized. These types of events each have a typ-
ical anticipatory phase, where the articulators are getting
into position. The beginning of the core event is generally
aligned with the start point of the correlated linguistic ma-
terial; furthermore, the patterning of the event, e.g., head
nod or head shake, contains discriminative information for
distinguishing NMMs. This motivates the current analysis
of typical head and eyebrow events (beyond low-level fea-
tures) relevant for NMMs.

We propose a hierarchical Conditional Random Field
(CRF) framework to detect and partition the nonmanual
events. CRF (Lafferty et al., 2001) is a widely used model
for analysis of time series data. Given an observation se-
quence X , the probability of a label sequence Y has the
form:

p(Y |X) ∝ exp(
T∑

t=1

N∑
i=1

λif(yt, x
i
t)+

T∑
t=1

M∑
j=1

µjg(yt, y
j
t−1))

(1)
where T , N , and M are the numbers of the nodes, fea-
ture values, and states, respectively; f(yt, xi

t) is the unary
potential function to evaluate the interactions between fea-
tures and labels; and g(yt, y

j
t−1) is the binary potential

function considering the dependencies among neighbor-
hood labels. λi and µj are the parameters we can learn
from training data using a gradient-based algorithm.

Figure 5 illustrates the framework. At the first level, CRF
models are trained to recognize the entirety of the nonman-
ual gestures involving eyebrows or head movements, with-
out distinguishing the gestures’ components. At the second
level, CRFs further analytically decompose the gesture into
temporal phases.
As eyebrow movements are usually accompanied by facial
texture changes (such as wrinkling of the forehead and the

Nonmanual event

detection

Onset Core Offset Temporal phases

partition

Feature set

Figure 5: The 2-level CRFs for recognition of nonmanual
events and their temporal phases. For eyebrow gestures,
X represents the relevant low-level features of a video se-
quence.

area between the inner eyebrows), we also extract the tex-
ture features from these areas and combine them with eye-
brow height obtained from the 3D face model. To extract
the most important part from the resulting high dimensional
feature vector, we adopt the Ranking SVM (Joachims,
2002) algorithm to select the most informative dimension
of the texture features. For technical details please refer to
Liu et al. (in press).

2.4.2. High-level Feature Extraction

Detailed motion analysis (specifically for amplitude, veloc-
ity, and frequency) is conducted—only for head shakes and
head nods—based on event detection and phase partition-
ing. As shown in Figure 6, a given head motion can vary
significantly in its patterning in different kinds of NMMs.
For example, negation typically includes a head shake with
a relatively large amplitude, whereas the head shake that
sometimes occurs in wh-questions has a smaller movement,
with more rapid repetitions. To model this difference, we
develop discriminative features.

From the overall motion, we detect “peak frame” points:
the local extreme values of the corresponding angular
curves (yaw for head shake, pitch for head nod) during the
head motion. Based on these points, the motion can be seg-
mented. In Figure 7, the 4 detected peak frame points seg-
ment the motion into 3 parts. Several features are derived
within each part, such as the gradient of peak value, peak
to peak velocity, and per-frame velocity, as features for the
head motion.

2.5. Combining Low-level and High-level Features for
Nonmanual Grammatical Marker Recognition

We use sequence learning to model spatio-temporal feature
changes within each video sequence for NMM detection.
To combine low- and high-level features, we encode the
high-level features as sequence features before the feature
concatenation.

3. Experiments

We conducted experiments on data collected from native
ASL signers at Boston University by C. Neidle and her re-
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Figure 6: Example of yaw angle curve in Negation and Wh-
Question.
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Figure 7: Illustration of head motion high-level feature ex-
traction.

search group. The videos were linguistically annotated us-
ing SignStreamr : manual signs, nonmanual events (in-
cluding onsets and offsets), and NMMs were temporally
localized and labelled (Neidle, 2002). Our dataset contains
149 video sequences, which is larger than the dataset we
used in our previous work (Liu et al., in press), since ad-

ditional videos have been collected and annotated. Each
video contains between 1 and 3 NMMs. Our experiment fo-
cuses on recognizing five kinds of NMMs, namely Yes/No
Questions (Y/N), Wh-Questions (Wh), Conditional/When
Clauses (C/W), Negation (Neg) and Topic/Focus (Top). We
conducted three experiments, to evaluate: (1) the detection
of head motion and eyebrow events; (2) the performance
of NMM recognition and discrimination; and (3) the accu-
racy of identification of the start point of NMMs. We con-
ducted “leave one out” testing for these three experiments.
We selected 85 videos from the data repository as the test
set. Other videos were not used either because they con-
tain other kinds of NMMs that we were not investigating,
or because they were used for texture feature selection in
eyebrow motion detection.

3.1. Experiment on Eyebrow and Head Motion Event
Recognition

First we evaluated nonmanual event recognition using the
selected 85 videos. These videos include different lighting
conditions, partial hand occlusions, diverse head poses, and
occasional motion blurrings. We successfully detected 79
raised eyebrow events of the 81 in the test dataset, 49/53
occurrences of lowered eyebrows, 38/42 head shake events,
and 22/27 head nods.

3.2. Experimental Comparison of NMM Recognition

We used HM-SVM (Altun et al., 2003) for NMM recogni-
tion. The number of each kind of NMMs is shown in Table
1. We compared the NMM recognition performance ob-
tained by using: (a) our new tracking system and a combi-
nation of low- and high-level features; (b) our new tracking
system, but only low-level features; and (c) the ASM based
tracker, as in Liu et al. (in press), with a combination of
low- and high-level features. The confusion matrices are in
Table 2.

First we compare the performance of (a) and (b). As shown
in Table 2, the use of the combination of low- and high-level
features results in considerable improvement in the recogni-
tion and discrimination of nonmanual grammatical markers
as compared with the use of low-level features alone. Some
of this improvement comes from the elimination of errors in
which a single NMM was detected as multiple occurrences
of NMMs. The identification of the temporal extent of the
component head motion and eyebrow gestures significantly
improves the delimitation of NMMs. Another benefit is the
reduction of false-positive detections of NMMs, resulting
from appearance and geometry features detected in indi-
vidual video frames.

The comparison between Table 2(a) and Table 2(c) demon-
strates that the new 3D tracking system outperforms the
ASM based face tracking system for NMM recognition and
results in a reduced number of false positive NMM detec-
tions. The increased accuracy of the tracking results in
greater accuracy of feature extraction for both low- and
high-level features, all of which contributes to the improve-
ment in the detection and identification of NMMs.
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Classes Sample Number
Wh-Question (Wh) 7

Negation(Neg) 35
Topic/Focus (Top) 55

Yes/No Question (Y/N) 5
Conditional/When (C/W) 16

Table 1: The number of each kind of nonmanual grammat-
ical markers in our dataset.

(a)

Wh Neg Top Y/N C/W NM
Wh 6 0 0 0 0 1
Neg 0 34 0 0 0 1
Top 0 0 46 0 6 3
Y/N 0 0 0 5 0 0
C/W 0 0 0 1 15 0
NM 1 0 1 1 0 -

(b)

Wh Neg Top Y/N C/W NM
Wh 5 1 1 0 0 1
Neg 0 29 3 0 0 5
Top 0 1 41 1 4 10
Y/N 0 1 1 2 1 0
C/W 0 0 1 0 15 0
NM 2 7 3 0 0 -

(c)

Wh Neg Top Y/N C/W NM
Wh 6 0 0 0 0 1
Neg 0 33 0 0 0 2
Top 0 0 43 0 7 5
Y/N 0 0 0 4 0 1
C/W 0 0 0 1 15 0
NM 2 3 1 1 0 -

Table 2: Confusion matrix comparison of results obtained
by using (a) our new face tracking system and both low- and
high- level features, (b) our new face tracking system and
low-level features only, (c) the face tracking system in (Liu
et al., in press) and both low- and high- level features. The
label at the left of each row indicates the ground truth from
the annotations: C/W (conditional or when clause); Neg
(Negation); Top (Topic/Focus); Wh (Wh-Question); Y/N
(yes/no question); NM (no marker).

3.3. Comparison of NMM Localization Accuracy

Finally we tested the improvement in temporal accuracy of
NMM localization by comparing the start points of NMMs
as identified through use of the combination of low- and
high-level features vs. through the use of low-level features
alone with the start points that human annotators had iden-
tified for those same NMMs. Although it is important to
note that there is some margin of error to be expected in the
human annotations, it is nonetheless apparent from Table 3
that closer agreement with the annotations about the start
points is achieved through the incorporation of high-level

features. This is largely attributable to the phase partition-
ing of the head motion and eyebrow events: the demarca-
tion of onsets significantly improves the temporal accuracy
for identification of the start points of NMMs.

Both low- and high-level Only low-level
Wh 2.7 7.1
Neg 3.4 7.6
Top 3.3 7.2
Y/N 2.9 4.5
C/W 1.1 3.2

Table 3: Weighted average number of frames by which the
prediction of the start frame differs from the human annota-
tion of start frame for nonmanual markers that are correctly
detected through use of both low- and high-level features
vs. low-level features alone.

4. Conclusion

The recognition and interpretation of the nonmanual sig-
nals that are linguistically essential in signed languages is
a particularly challenging problem, as a result of the fact
that the patterning of the nonmanual components occurs
over varying spatio-temporal scales. In this paper, we have
introduced and described a 2-level CRF learning frame-
work for the tracking and recognition of linguistically mo-
tivated multi-scale features. We have introduced a new 3D
deformable face model that achieves significantly greater
accuracy in the extraction of both the low- and the high-
level features used in the HM-SVM computational learning
framework, which results in significantly improved detec-
tion, discrimination, and temporal localization of nonman-
ual grammatical markers in ASL.
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