
ROOTS: a toolkit for easy, fast and consistent processing
of large sequential annotated data collections

Jonathan Chevelu, Gwénolé Lecorvé, Damien Lolive
IRISA / Université de Rennes 1

6, rue de Kerampont, Lannion, France
{jonathan.chevelu, gwenole.lecorve, damien.lolive}@irisa.fr

Abstract
The development of new methods for given speech and natural language processing tasks usually consists in annotating large corpora
of data before applying machine learning techniques to train models or to extract information. Beyond scientific aspects, creating
and managing such annotated data sets is a recurrent problem. While using human annotators is obviously expensive in time and
money, relying on automatic annotation processes is not a simple solution neither. Typically, the high diversity of annotation tools
and of data formats, as well as the lack of efficient middleware to interface them all together, make such processes very complex
and painful to design. To circumvent this problem, this paper presents the toolkit ROOTS, a freshly released open source toolkit
(http://roots-toolkit.gforge.inria.fr) for easy, fast and consistent management of heterogeneously annotated data.
ROOTS is designed to efficiently handle massive complex sequential data and to allow quick and light prototyping, as this is often
required for research purposes. To illustrate these properties, three sample applications are presented in the field of speech and language
processing, though ROOTS can more generally be easily extended to other application domains.

Keywords: Toolkit, corpus management, speech and language processing, annotated data representation

1. Introduction
The development of new methods for given speech and nat-
ural language processing (NLP) tasks usually faces, beyond
scientific aspects, various technical and practical data man-
agement problems. First, the sets of required annotated fea-
tures and their desired distribution in the training data are
rarely the same for two different tasks. For instance, in the
field of NLP, developing a named entity extractor on texts
mainly requires morphosyntactic and syntactic annotations,
and relies on corpora with a high proportion of named enti-
ties. At the opposite, a word phonetizer is trained on align-
ments between graphemes and phonemes, eventually aug-
mented with etymological information, whereas word and
phoneme distributions are of lesser importance. Second,
many dedicated systems or expert resources exist to pro-
vide annotations, e.g., part of speech (POS) taggers, named
entity extractors, pronunciation dictionaries, list of proper
names, etc. However, most of these tools use different file
formats, time scales, or alphabets of tags. This assessment
also stands for manual annotation tools since many of them
coexist without sharing interoperable formats.
This heterogeneity frequently causes wastes of time when
addressing elaborate tasks since a significant part of their
resolution is spent in repeatedly converting data represen-
tations to others, and in aligning information coming from
various tools. Possibly, some information is altered, sim-
plified or even lost, while some other is redundantly stored
over different files. Beyond the waste of time, this data
management complexity can lead to errors in programs and
in results, all the more frequently that addressed tasks are
nowadays more and more elaborate.
The objective of this paper is to introduce a toolkit, called
ROOTS, which homogenizes the management of such anno-
tated data and thus simplifies application developments, es-
pecially for research purposes, in the frame of speech pro-
cessing and NLP. ROOTS has been recently released on the

Internet1 under the terms of the GNU Lesser General Public
Licence (LGPL) v3.0. This paper presents this first public
version of the toolkit.
Precisely, after positioning ROOTS according to related
tools in Section 2, the main features of the proposed toolkit
are detailed in Section 3. Following sections then illus-
trate its performances on three sample tasks. An unsu-
pervised process to create an annotated corpus of e-books
is presented in Section 4, while Section 5 demonstrates
how simply statistics can be extracted from this corpus
using ROOTS, and how it can be interfaced with a more
advanced application, namely corpus reduction over a set
of constraints.

2. Positioning
In order to homogenize and to synchronize different anno-
tation levels, (Barbot et al., 2011) have initially proposed
ROOTS as a theoretical solution based on matrix algebraic
relations. A Perl prototype of this solution has been vali-
dated in (Boëffard et al., 2012) by implementing an audio-
book corpus construction process for text-to-speech (TTS).
This process was taking advantage of ROOTS to consis-
tently represent numerous annotation levels ranging from
speech signal segments to syntactic information. Since,
a new implementation in C++ has been developed, and
ROOTS is now a real complete user-friendly toolkit able to
efficiently process large data collections.
Other tools share this ability in the speech, NLP and multi-
media communities. Among them, GATE (Cunningham et
al., 2002) proposes a framework to develop NLP pipelines.
However, GATE rather focuses on delivering tools for
(manual or automatic) data labeling through an integrated
development environment, but does not provide facilities to

1http://roots-toolkit.gforge.inria.fr.

619

Item 1 Item 2 ... Sequence 1

Sequence 2
...

Utterance 1

Sequence k - 1

Sequence k

...

...

Utt. i Utt. i +1 Utt. n

Layer 1

Layer 2

Chunk 1 Chunk 2

...

Corpus

Figure 1: Hierarchical organization of data in ROOTS.

switch between bundled processing components and exter-
nal tools.
More recently, the NITE XML Toolkit, or NXT, has been
proposed to manage multimodal corpora (Carletta et al.,
2005; Calhoun et al., 2010). NXT proposes a generic data
organization model able to represent large corpora with a
wide range of annotation types. Its philosophy is to con-
sider corpora as databases from which data is accessed
through a query language. On the contrary, in ROOTS, the
user browses data as he sees fit. Furthermore, mechanisms
to link heterogeneous annotations are not optimized in NXT
whereas this is central in ROOTS.
In a more general approach, UIMA (Ferrucci and Lally,
2004; Ferrucci et al., 2006) proposes software engineering
standards for unstructured data management, including an-
notation and processing. While this project is supported
by the Apache Software Fundation, UIMA is technically
too advanced for fast and light prototyping. It is rather de-
voted to industrial developments. Moreover, UIMA’s com-
mitment stands in imposing a common format to data pro-
cessing tools whereas ROOTS’ philosophy rather aims at
bridging ad hoc formats to easily pipeline data processing
tools.
In this spirit, ROOTS is close to work done within the TTS
system Festival (Black et al., 2002). This system relies on
a formalism called HRG, standing for Heterogenous Rela-
tion Graphs, which offers a unique representation of differ-
ent information levels involved in the TTS system (Taylor
et al., 2001). HRG proposes a C++ library with classes for
many linguistic, phonological, acoustic, etc., structures and
the relations between them. Our tool is different from HRG
in the sense that the latter is part of the TTS system Festi-
val whereas ROOTS is completely autonomous. Moreover,
ROOTS comes along with a true application programming
interface (API), in C++ and Perl for the moment.
Finally, handling and analyzing massive collections of an-
notated data—which is nowadays often referred to as the
“big data” problem—also implies problems to store very
large amounts, e.g., petabytes, of information (Jacobs,
2009). Solutions exist to deal with such storage issues, e.g.,
the system Hadoop (Shvachko et al., 2010). However, this
aspect is voluntarily left aside in this paper, as well as in
ROOTS in general terms.

the lazy dog

Determiner Adjective Noun

ð ə d ɔ ɡl eɪ z i

POS

Words

Phonemes

Rpos
w

Rph
w

Figure 2: Example of three sequences linked by two rela-
tions.

The next section draws an overview of the toolkit ROOTS.

3. Presentation of the toolkit Roots

ROOTS stems from Rich Object Oriented Transcription
System. Basically, it provides many mechanisms enabling
annotated sequential data generation, management and pro-
cessing. This section gives a broad description of ROOTS
by presenting the proposed architecture of data, the storage
capabilities, and facilities made available to users through
the API and wrappers. Finally, a minimal example of code
is presented.

3.1. Logical architecture

As summarized in Figure 1, data are organized hierarchi-
cally in ROOTS, starting from fine grain information in
items and moving to macroscopic representations as cor-
pora.
As a fundamental concept, data in ROOTS is modeled as
sequences of items. These items can be of many types,
e.g., words, graphemes, named entity classes, signal seg-
ments, etc., and can thus represent various annotation lev-
els of the same data. Correspondences between items from
different sequences are then defined as algebraic relations,
leading to a graph where nodes are items and edges are de-
rived from relations. An example of a sequence of words
along with corresponding POS and phonemes is given in
Figure 2. Relations Rw

pos and Rw
ph, respectively between

words and POS, and between words and phonemes, are im-
plemented as (sparse) matrices. For instance, Rw

ph can be

620

all_shows.json
oct_07_2013.json
oct_08_2013.json
oct_09_2013.json

report_1.acoustics.json
report_1.linguistics.json
report_1.metadata.json
report_2.acoustics.json
report_2.linguistics.json
report_2.metadata.json...
...

Figure 3: Example of file structure for a corpus of broadcast
news shows.

written as:

Rw
ph =

 1 1 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

 , (1)

where columns denotes phonemes and rows denotes words.
Then, requesting a given target annotation for a source
item simply consists in finding all paths from this item
to all possible items in the target sequence. In practice,
this is done by composing relations by means of matrix
multiplications and transpositions. For instance, the rela-
tion Rph

pos between phonemes and POS can be computed as
Rph

pos = Rw
ph

ᵀ · Rw
pos. All theoretical details are exposed

in (Barbot et al., 2011).
Then, interrelated sequences are gathered into utterances.
According to the application domain, utterances can refer
to sentences, breath groups, or any relevant unit. Finally, a
list of utterances forms a corpus. Hence, many structures
can be considered as a corpus: paragraphs, book chapters,
news reports, broadcast news shows, etc. To hierarchize
structures, a corpus can be chunked into subcorpora, for in-
stance to represent a chapter as a list of paragraphs. Regard-
ing usage, chunks are considered as real autonomous cor-
pora, which makes it easy to test programs on small chunks
first before applying it on their full embedding corpus.
Finally, besides this “vertical” slicing, corpora can also
be partitioned “horizontally” into layers. These layers are
meant to gather annotations from a same field. For in-
stance, if dealing with broadcast news shows, 3 layers of
interest may be imagined to separate metadata, linguistic
and acoustic information. The choice of this segmentation
scheme is up to the corpus designer and should match the
needs of future users.

3.2. Data storage
In ROOTS, information is stored in files, as opposed to
databases, because files are easy to move, save, copy
through operations that most of users know, whereas
database management systems usually require more ad-
vanced skills. Furthermore, this is the most common usage
in the speech and NLP research communities.
In this frame, ROOTS enables storing data in various ways.
Basically, a corpus is stored as one file containing all utter-
ances, sequences, items and relations. However, a corpus
can be segmented into several files by independently storing
every chunk and every layer, and thus making read/write
operations lighter. An example of a segmented corpus is
drawn in Figure 3. The top-level file all shows.json

represents a corpus of daily broadcast news shows, and enu-
merates the files containing the show of each day. Then,
every show file points to alls layers of each news report.
On a user point of view, this file tree is hidden, and loading
and saving operations are transparent, though controllable
if needed. Users simply request access to utterances and
sequences via identifiers (indices or names). Merges and
splittings of utterances when loading and saving corpora
are handled automatically by ROOTS. Moreover, memory
is efficiently managed by postponing file loadings, and thus
memory allocations, until it is really needed, and thanks to
a cache over chunks. This cache prevents from reloading
data from files too frequently. It also limits the maximum
number of allocated utterances at runtime.
Two file formats are currently available: XML and JSON.
Those formats have been chosen because they are human
readable, and because they are particularly suited for the
development of Web services. Other formats will be added
in future versions, especially a binary format to fasten
read/write operations in time-critical applications, or for-
mats of other popular data management toolkits like those
presented in Section 2, e.g., UIMA or NXT. Of course, it is
still possible for users to develop wrappers to load from or
dump to other formats. For instance, CSV-like formats are
very easy to parse with ROOTS’ API.

3.3. API and tools
Since the prototype presented in (Barbot et al., 2011)
and (Boëffard et al., 2012), a new implementation of the
toolkit has been written with a core library in C++ and a col-
lection of utility scripts. The library represents about 33K
lines of code and is widely documented, providing a rich
API. The main useful operations accessible through this
API are listed below for each type of element in ROOTS.

• Item: get and set the content or characteristics, e.g.,
gender, number for POS ; get items which are in rela-
tion with another item ; dump2.

• Sequence: add, remove, get, and update one or several
items ; dump.

• Relation: get items related to another ; link or unlink
items ; dump.

• Utterance: add, remove, get, and update sequences ;
add, remove, and update relations ; get direct or com-
posed relations ; dump.

• Corpus: add, remove, get, and update an utterance ;
add and remove a chunk or a layer ; dump.

As C++ is an object-oriented language, the API can be very
easily extended, for instance to integrate new types of items
and new file formats. For simple and fast prototyping, a
Perl binding of this API is also available. This binding has
been generated by the open source automatic interface gen-
erator SWIG3. As SWIG is a rich tool, ROOTS’ C++ API
could be ported to many other programming languages. For

2Dump refers to input/output operations in raw text, XML and
JSON formats.

3http://www.swig.org.

621

1 use roots;
2

3 my $corpus = new roots::Corpus();
4 my $utterance = new roots::Utterance();
5 my $word = new roots::linguistic_Word();
6 my $lemma = new roots::linguistic_Word();
7 my $word_sequence = new roots::WordSequence(”Word”);
8 my $lemma_sequence = new roots::WordSequence(”Lemma”);
9 my $word2lemma = new roots::Relation($word_sequence, $lemma_sequence);

10

11 $utterance -> add_sequence($word_sequence);
12 $utterance -> add_sequence($lemma_sequence);
13 $utterance -> add_relation($word2lemma);
14

15 while (<>) {
16 chomp;
17 if ($_ ne ” ”) {
18 my ($word_str, $lemma_str) = split(/\t/, $_);
19 $word -> set_label($word_str);
20 $lemma -> set_label($lemma_str);
21 my $m = $word_sequence -> add($word);
22 my $n = $lemma_sequence -> add($lemma);
23 $word2lemma -> link($m, $n);
24 }
25 elsif ($word_sequence -> count() > 0) {
26 $corpus -> add_utterance($utterance);
27 $word_sequence -> clear();
28 $lemma_sequence -> clear();
29 }
30 }
31 if ($word_sequence -> count() > 0) { $corpus -> add_utterance($utterance); }
32 $corpus -> save(” MyCorpus . j s o n ”);
33

34 for (my $i = 0; $i < $corpus -> count_utterances(); $i += 1){
35 $utterance = $corpus -> get_utterance($i);
36 print $utterance -> get_sequence(”Word”) -> to_string().”\n ”;
37 print $utterance -> get_sequence(”Lemma”) -> to_string().”\n ”;
38 print ”−−\n ”;
39 $utterance -> destroy();
40 }

Algorithm 1: Sample code using ROOTS’ Perl API.

instance, a binding for Python, which is very popular in the
scientific community, is scheduled.

Furthermore, the toolkit comes with various wrapping
scripts developed using the Perl API. Those scripts pro-
vide facilities for simple operations, e.g., merges of cor-
pora and layers, statistics extraction, search, textual and
graphical visualization, etc. Other scripts enable command-
line imports and exports with the standard speech and
language processing tools HTK (Young et al., 2009),
Praat (Boersma, 2002), Transcriber (Barras et al., 2001),
and WaveSurfer (Sjölander and Beskow, 2000).

All sources, scripts and documentations, as
well as tutorials, are freely available on
http://roots-toolkit.gforge.inria.fr.

The API is illustrated on a first minimal example of code in
the next section.

3.4. Sample code

Let us assume a text file containing sentences where words
are given with their lemma. The considered input format
is one word per line, words and lemmas are separated by a
tabulation, and the end of a sentence is marked by an empty
line or the end of file. One wants to write a program which
converts the text into a ROOTS corpus and prints the con-
tent of this corpus sentence by sentence. An example of
input and the corresponding expected output are shown in
Table 1.

Algorithm 1 presents one possible way to write this pro-
gram using ROOTS’ API. This example, and following
ones in the paper, is written in Perl as it is more com-
pact than C++. In practice, the same code could be writ-
ten in C++ with only minor changes. First, the package
for ROOTS is imported (line 1), and empty objects are cre-
ated (l. 3-9): a corpus, an utterance, two temporary items

622

Input
Clouds cloud
depart depart

The the
sun sun
shines shine

�

Output
Clouds depart
cloud depart
--
The sun shines
the sun shine
--

Table 1: Example of input and output for Algorithm 1.

of word type$word and $lemma4, two sequences of word
type items called “Word” and “Lemma” respectively, and a
relation between these two sequences. The sequences and
the relation are inserted into the utterance (l. 11-13). Then,
each line of the input file is parsed (l. 15-30). If the line
is not empty, the pair of strings for a word and its lemma
are read (l. 18), the content of temporary items are set and
items inserted into the sequences5 (l. 19-23). Based on po-
sitions m and n in the sequences, a link between inserted
items is set in the relation (l. 23). If the line is empty and
the sequence of words is not empty (l. 25), the utterance is
added to the corpus (l. 26) before clearing the sequences in
anticipation to a new sentence (l. 27-28). This latter action
implicitly removes all the links in the relation. Similarly,
when the end of file is reached, the utterance is added to
the corpus if relevant (l. 31), and the corpus is saved into a
JSON file (l. 32). Finally, the corpus is browsed (l. 34-39).
For each index i, a copy of the corresponding utterance is
retrieved (l. 35), its word and lemma sequences are read
and printed to the standard output (l. 36-38). At the end of
each iteration, the utterance copy is destroyed in order to
free memory (l. 39).
Following the same principles as those presented in
this section, the two next sections present examples of
more complex corpus creation and processing tasks using
ROOTS.

4. Application to corpus generation
ROOTS has been developed to help users creating and pro-
cessing corpora with a large variety of information coming
from various dedicated data analysis tools. While Section 5
deals with corpus processing, this section first demonstrates
how ROOTS is effective for corpus generation on a real-life
example. Precisely, an automatic text annotation process
for French is introduced before applying it to a collection
of e-books and briefly analyzing the resulting corpus.

4.1. Automatic annotation process
Based on a raw text in French, we designed an automatic
processing chain which enriches the text with the follow-
ing labels: graphemes, POS, lemmas, named entities, syn-
tax trees, phonemes, non speech sounds and syllables. As
shown in Figure 4, this is achieved by augmenting a rudi-
mentary textual layer containing the sole sequences of raw
words and corresponding graphemes with a linguistic and
a phonological layer. Information of those two layers are

4There is no structural difference between a lemma and a word
since lemmas are real words.

5Inserted elements are copies of the original element.

Syntax
trees

Words from
linguistic
analysis

Lemmas

Linguistic
layer

Named
entities

POS

Graphemes Raw words

Textual
layer

Words from
phonetic
analysis

Phonetic elements

Phonemes

Syllables

Non speech
sounds

Phonological
layer

Figure 4: Schematic view of relations between sequences.

produced using two state-of-the-art dedicated tools: an
NLP toolkit developed by Synapse Développement6; and a
grapheme-to-phoneme conversion Web service from Voxy-
gen7. As NLP tools usually rely on their own specific word
tokenization8, three different word sequences are consid-
ered: raw words, words from linguistic processing, and
words as considered by the phonetizer. Graphemes are used
as pivots to navigate between these sequences. Outputs of
the annotation tools are parsed and transformed into ROOTS
objects using glue scripts in Perl (about 2, 000 lines).

4.2. Creation of a corpus of e-books
The automatic annotation process described above has been
applied to 1, 300 free e-books (classics) in French collected
from http://www.ebooksgratuits.com. Pre-
cisely, after converting the e-books9 and cleaning the re-
sulting raw texts, a first ROOTS corpus made of the sole
raw word and grapheme sequences has been created. Then,
the annotation process has been executed in parallel on a
computer powered by a 64 core 2 GHz Intel Xeon CPU and
120 GB RAM.
The annotation process resulted in a ROOTS corpus whose
statistics about items are presented in Table 2. This corpus

6http://www.synapse-developpement.fr.
7http://www.voxygen.fr.
8For instance, a tool may consider acronyms as one word while

another may explode them into sequences of capitals.
9Conversion has been achieved using Calibre by Kovid Goyal

(http://calibre-ebook.com).

623

Type Number
(millions)

Words (raw) 94
Graphemes 534

Words (linguistic) 111
POS 111
Lemmas 111
Named Entities 4
Syntax trees 6

Words (phonological) 112
Syllables 134
Non speech sounds 21
Phonemes 309

Table 2: Numbers of automatically generated items in the
corpus of e-books.

is spread over 35, 388 JSON files for a total disk usage of
about 220 GB. Processing time was about 15 hours. In-
dividually, this is about 27 files, 173 MB, and 45 min per
e-book. Let us note that most of the execution time is due to
calls to the external tools, especially the remote phonetizer.
Furthermore, files could be highly compressed since JSON
is a verbose format.
An example of a generated utterance is drawn in Fig-
ure 5. This visualization has been automatically computed
by a powerful alignment algorithm developed for ROOTS.
Drawn sequences have been manually selected to maintain
readability. Especially, intermediate word sequences from
linguistic and phonological tagging are not displayed. Two
items are one above the other if and only if there exists a
relation linking them.

5. Application to corpus processing
This section demonstrates how the toolkit is particularly
convenient for annotated data processing through two sam-
ple tasks: statistics extraction, and corpus reduction.

5.1. Statistics extraction
A first considered data processing task is to compute fre-
quencies over syllables in a textual corpus. Precisely, one
wishes to highlight how frequently each syllable is found
at the end of a word in a corpus. To make the objective a
bit more complex, and to show a more advanced usage of
ROOTS, it is further constrained to discard mono-syllabic
words from frequency computation.
This target task is realized using the short script presented
in Algorithm 2. This code is split into two parts: the
function count last syllables (lines 3-18); and the
“main” code (l. 20-31). The main code declares a map
%frequency to store syllable counts (l. 20). Then,
a ROOTS corpus is created and populated by loading a
JSON file (l. 22). Similarly to Algorithm 1, the corpus is
browsed (l. 23-27). Precisely, last syllables are count by
iteratively updating the map %frequency for each utter-
ance (l. 25). Finally, all encountered syllables are printed
with their respective total frequency (l. 29-31). Regarding
the function count last syllables, arguments, i.e.,
the reference to the map of counts and a reference to the

N
am

ed
En

tit
y

Le
m
m
a

PO
S

Sy
nt
ax

Sy
nt
ax

1

Sy
nt
ax

2

Sy
nt
ax

3

W
or
d

N
SS

Sy
lla

bl
e

Ph
on

em
e

pe
rs

on

vo
us

al
le

r
bi

en
,

A
lic

e
et

to
i

?

P
ro

no
un

:p
er

so
na

l
pl

ur
al

:2
V

er
b:

in
di

ca
tiv

e
pr

es
en

t:f
in

ite
:p

lu
ra

l:2
A

dv
er

b:
po

si
tiv

e
P

un
ct

ua
tio

n
pa

us
e

N
ou

n:
si

ng
ul

ar
C

on
ju

nc
tio

n
co

or
di

na
tin

g
P

ro
no

un
:p

er
so

na
l

si
ng

ul
ar

:2
P

un
ct

ua
tio

n
fin

al

se
nt

en
ce

in
de

pe
nd

en
t

is
:s

ub
je

ct
ve

rb
gr

ou
p:

un
kn

ow
n

gr
ou

p:
un

kn
ow

n
in

:a
pp

os
iti

on

in
:a

pp
os

iti
on

in
:a

pp
os

iti
on

V
ou

s
al

le
z

bi
en

,
A

lic
e

et
to

i
?

"#
"

"#
"

v-
u+

z-
a+

l-e
+

bj
-E

~
+

-a
+

l-i
+

s
-e

+
tw

-a
+

v
u

z
a

l
e

b
j

E
~

a
l

i
s

e
t

w
a

Figure 5: Automatically generated display of an utterance
with ROOTS.

624

1 use roots;
2

3 sub count_last_syllables {
4 my $p_frequency = shift;
5 my $utterance = shift;
6

7 my $word_seq = $utterance -> get_sequence(”Word”);
8

9 foreach my $word (@{$word_seq -> get_all_items()}) {
10 my @syllables = @{$word -> get_related_items(” S y l l a b l e ”)};
11 if($#syllables > 0) {
12 my $last_syllable = pop(@syllables) -> to_string();
13 if(!exists($$p_frequency{$last_syllable}))
14 { $$p_frequency{$last_syllable} = 1; }
15 else { $$p_frequency{$last_syllable} += 1; }
16 }
17 }
18 }
19

20 my %frequency;
21

22 my $corpus = new roots::Corpus(” MyRootsFi le . j s o n ”);
23 for (my $i = 0; $i < $corpus -> count_utterances(); $i++) {
24 my $utterance = $corpus -> get_utterance($i);
25 count_last_syllables(\%frequency, $utterance);
26 $utterance -> destroy();
27 }
28

29 while (my ($syl,$freq) = each(%frequency)) {
30 print ” $ s y l \ t $ f r e q \n ”;
31 }

Algorithm 2: Perl script for syllable frequency computation based on ROOTS.

Syllable Frequency
/mÃ/ 1, 098, 968
/te/ 1, 041, 858
/tE/ 885, 349
/vE/ 822, 038
/sjÕ/ 649, 986
/se/ 495, 601
/ne/ 430, 312
/si/ 418, 720
/rE/ 417, 144
/ve/ 338, 582

Table 3: List of the 10 syllables which most frequently end
words in the corpus of French e-books.

current utterance, are read (l. 4-5). Then, the word sequence
of this utterance is retrieved (line 7) and all the words are
browsed (l. 9). For each word, the list of related syllables is
computed (l. 10). After checking if the word is not mono-
syllabic (l. 11), the last syllable is accessed and its string
value is got (l. 12). Finally, the frequency of the current
syllable is either initialized or updated (l. 13-15).
This script has been applied on the ROOTS corpus of
e-books from Section 4 using the same parallelized com-
putational setup as previously. The overall execution has
lasted about 20 min, with a duration of 1 min and a 300 MB

memory usage on average per e-book. The resulting top 10
most frequent syllables is given in Table 3. A quick anal-
ysis on these results show that most words end with /mÃ/,
which is a typical ending for adverbs in French, or with /e/
or /E/, which are verb inflection marks in French for past
participles and the imperfect tense, respectively. Hence, the
results are consistent with the narrative style of the corpus.

5.2. Corpus reduction
Besides simplicity, delivering efficient processing skills is a
key aspect. This section now shows that ROOTS is perfectly
suited for such a demand by addressing a corpus reduction
problem as a second sample task. Corpus reduction con-
sists in extracting from a huge corpus a minimal sized sub-
set which satisfies a set of constraints over features of the
corpus. Corpus reduction is a prerequisite for some tasks
where the quality of results mainly depends on the diver-
sity of the reference corpus content but where considering
a very large corpus is prohibitive.
(Chevelu et al., 2008) proposed an efficient greedy algo-
rithm to reduce corpora. Since ROOTS structures hetero-
geneous annotations, a simple and practical usage of this
corpus reduction method consists in feeding the algorithm
with information derived from a ROOTS corpus. In prac-
tice, this has been done in our experiments by generating
a sparse matrix of features using ROOTS’ C++ API, before
processing this matrix with the corpus reduction algorithm.

625

To illustrate the work flow, corpus reduction has been ap-
plied to the annotated corpus of e-books of Section 4. Two
constraints for the target reduced corpus were considered:

• every phoneme paired with its corresponding POS
should appear at least twice;

• and every trigram of phonemes, independently of their
related POS, should appear at least once.

The corpus covers 10, 246 unique phoneme-POS pairs and
31, 612 unique phoneme trigrams. Using the same experi-
mental setup as previously, the process compiled informa-
tion from e-books during about 3 h 30 min (ROOTS) before
computing a solution in only 2 min 40 s (specialized algo-
rithm). As a result, while the full corpus is made of 6.2 mil-
lion sentences and sizes 309 million phoneme instances, the
returned solution contains only 17, 846 sentences (0.3% of
the full corpus) and 547, 111 phoneme instances (0.2% of
the full corpus). A major interest of ROOTS is that this
work flow can be applied to any corpus without changing
anything except the names of sequences under study and
requested minimal frequencies of their items.

6. Conclusion and further developments
In this paper, we have presented a powerful toolkit called
ROOTS which enables easy, fast and consistent generation,
management and processing of large annotated sequential
data collections. After presenting the toolkit itself, these
abilities have been demonstrated through three application
examples. This toolkit is efficient, fully operational, open
source, widely documented, and easily extensible.
Further developments are already planed for future re-
leases. First, a graphical user interface to allow manual
editing and annotation correction will be added. New file
formats should be integrated to optimize read/write perfor-
mances for time-critical applications, or to become com-
pliant with standards from various communities. Likewise,
more wrappers for existing automatic taggers and data pro-
cessing tools will be integrated. More fundamentally, se-
quences should be extended to lattices in order to enable
information uncertainty modeling when needed. Finally,
corpora generated using ROOTS on free data sets should be
made available. Especially, the corpus of French e-books
should be published in the near future.

7. Acknowledgements
This work has been partially funded by the Agence Na-
tionale de la Recherche (France) as part of the project
ANR-CONTINT 2011 Phorevox.

8. References
Barbot, N., Barreaud, V., Boëffard, O., Charonnat, L., Del-

hay, A., Le Maguer, S., and Lolive, D. (2011). Towards
a versatile multi-layered description of speech corpora
using algebraic relations. In Proceedings of Interspeech,
pages 1501–1504.

Barras, C., Geoffrois, E., Wu, Z., and Liberman, M. (2001).
Transcriber: development and use of a tool for assist-
ing speech corpora production. Speech Communication,
33(1-2):5–22.

Black, A. W., Taylor, P., Caley, R., and Clark, R. (2002).
The Festival speech synthesis system. Technical report,
University of Edinburgh.

Boersma, P. (2002). Praat, a system for doing phonetics by
computer. Glot international, 5(9/10):341–345.

Boëffard, O., Charonnat, L., Le Maguer, S., Lolive, D., and
Vidal, G. (2012). Towards fully automatic annotation
of audiobooks for TTS. In Proceedings of LREC, pages
975–980.

Calhoun, S., Carletta, J., Brenier, J. M., Mayo, N., Ju-
rafsky, D., Steedman, M., and Beaver, D. (2010).
The nxt-format switchboard corpus: a rich resource
for investigating the syntax, semantics, pragmatics and
prosody of dialogue. Language Resources and Evalua-
tion, 44(4):387–419.

Carletta, J., Evert, S., Heid, U., and Kilgour, J. (2005).
The NITE XML toolkit: Data model and query language.
Language Resources and Evaluation, 39(4):313–334.

Chevelu, J., Barbot, N., Boëffard, O., and Delhay, A.
(2008). Comparing set-covering strategies for optimal
corpus design. In Proceedings of LREC, pages 2951–
2956.

Cunningham, H., Maynard, D., Bontcheva, K., and Tablan,
V. (2002). GATE: an architecture for development of ro-
bust HLT applications. Proceedings of the Annual Meet-
ing of the ACL, pages 168–175.

Ferrucci, D. and Lally, A. (2004). UIMA: an architectural
approach to unstructured information processing in the
corporate research environment. Natural Language En-
gineering, 10(3-4):327–348.

Ferrucci, D., Lally, A., Gruhl, D., Epstein, E., Schor, M.,
Murdock, J. W., Frenkiel, A., Brown, E. W., Hampp, T.,
Doganata, Y., et al. (2006). Towards an interoperability
standard for text and multi-modal analytics.

Jacobs, A. (2009). The pathologies of big data. Communi-
cations of the ACM, 52(8):36–44.

Shvachko, K., Kuang, H., Radia, S., and Chansler, R.
(2010). The Hadoop distributed file system. In Proceed-
ings of the IEEE 26th Symposium on Mass Storage Sys-
tems and Technologies (MSST), pages 1–10.

Sjölander, K. and Beskow, J. (2000). Wavesurfer - an open
source speech tool. In Proceedings of Interspeech, pages
464–467.

Taylor, P., Black, A. W., and Caley, R. (2001). Hetero-
geneous relation graphs as a formalism for representing
linguistic information. Speech Communication, 33(1-
2):153–174.

Young, S. J., Evermann, G., Gales, M. J. F., Hain, T., Ker-
shaw, D., Moore, G., Odell, J., Ollason, D., Povey, D.,
Valtchev, V., and Woodland, P. C. (2009). The HTK
Book, version 3.4. Cambridge University Engineering
Department.

626

