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Abstract

We present a methodology to analyze the linguistic evolution of scientific registers with data mining techniques, comparing the insights
gained from shallow vs. linguistic features. The focus is on selected scientific disciplines at the boundaries to computer science (compu-
tational linguistics, bioinformatics, digital construction, microelectronics). The data basis is the English Scientific Text Corpus (SCITEX)
which covers a time range of roughly thirty years (1970/80s to early 2000s) (Degaetano-Ortlieb et al., 2013; Teich and Fankhauser, 2010).
In particular, we investigate the diversification of scientific registers over time. Our theoretical basis is Systemic Functional Linguistics
(SFL) and its specific incarnation of register theory (Halliday and Hasan, 1985). In terms of methods, we combine corpus-based methods
of feature extraction and data mining techniques.
Keywords: data mining, text classification, register

1. Introduction
Our central research interest is in the evolution of lexico-
grammatical patterns in the scientific domain, asking
whether individual scientific disciplines develop their own,
distinctive linguistic characteristics over time, and if so,
what these distinctive characteristics are.
Most obviously, disciplines can be well distinguished by
domain specific vocabulary. Thus, a bag-of-words ap-
proach as used in text categorization tasks and stylomet-
ric studies (e.g., Joachims, 1998; Koppel et al., 2002; Ry-
bicki, 2006; Argamon et al., 2008; Fox et al., 2012), will
clearly indicate a distinction between disciplines. Yet, these
kinds of approaches do not account for the full potential of
language variation according to situational context, which
may provide more insights into the evolution of lexico-
grammatical patterns. In this paper, we investigate what ad-
ditional information we can gain from approaches relying
on linguistic features rather than shallow (bag-of-words)
features.
To investigate the above question, we employ the notion
of register, i.e., language variation according to situational
context described in terms of field, tenor and mode of dis-
course (Halliday and Hasan, 1985; Quirk et al., 1985).
Numerous corpus-linguistic studies have shown that par-
ticular situational settings have linguistic correlates at the
level of lexico-grammar in the sense of clusters of lexico-
grammatical features that occur non-randomly (see e.g.,
Biber, 1988; Biber, 1993; Biber, 2006; Biber, 2012). In ad-
dition, we consider time as another relevant contextual fac-
tor in register analysis, as language use continuously adapts
to changing social contexts (cf. Ure, 1971; Ure, 1982).
Our methodology is informed by three sources: empirical
linguistics (in particular corpus linguistics), linguistic the-
ory and data mining. There is related work in translation
studies by e.g., Baroni and Bernardini (2006) or Lembersky
et al. (2012). The earliest work, to our knowledge, combin-

ing SFL with text classification is Whitelaw and Patrick’s
work on spam detection (Whitelaw and Patrick, 2004).

2. Data
As data basis we use the English Scientific Texts Corpus
(SCITEX; cf. Teich and Fankhauser, 2010; Degaetano-
Ortlieb et al., 2013) built from full English journal articles,
which covers nine scientific domains amounting to around
34 million tokens, drawn from 38 sources.
Our focus lies on selected scientific domains at the bound-
aries to computer science (‘contact’ disciplines) and some
other ‘seed’ discipline. This is captured in SCITEX by a
three-way partition: (1) A-subcorpus: computer science,
(2) B-subcorpus: computational linguistics, bioinformat-
ics, digital construction and microelectronics, and (3) C-
subcorpus: linguistics, biology, mechanical engineering
and electrical engineering (see Figure 1). SCITEX com-
prises two time slices, the 70/80s (SASCITEX) and the early
2000s (DASCITEX), covering a thirty year time span sim-
ilarly to the Brown corpus family (Kučera and Francis,
1967; Hundt et al., 1999). The corpus has been tokenized,
lemmatized and part-of-speech (PoS) tagged using Tree-
Tagger (Schmid, 1994). Additionally, each document has
been enriched with meta-information (such as author(s), ti-
tle, scientific journal, academic discipline, and year of pub-
lication) and document structure (e.g., section types, sec-
tion titles, paragraphs and sentence boundaries). SCITEX is
encoded in the Corpus Query Processor (CQP) format (Ev-
ert, 2005) and can be queried with CQP by using regular
expressions in combination with positional (e.g., PoS) and
structural attributes (e.g., sentence, sections).

3. Methods of analysis
We carry out three types of analysis, one based on shallow
features, the other on linguistic features, and the third one
combines both feature sets, comparing the two time slices
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Figure 1: Scientific disciplines in the SCITEX corpus

(1970s/80s vs. 2000s) represented in the SCITEX corpus.
We aim to provide answers to the following questions:

1. How do contact disciplines and seed disciplines differ?

2. How do contact disciplines evolve over time?

In all three analysis, we need to compare the B subcorpus
(contact disciplines) with the A and C subcorpora (seed dis-
ciplines).

Feature selection For the first analysis, we use shallow
features that can distinguish between individual registers.
As disciplines can be well distinguished by domain specific
vocabulary, we choose to use the 500 most distinctive nouns
calculated by Information Gain.
For the second analysis, we draw on SFL’s model of register
variation in which the contextual parameters of field, tenor
and mode are associated with particular lexico-grammatical
domains. Since we want to cover all three contextual pa-
rameters, we choose at least one feature for each (see Ta-
ble 1). Additionally, we analyze PoS n-grams as well as
features for technicality, information density and abstract-
ness which are linguistic features associated with scientific
writing (Halliday and Martin, 1993) (also shown in Ta-
ble 1).
In the third analysis, both feature sets are combined.

Feature evaluation We employ statistical and machine
learning methods to measure (a) how well corpora are dis-
tinguished by the selected features and (b) how much indi-
vidual features contribute to the distinction. We employ
classification techniques by using feature ranking (Infor-
mation Gain and SVM weights) to determine the relative
discriminatory force of features, and supervised machine
learning (support vector machines) to distinguish between
the scientific registers in SCITEX on the basis of shallow
and linguistic features. For this, we use the WEKA data
mining platform (Witten and Frank, 2005).

4. Analyses
Analysis 1: Shallow features In the first analysis, we
look at how distinctive the subcorpora of SCITEX are di-
achronically by shallow features. Here, we consider the
500 most distinctive nouns calculated by Information Gain
to classify the texts into the nine disciplines by training and
testing a support vector machine classifier.
For the classification of texts of the 70/80s, we achieve a
classification accuracy of 91.08%. This rises slightly up to
91.55% for the 2000s. Figures 2 and 3 show the confu-
sion matrices for both time slices, respectively. Each row
gives the predicted classes for an actual class. The number
of correctly classified texts is shown on the main diagonal
(in bold). Misclassifications indicate overlaps between the
subcorpora. For both time slices, there are three kinds of in-
teresting misclassifications (shown in three shades of gray):
(1) electrical engineering (C4) overlaps with other engi-
neering disciplines (A, B1-B4, C3; gray), (2) there are mis-
classifications between contact disciplines (Bs) and corre-
sponding seed disciplines (A and Cs; dark gray), (3) while
the seed disciplines (Cs) are relatively well distinguished
from each other, the contact disciplines (Bs) show overlaps
(light gray).
Diachronically, misclassifications between contact and
seed disciplines slightly rise (1.8%) for both A and Cs (see
Table 2). Misclassifications of electrical engineering (C4)
into other engineering disciplines decrease as well as mis-
classifications of contact disciplines into other contact dis-
ciplines (see again Table 2).

overlaps 70/80s 2000s
engineering 3.61 1.81
contact into seed 2.58 4.34
contact into A 0.61 1.65
contact into Cs 1.97 2.69
contact into contact 2.52 1.27

Table 2: Diachronic comparison of misclassifications in %
by SVM with shallow features

Thus, contact disciplines become more distinguishable
among each other, evolving as disciplines in their own right,
but show greater overlap with seed disciplines over time.

Analysis 2: Linguistic features In the second analysis,
we compare the subcorpora in SCITEX by linguistic features
(see Section 3) to see whether we can gain more insights
about the evolution of lexico-grammatical patterns. As in
Analysis 1, we perform classification for both time slices
with support vector machines (SVMs).
For the 70/80s, we obtain a classification accuracy of
65.07%, which rises to 77.24% in the 2000s. As expected
this is lower than for the shallow features (see Analysis 1).
The confusion matrices (see Figures 4 and 5) show similar
tendencies to Analysis 1 (see Table 3 showing misclassi-
fications among engineering disciplines, contact and seed
disciplines as well as among contact disciplines). How-
ever, the amount of overlap drops for all comparisons over
time, except for misclassifications between the contact dis-
ciplines and computer science (A). Thus, the contact disci-
plines are less distinguished diachronically from computer

1328



contextual parameter/ feature category feature subcategory
abstract property

FIELD

term patterns NN-of-NN, N-N, ADJ-N

verb classes

activity (e.g., make, show)
aspectual (e.g., start, end)
causative (e.g., let, allow)
communication (e.g., note, describe)
existence (e.g., exist, remain)
mental (e.g., see, know)
occurrence (e.g., change, grow)

TENOR modality
obligation/necessity (e.g., must)
permission/possibility/ability (e.g., can)
volition/prediction (e.g., will)

MODE

theme
experiential theme (e.g, The algorithm...)
interpersonal theme (e.g., Interestingly...)
textual theme (e.g., But...)
additive (e.g., and, furthermore)

conjunctive adversative (e.g., nonetheless, however)
cohesive relations causal (e.g., thus, for this reason)

temporal (e.g., then, at this point)
TECHNICALITY type-token ratio STTR

lexical vs. function words no. of lexical PoS categories

INFORMATION DENSITY

lexical density lexical items per clause/sentence

grammatical intricacy
clauses per sentence
wh-words per sentence
sentence length

ABSTRACTNESS PoS distribution no. of nominal vs. verbal categories

CONVENTIONALIZATION
n-grams on PoS basis 2-to-6-grams overall/per section
length of sections tokens per section

Table 1: Linguistic features used in analysis

Figure 2: Confusion matrix (shallow features) with SVM for the 70/80s (SASCITEX)

science (A) not only by nouns shown in Analysis 1, but also
by linguistic features.
To learn more about which linguistic features contribute to
a better distinction between the contact disciplines and the
seed disciplines, we look at their SVM weights. We group
the distinctive features for each discipline according to their
contextual parameter (field, tenor, mode) or abstract prop-
erty (e.g., technicality) and calculate the sum of their SVM
weights. This is done for each pair of seed vs. contact
discipline (A-CompSci vs. B1-CompLing, A-CompSci vs.
B2-BioInf, etc.). We then inspect which feature categories

contribute most to the distinction.

overlaps 70/80s 2000s
engineering 9.72 5.23
contact into seed 5.97 4.59
contact into A 0.58 1.03
contact into Cs 5.39 3.55
contact into contact 7.10 3.04

Table 3: Diachronic comparison of misclassifications in %
by SVM with linguistic features
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Figure 3: Confusion matrix (shallow features) with SVM for the 2000s (DASCITEX)

For the diachronic comparison between computer science
and the contact disciplines, consider Figures 6 and 7. In
these bar charts we visualize the sum of SVM weights of
distinctive features for computer science (A) on the left-
hand side and for the contact disciplines (Bs) on the right-
hand side (Bs) for each feature category. The length of
the bar indicates the amount of contribution of features
for computer science (left) and for the contact disciplines
overall (right). The colors indicate which pair the sum
of the weights belongs to (e.g., blue for A-CompSci-vs-
B1 and B1-CompSci-vs-A). In the 70/80s, computer sci-
ence (A) is mostly distinguished by conventionalization and
mode features. The contact disciplines (Bs), instead, make
more use of field, abstractness, and information density fea-
tures. Thus, computer science uses a more conventional-
ized language in comparison to the contact disciplines in
the 70/80s.1 Comparing this to the 2000s (Figure 7), we
see that conventionalization is less distinctive for computer
science (A), but has gained discriminatory force for most
of the contact disciplines (B1, B2 and B4). Additionally,
while information density features have gained discrimi-
natory force, abstractness and field features show less dis-
criminatory force. This shows some parallels to Analysis
1, where nouns, which also belong to the contextual pa-
rameter of field, show a diminished discriminatory force
between computer science and the contact disciplines over
time.
In the comparison to the other seed disciplines (Cs) (see
Figures 8 and 9), there are no tendencies uniformly apply-
ing to the contact disciplines (Bs). They rather show in-
dividual tendencies for each pair (B1 vs. C1, etc.). Fig-
ure 8 shows that in the 70/80s computational linguistics
(B1) is for the most part distinguished from linguistics (C1)
by field and abstractness features, bioinformatics (B2) from
biology (C2) by field, tenor, mode, abstractness, and in-
formation density features, digital construction (B3) from
mechanical engineering (C3) by mode, tenor, and field fea-
tures, and microelectronics (B4) from electrical engineer-
ing (C4) by abstractness, conventionalization, and infor-

1Note that only the conventionalization feature actually indi-
cates a relative degree of use (high or low). For the other features
we only show the level of contribution to a given distinction but
not whether that feature is relatively highly or rarely used.

mation density features. In the 2000s, the contact disci-
plines are much less distinguished by field features (see
Figure 9). Additionally, computational linguistics (B1)
has gained discriminatory force in conventionalization fea-
tures, similarly to bioinformatics (B2). Digital construction
(B3) has gained discriminatory force in information den-
sity, mode, and field features, and microelectronics (B4) re-
mains discriminated by conventionalization, abstractness,
and information density features.
In summary, contact disciplines seem to become more con-
ventionalized and more distinct from each other, but have
greater overlaps with the seed disciplines, especially with
computer science in terms of field.

Analysis 3: Shallow and linguistic features In the third
analysis, we combine shallow and linguistic features to see
whether the classification improves.

register shallow shallow + ling. difference
A-CompSci 93.56 91.58 -1.98
B1-CompLing 78.40 68.00 -10.40
B2-BioInf 91.47 89.50 -1.97
B3-DigCon 78.39 75.90 -2.49
B4-MicroElec 90.44 89.34 -1.10
C1-Ling 96.35 92.24 -4.11
C2-Bio 98.69 97.76 -0.93
C3-MechEng 94.33 93.56 -0.77
C4-ElecEng 89.50 92.56 3.06

Table 4: Shallow features vs. shallow and ling. features for
the 70/80s

The classification for the 70/80s achieves an overall accu-
racy of 89.82% which is much higher than the accuracy
of the classification on the linguistic features on their own
(compare 65.07% from Analysis 2), but lower than the ac-
curacy of the classification on the shallow features (com-
pare 91.08% from Analysis 1). Thus, the linguistic features
do not improve classification for this time period. This
is due to the fact that the disciplines in the 70/80s, espe-
cially the contact disciplines, are not clearly distinct from
one another in terms of linguistic features (see Analysis
2). In the 2000s, classification achieves an overall accuracy
of 92.92% which is higher than the linguistic and shallow
features taken on their own (compare 91.55% for the shal-
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Figure 4: Confusion matrix (linguistic features) with SVM for the 70/80s (SASCITEX)

Figure 5: Confusion matrix (linguistic features) with SVM for the 2000s (DASCITEX)

register shallow shallow + ling. difference
A-CompSci 89.13 93.04 3.91
B1-CompLing 91.24 89.05 -2.19
B2-BioInf 91.22 95.30 4.08
B3-DigCon 85.95 89.67 3.72
B4-MicroElec 93.07 91.09 -1.98
C1-Ling 90.00 90.09 0.09
C2-Bio 95.16 97.15 1.99
C3-MechEng 95.71 96.04 0.33
C4-ElecEng 88.34 87.44 -0.90

Table 5: Shallow features vs. shallow and ling. features for
the 2000s

low features and 77.24% for the linguistic features). Thus,
while the combination of shallow and linguistic features
does not have a positive impact on the classification accu-
racy in the 70/80s, it does provide a better classification in
the 2000s. This is also reflected across registers. Consider
Tables 4 and 5 which show the accuracies for each classi-
fication (shallow vs. shallow + ling.) by register. While in
the 70/80s the accuracies for each register are lower for al-
most all registers in the combined feature classification (ex-
cept for C4-ElecEng), the accuracies in the 2000s increase
for most registers (except for B1-CompLing, B4-MicroElec

70/80s 2000s
A-CompSci vs B3-DigCon
N_fig 1.28 ttr 2.01
N_manuscript 1.25 word length 1.87
adj-n-n 1.13 sentence length 1.17
word length 0.92 N_method 0.93
n-n 0.90 N_solution 0.90
B3-DigCon vs C3-MechEng
N_program 1.85 sentence length 1.56
N_computer 1.56 word length 1.12
N_manuscript 1.31 N_datum 0.96
N_device 1.13 N_function 0.95
N_simulation 1.04 N_algorithm 0.94

Table 6: Top 5 most distinctive features for digital construc-
tion (B3) across time

and C4-ElecEng) with the combined feature classification.
Focusing on the disciplines with improved classification
accuracy combining shallow features with linguistic fea-
tures (A-CompSci, B2-BioInf, B3-DigCon, C1-Ling, C2-
Bio, C3-MechEng), we can observe that in the 70/80s 0 to
3 features of the top 10 distinctive features are linguistic
features, while in the 2000s 2 to 5 out of the top 10 are
linguistic features (see Table 6 for an example). Thus, in
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Figure 6: SVM weights for A vs. Bs 70/80s

Figure 7: SVM weights for A vs. Bs 2000s

the 2000s linguistic features contribute to a better classifi-
cation.

5. Conclusions
We have shown how lexico-grammatical patterns in the
scientific domain change over time and how individual
scientific disciplines emerged by register contact develop
their own distinctive linguistic characteristics or adopt them
from their seed disciplines.
In terms of methods, we have performed a bag-of-words
classification (500 most distinctive nouns as shallow fea-
tures) and a classification based on linguistic features.
While the results on shallow features can only give insights
on vocabulary differences between the disciplines (topical-
ity), the linguistic features reveal more fine-grained linguis-
tic differences. In general, we can say that the linguis-
tic distinctness of registers increases. However, while the
contact disciplines become more distinct from one another,
they do not ‘forget’ about their seed disciplines as more
topics and possibly methods from the seed disciplines are
incorporated.
Additionally, we have shown that classification is improved
for most disciplines in the 2000s by considering linguistic
features on top of shallow features.
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