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Abstract 

A Silent Speech Interface (SSI) allows for speech communication to take place in the absence of an acoustic signal. This type of 
interface is an alternative to conventional Automatic Speech Recognition which is not adequate for users with some speech 
impairments or in the presence of environmental noise. The work presented here produces the conditions to explore and analyze 
complex combinations of input modalities applicable in SSI research. By exploring non-invasive and promising modalities, we have 
selected the following sensing technologies used in human-computer interaction: Video and Depth input, Ultrasonic Doppler sensing 
and Surface Electromyography. This paper describes a novel data collection methodology where these independent streams of 
information are synchronously acquired with the aim of supporting research and development of a multimodal SSI. The reported 
recordings were divided into two rounds: a first one where the acquired data was silently uttered and a second round where speakers 
pronounced the scripted prompts in an audible and normal tone. In the first round of recordings, a total of 53.94 minutes were captured 
where 30.25% was estimated to be silent speech. In the second round of recordings, a total of 30.45 minutes were obtained and 30.05% 
of the recordings were audible speech. 
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1. Introduction 

Silent Speech designates the process of speech 

communication in the absence of an audible and 

intelligible acoustic signal (Denby et al., 2009). By 

extracting information of the human speech production 

process, an SSI is able to interpret and process the 

acquired data. Several SSI based on different sensory 

types of data have been proposed in the literature (e.g. 

Electro-encephalographic sensors (Porbadnigk et al., 

2009), Electromagnetic Articulography sensors (Fagan et 

al. 2008), etc.). Nonetheless, acquiring data from a single 

input modality limits the amount of useful information 

available for capture and further processing. Furthermore, 

in order to develop a multimodal SSI, it is necessary to 

collect data from multiple input modalities in a 

synchronous way due to the nonexistence of SSI 

multimodal data available for research. However, 

satisfying the requirements and gathering all the 

necessary equipment for collecting such corpora is a 

complex and cumbersome task (Hueber et al., 2007). 

Hence, the availability to the community of multimodal 

corpora would not only allow to increase the number of 

data resources accessible for further research, but would 

also pave the way for the development of a multimodal 

SSI, which could provide a more complete representation 

of the speech production model behavior during speech. 

The work presented in this paper, creates the 

conditions to explore and analyze more complex 

combinations of input modalities for SSI research. By 

exploring non-invasive and state-of-the-art modalities 

such as Ultrasonic Doppler (Srinivasan et al., 2010), we 

have selected several sensing technologies based on: the 

possibility of being used in a natural manner without 

complex medical procedures from the ethical and clinical 

perspectives, low cost, tolerant to noisy environments and 

able to work with speech-handicapped users or elderly 

people, for whom speaking requires a substantial effort. 

Based on these requirements, we collected data from four 

SSI modalities with the following specifications: (1) 

video input, which captures the RGB color of each image 

pixel of the speakers’ mouth region and its surroundings, 

including chin and cheeks; (2) depth input, which 

captures depth information of each pixel for the same 

areas (resulting in our this case, in a 3D point cloud in the 

sensor reference frame, represented by a grayscale 

image), providing useful information about the mouth 

opening and tongue position, in some cases; (3) surface 

EMG (sEMG) sensory data, which provides information 

about the myoelectric signal produced by the targeted 

facial muscles during speech movements; (4) Ultrasonic 

Doppler Sensing (UDS), a technique which is based on 

the emission of a pure tone in the ultrasound range 

towards the speaker’s face, that is received by an 

ultrasound sensor tuned to the transmitted frequency. The 

reflected signal then contains Doppler frequency shifts 

that correlate with the movements of the speaker’s face 

(Srinivasan et al., 2010).  

In literature several studies that combined 2 input 

modalities, in addition to audio can be found (e.g.  Denby 

and Stone, (2004) and Tran et al. (2008)). Nonetheless, to 

the best of our knowledge, this is the first silent speech 

corpora that combines more than two input data types and 

the first to synchronously combine the corresponding four 

modalities, thus, providing the necessary information for 

future studies and research on multimodal SSIs.  

2. Data Collection Setup 

After assembling all the necessary data collection 

equipment which, in the case of ultrasound, led us to the 

development of custom built equipment based on the 

work of Zhu (2008), we needed to create the necessary 
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conditions to record all signals with adequate 

synchronization. The challenge of synchronizing all 

signals resided in the fact that a potential synchronization 

event would need to be captured simultaneously by all 

(four) input modalities. To that purpose, we have selected 

the sEMG recording device, which had an available 

output channel, as the source that generates the alignment 

pulse for all the remaining modalities. After the data 

collection system setup was ready, a database described in 

this paper, was collected for further analysis. 

2.1 The individual data input modalities 

The devices employed in this data collection, depicted in 

Figure 1, were: (1) a Microsoft Kinect for Windows that 

acquires visual and depth information; (2) an sEMG 

sensor acquisition system from Plux (2014), that captures 

the myoelectric signal from the facial muscles; (3) a 

custom built dedicated circuit board (referred to as UDS 

device), that includes: 2 ultrasound transducers (400ST 

and 400SR working at 40 kHz), a crystal oscillator at 7.2 

MHz and frequency dividers to obtain 40 kHz and 36 

kHz, and all amplifiers and linear filters needed to process 

the echo signal (Freitas et al., 2012).  

The Kinect sensor was placed at approximately 

70cm from the speaker. It was configured, using Kinect 

SDK 1.5, to capture a color video stream with a resolution 

of 640x480 pixel, 24-bit RGB at 30 frames per second and 

a depth stream, with a resolution of 640x480 pixel, 11-bit 

to code the Z dimension, at 30 frames per second. Kinect 

was also configured to use the Near Depth range (i.e. 

range between 40cm to 300cm) and to track a seated 

skeleton. 

The sEMG acquisition system consisted of 5 pairs of 

EMG surface electrodes connected to a device that 

communicates with a computer via Bluetooth. As 

depicted in Figure 2, the sensors were attached to the skin 

using a single use 2.50cm diameter clear plastic 

self-adhesive surfaces and considering an approximate 

2.00cm spacing between the electrodes center for bipolar 

configurations. Before placing the surface EMG sensors, 

the sensor location was previously cleaned with alcohol. 

While uttering the prompts no other movement, besides 

the one associated with speech production, was made. The 

five electrode pairs were placed in order to capture the 

myoelectric signal from the following muscles: the 

zygomaticus major (channel 2); the tongue (channel 1 and 

5), the anterior belly of the digastric (channel 1); the 

platysma (channel 4) and the last electrode pair was 

placed below the ear between the mastoid process and the 

mandible. The sEMG channels 1 and 4 used a monopolar 

configuration (i.e. placed one of the electrodes from the 

respective pair in a location with low or negligible muscle 

activity), being the reference electrodes placed on the 

mastoid portion of the temporal bone. The positioning of 

the EMG electrodes 1, 2, 4 and 5 was based on previous 

work (e.g. Schultz and Wand, 2010) and sEMG electrode 

from channel 3 was placed according to recent findings by 

the authors about the detection of nasality in SSIs (Freitas 

et al., 2014), a distinct characteristic of European 

Portuguese (EP) (Strevens, 1954). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Acquisition devices and laptop with the data 

collection application running. 

 

Figure 2: Surface EMG electrodes positioning and the 

respective channels (1 to 5) plus the reference electrode 

(R). 

The Ultrasonic Doppler sensing device was placed 

at approximately 40cm from the speaker and was 

connected to an external sound board (Roland, UA-25 EX 

in the first setup and a TASCAM US-1641 in the second 

setup) which in turn was connected to the laptop through a 

USB connection. Two recording channels of the external 

sound board were connected to the I/O channel of the 

sEMG recording device and to the UDS device. The 

Doppler echo and the synchronization signals were 

sampled at 44.1 kHz and to facilitate signal processing, a 

frequency translation was applied to the carrier by 

modulating the echo signal by a sine wave and low 

passing the result, obtaining a similar frequency 

modulated signal centered at 4 kHz. 

2.2 Registration of all input modalities 

In order to register all the mentioned input modalities via 

time alignment between all corresponding input streams, 

we have used an I/O bit flag in the sEMG recording 

device, which has one input switch for debugging 

purposes and two output connections, as depicted in 

Figure 4. Synchronization occurs when the output of a 

synch signal, programmed to be automatically emitted by 

the sEMG device at the beginning of each prompt, is used 

to drive a led and to provide an additional channel in an 

external sound card. Registration between the video and 

depth streams is ensured by the Kinect SDK.  

Using the information from the led and the auxiliary 

audio channel with synch info, the signals were time 
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aligned offline. To align the RGB video and the depth 

streams with the remaining modalities, we have used an 

image template matching technique that automatically 

detects the led position on each color frame. 

For the UDS acquisition system, the activation of the 

output I/O flag of the sEMG recording device, generates a 

small voltage peak on the signal of the first channel. To 

enhance and detect that peak, a second degree derivative 

is applied to the signal followed by an amplitude 

threshold. To be able to detect this peak, we have 

previously configured the external sound board channel 

with maximum input sensitivity.  

The time-alignment of the EMG signals is ensured by the 

sEMG recording device, since the I/O flag is recorded in a 

synchronous way with the samples of each channel. 

 

 

Figure 4: Diagram of the time alignment scheme showing 

the I/O channel connected to the three outputs – debug 

switch, external sound card and a directional led. 

2.3 Acquisition Methodologies 

The recordings took place in a quiet room with controlled 

illumination and an assistant responsible for monitoring 

the data acquisition and also for pushing a record/stop 

button in the recording tool interface in order to avoid 

unwanted muscle activity. 

 The data acquisition is divided into two distinct 

rounds hereon referred as first and second round of 

recordings. The main difference between them is the 

acquisition of an audible acoustic signal (second round) 

versus silently articulating the words (first round).  

The first round of our database contains the 

recordings of 9 sessions of 8 native EP speakers (one 

speaker recorded two sessions) - 2 female and 6 male – 

with no history of hearing or speech disorders, with an age 

range from 25 to 35 years old and an average age of 30 

years. Due to hardware limitations and the differences 

found between silently articulated speech and audible 

uttered speech related with the lack of acoustic feedback 

(Wand and Schultz, 2011), in this first round we have 

chosen to record only silent speech. Thus, no audible 

acoustic signal was produced by the speakers during the 

recordings and only one speaker had past experience with 

silent articulation.  

In a second round, the previous sound card was 

replaced by a TASCAM US-1641, as depicted in Figure 3, 

and for comparison purposes and by taking advantage of 

the extra input channels provide by this device, we 

decided to collect a second round of recordings where the 

audio channel from the UDS device is also synchronously 

acquired. As such, we have collected in this round 3 

speakers, one from the previous data collection and two 

elderly speakers without any history of speech disorders 

known so far and also native EP speakers. The first 

speaker was a male with 31 years old and the two elderly 

speakers, were two female with 65 and 71 years old, 

respectively. In this second stage of data collection, each 

speaker recorded two sessions without removing the 

EMG electrodes or changing the recording position. 

 

 

Figure 3: TASCAM US-1641 device used in the second 

round of recordings. 

 

Before each recording session, the participants 

received a 30 minute briefing that included instructions, 

speaker preparation and voluntarily signing of a consent 

form which accurately described the experiment and its 

duration and what kind of data was going to be collected.  

Each recording session took between 40 to 60 

minutes, generating an average 3.81GB of data per 

speaker, that includes: session metadata, such as devices 

configuration; RBG and depth information of a 128x128 

pixel square centered at the mouth center and the  

coordinates of 100 facial points, in the sensor reference 

frame, for each Kinect image; sEMG data from the 5 

available channels; two channel wave per prompt 

containing the UDS and the synchronization signals; and 

a compressed video of the whole session. In the second 

round of recordings, we recorded a three channel wave 

containing the audio from the UDS device microphone, 

the Ultrasonic and the synchronization signal. 

2.4 Corpora 

For this data collection we have selected a vocabulary of 

32 EP words, which can be divided into 3 distinct sets. 

The first set, used in previous literature work for other 

languages (e.g. (Srinivasan et al., 2010) and for EP in 

prior work of the authors (Freitas et al., 2012), consists of 

10 digits from zero to nine. The second set contains 4 

minimal pairs of common words in EP that only differ on 

nasality of one of the phones (minimal pairs regarding this 

characteristic, e.g. Cato/Canto [katu]/[kɐ̃tu] or Peta/Penta 

[petɐ]/[pẽtɐ] – see (Freitas et al., 2011) for more details), 

and is directly related with previous investigation by the 

authors on the detection of nasality with SSIs. Table 1 

shows the last (third) set, with 14 common words in EP, 

taken from context free grammars of an Ambient Assisted 

Living (AAL) application that supports speech input and 

chosen based on past experiences of the authors (Teixeira 

et al., 2012). A total of 99 scripted prompts per session 

were presented to the speaker (three additional silence 

prompts were also included in the beginning, middle and 
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end of the session), in a random order with each prompt 

being pronounced individually, in order to allow isolated 

word recognition. All prompts were repeated 3 times per 

recording session. 

 

Ambient Assisted Living Word Set 

Videos 

(Videos) 

Ligar 

(Call/Dial) 

Contatos 

(Contacts) 

Mensagens 

(Messages) 

Voltar 

(Back) 

Pesquisar 

(Search) 

Anterior 

(Previous) 

Fotografias 

(Photographs) 

Família 

(Family) 

Ajuda 

(Help) 

Seguinte 

(Next) 

Lembretes 

(Reminders) 

Calendário 

(Calendar) 

E-Mail 

(E-Mail) 
- 

 

Table 1: Set of words of the EP vocabulary, extracted from 

AAL contexts. 

3. Characterization of the Acquired 
Database 

In this section we present some statistics of the acquired 

data. In the first round of recordings no audio was 

collected thus an automatic algorithm was used to 

estimate speech statistics. For the second round of 

recordings, audible utterances were recorded and the 

audio was used as auxiliary information for manually 

annotating the data. 

3.1 First Round of Recordings 

The data collected in the first round of recordings has a 

total elapsed duration of 56.11 minutes, with an average 

duration of 5.99 minutes per session and 3.74 seconds per 

utterance, not considering silence utterances. By applying 

a Voice Activity Detection (VAD) technique based on 

UDS alone, we estimate that 30.25% is silent speech (i.e. 

continuous facial movements) and that 69.75% is the 

silence before and after each utterance. The VAD 

algorithm uses the energy of the UDS pre-processed 

spectrum information around the carrier and a mean 

reference value extracted from the silence prompts of 

each speaker to distinguish silent articulation. Each 

session presents an average speech duration of 1.81 

minutes and 4.18 minutes of non-speech. The female 

speakers had an average speech duration of 42.79% per 

session, while this figure for male speakers was only 

23.29%. Table 2 details the audio duration of the collected 

data by word set. 

 

 

 

 

 

 

 

 

 

 

 

Word Set 
Total Recorded 

Duration (minutes) 

Silent 

Speech 
Non-Speech 

Digits 15.28 26.78% 73.22% 

Nasal Pairs 13.02 28.90% 71.10% 

AAL 25.63 33.00% 67.00% 

All word sets 53.94 30.25% 69.75% 

 

Table 2: Audio duration, speech time and non-speech time 

distribution by word set (excluding silence utterances) for 

the first round of recordings. 

3.2 Second Round of Recordings 

In the second round of recordings since synchronously 
acquired audio was available the estimation of the speech 
and non-speech characteristics was performed based on 
the manual annotation of the speech signal by the first 
author. As described in Table 3, in this second round, a 
total elapsed duration of 30.45 minutes, with an average 
duration of 5.07 minutes per session and 3.17 seconds per 
utterance. 
 

Word Set 
Total Recorded 

Duration (minutes) 
Speech Non-Speech 

Digits 8.78 28.13% 71.87% 

Nasal Pairs 7.48 71.87% 73.13% 

AAL 14.20 32.91% 67.09% 

All Word Sets 30.45 30.05% 69.95% 

 

Table 3: Audio duration, speech time and non-speech time 

distribution by word set (excluding silence utterances) for 

the second round of recordings. 

 
In Table 4 the session statistics for the first and 

second round are presented. Based on these values, a 
larger duration of the sessions were only silent speech was 
considered, can be noticed. This suggests a slower 
articulation when no acoustic feedback, however it might 
also be related or influenced by the lack of experience 
verified in most speakers when articulating the words 
without any acoustic feedback.  

 

Data Collection Stage 

Average 

Duration 

per 

session 

(minutes) 

Average 

Speech 

per 

session 

(minutes) 

Average 

Non-Speech 

per session 

(minutes) 

1st round 5.99 1.81 4.18 

2nd round 5.07 1.52 3.55 

 

Table 4: Audio duration, speech time and non-speech time 

distribution by word set (excluding silence utterances) for 

the second round of recordings. 

 

If instead of estimating the characteristics of the first 

round based on the automatic algorithm we use the 

speech/non-speech distribution estimated in the second 

round. Then, by applying it to the average duration per 

session of the first round, we get a 1.80 minutes of speech 
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and 4.19 minutes for non-speech data, a similar result to 

what was obtained using the UDS algorithm. 

4. Conclusion 

This paper describes a multimodal data collection with 5 

streams of data: Video, Depth, Surface EMG, Ultrasonic 

Doppler Sensing and audio. By using the surface EMG 

recording device we were able to synchronously combine 

these silent speech modalities and acquire information 

from multiple stages of the human speech production 

model. The data collection is divided into two rounds of 

recordings: in a first round only silent speech (i.e. no 

acoustic signal was produced by the speaker) was 

recorded; in a second set of recordings, audible speech 

was captured in addition to the remaining modalities. We 

have also used an algorithm based on UDS energy for 

estimating total speech time in the absence of the acoustic 

signal and some statistics of how the data was distributed. 

5. Future Work 

The collected data opens several doors in terms of future 

research. This data will potentially allow for the 

development of a multimodal SSI based on these 

modalities, where the strongest points of one modality can 

eventually help to minimize the weakest point of other(s). 

It will also allow looking at other types of information, 

beyond the acoustic signal, for interesting research issues, 

such as elderly speech characteristics and nasal sounds 

production and recognition.  
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