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Abstract
Causality lies at the heart of biomedical knowledge, being involved in diagnosis, pathology or systems biology. Thus, automatic
causality recognition can greatly reduce the human workload by suggesting possible causal connections and aiding in the curation
of pathway models. For this, we rely on corpora that are annotated with classified, structured representations of important facts and
findings contained within text. However, it is impossible to correctly interpret these annotations without additional information, e.g.,
classification of an event as fact, hypothesis, experimental result or analysis of results, confidence of authors about the validity of their
analyses etc. In this study, we analyse and automatically detect this type of information, collectively termed meta-knowledge (MK), in
the context of existing discourse causality annotations.
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1. Introduction

Statements regarding causal associations have been long
studied in general language, mostly as part of more com-
plex tasks, such as question answering (Girju, 2003; Blanco
et al., 2008) and textual entailment (Rı́os Gaona et al.,
2010). To suport these efforts, several corpora containing
causal annotations have also been created, the most promi-
nent being the Penn Discourse TreeBank (PDTB) (Prasad et
al., 2008). Despite the large amount of work, a single, uni-
fied theory of causality has not yet emerged, be it in general
or specialised language.
In contrast, until now, comparatively little work has been
carried out on discourse relations in the biomedical domain.
To our knowledge, there exist only two biomedical corpora
that contain manually annotated causal associations. On the
one hand, the BioCause corpus contains 850 annotations
of causal associations over 19 full-text open-access journal
articles from the domain of infectious diseases (Mihăilă et
al., 2013). On the other hand, BioDRB (Prasad et al., 2011)
contains annotations of 16 different discourse relations, one
of which is causality, similar to the PDTB corpus. The total
number of causal associations is 542, whilst another 23 are
a mixture between causality and one of either background,
temporal, conjunction or reinforcement associations.
In spite of the more focussed and powerful searching meth-
ods available today, typical discourse annotation efforts,
such as BioCause and BioDRB, do not take into considera-
tion the information regarding the context of discourse rela-
tions, although this is essential for their correct interpreta-
tion. For instance, negation is considered a universal prop-
erty of all human languages (Greenberg et al., 1978), and
plays an important role in contradiction detection. Vincze
et al. (2008) report that around 13% of sentences found in
biomedical research articles contain some form of negation,
whilst Nawaz et al. (2013b) analyse three open access bio-
event corpora to show that more than 6% of bio-events are
negated. Additionally, determining the certainty level pro-
vides information about the confidence of authors in their

statements. This could be because either there is uncer-
tainty regarding the general truth value assigned to the re-
lation or it is perceived that the relation does not hold all
the time. Plus, it is necessary to automatically discover the
novel parts of articles, as well as whether they are hypothe-
ses, experiments, evaluations or results. The identification
of such information is critical for several tasks in which
biomedical researchers have to search and review the liter-
ature. One such example is the maintenance of models of
biological processes, such as pathways (Oda et al., 2008).
Take example (1) below, which contains a causal relation
which is negated (against) and speculated (argue) analysis
(results) attributed to previous work (their).

(1) SeMac functions like GAS M1 Mac in the inhibition of
opsonophagocytosis of GAS by human PMNs [21].
Their results argue against the fact that the inhibition of
the bactericidal activity of PMNs is not mediated by op-
sonophagocytosis or may be insignificant in whole blood.

The goal of capturing this type of interpretative informa-
tion, explicitly or implicitly available in text, termed meta-
knowledge (Thompson et al., 2011), is to extract as much
useful information as possible about causal associations in
their textual context. This will further support the devel-
opment of information retrieval and extraction systems, the
automatic discovery of new knowledge and the detection of
contradictions.
In this work, we adapt an existing meta-knowledge anno-
tation scheme (Thompson et al., 2011) from biomolecu-
lar events to biomedical discourse relations, apply it to the
causal associations existing in the BioCause corpus and
analyse the resulting annotations. Furthermore, we train
classifiers to automatically recognise meta-knowledge in-
formation and evaluate their performance based on the hu-
man annotations. To our best knowledge, our method is
the first that is able to automatically identify and classify

1984



meta-knowledge information about causality in biomedical
scientific discourse.

2. Related Work
There exist several distinct efforts to capture various meta-
knowledge dimensions in biomedical text, such as certainty
(Kilicoglu and Bergler, 2008; Vincze et al., 2008), negation
(Vincze et al., 2008; Nawaz et al., 2013b), manner (Nawaz
et al., 2012) or source (Liakata et al., 2010; Sándor and de
Waard, 2012; Nawaz et al., 2013a). However, most of them
are focussed on biomedical events. Although identifying
MK for bio-events is useful, the MK on the discourse rela-
tions connecting the spans of text containing bio-events is
as necessary.
Regarding discourse, researchers have looked at articles as
networks of hypotheses and evidence, and tried to iden-
tify the argumentation contained within a paper and the re-
lationships between hypotheses, claims and evidence ex-
pressed in the article (de Waard et al., 2009). Others clas-
sified the discourse into discourse zones specific to scien-
tific articles (e.g., background, methods, results) (Sándor,
2007). Another annotation scheme considers more than one
aspect of meta-knowledge. For example, the ART corpus
and its CoreSC annotation scheme (Liakata and Soldatova,
2009; Liakata et al., 2010) augment general information
content categories with additional attributes, such as New
and Old, to denote current or previous work. Despite these
efforts, a study that takes into consideration multiple meta-
knowledge dimensions, automatically identifies them and
analyses their interaction has not been yet performed.
Considering the mentioned work, we decided to create a re-
source of biomedical discourse causality enriched with rel-
evant meta-knowledge information. Furthermore, we train
multiple classifiers to detect the MK information automati-
cally.

3. Meta-knowledge annotation scheme
The original meta-knowledge annotation scheme is de-
picted in Figure 1. As can be noticed, it contains six di-
mensions which are centred on a biomedical event.

Bio-event
(centred on an
event trigger)

Participants
theme(s)
actor(s)

Class/Type
event ontology

Knowledge Type
Investigation
Observation

Analysis
General

Manner
High Neutral Low

Certainty
L1 L2 L3

Source
other

current

Polarity
positive
negative

Hyper-dimensions
new knowledge

hypotheses

Figure 1: Meta-knowledge dimensions (from (Thompson
et al., 2011)).

We adapted this meta-knowledge annotation scheme to the
characteristics of discourse relations. All dimensions have
been kept, with the exception of Manner, which is used
to describe the change in intensity or speed of a biologi-
cal process and does not have a correspondent in discourse.

In what follows, we describe the adapted dimensions and
categories.

3.1. Knowledge type
The Knowledge Type (KT) captures the general information
about the content of the causal association, classifying it
into five categories:

• analysis: inferences, interpretations, speculations or
other types of cognitive analysis, always accompanied
by lexical clues, typical examples of which include
suggest, indicate, therefore and conclude.

• fact: events that describe general facts and well-
established knowledge, and sometimes accompanied
by lexical clues such as known.

• investigation: enquiries or investigations, which have
either already been conducted or are planned for the
future, typically accompanied by lexical clues like ex-
amined, investigated and studied.

• observation: direct observations, sometimes repre-
sented by lexical clues like found, observed and re-
port, etc.

• other: the default category, assigned to associations
that either do not fit into one of the above categories,
do not express complete information, or whose KT is
unclear or is unassignable from the context.

The original meta-knowledge KT dimension also includes
a Method category, that is used to describe experimental
methods, with clue words such as stimulate and inactivate.
This category is not suitable for discourse, as intensity or
speed does not apply to causality or other discourse rela-
tions.

3.2. Certainty
This dimension encodes the confidence or certainty level
ascribed to the association in the given text. The epistemic
scale is partitioned into three distinct levels:

• L1: explicit indication of either low confidence or con-
siderable speculation towards the association or the as-
sociation occurs infrequently or only some of the time.

• L2: explicit indication of either high (but not com-
plete) confidence or slight speculation towards the as-
sociation or the association occurs frequently, but not
all of the time.

• L3: the default category. No explicit expression that
either there is uncertainty or speculation towards the
associations or that the association does not occur all
of the time.

3.3. Source
The source of the knowledge expressed by the causal asso-
ciation is encoded as:
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• current: the association makes an assertion that can be
attributed to the current study. This is the default cate-
gory, and is assigned in the absence of explicit lexical
or contextual clues, although explicit clues such as the
present study may be encountered.

• other: the association is attributed to a previous study.
Explicit clues are usually present either as citations, or
by using words such as previously and recent studies.

3.4. Polarity
This dimension identifies the truth value of the asserted
causal association. A negated causal association is defined
as one describing the non-existence or absence of a causal
link between two spans of text. The recognition of such
associations is vital, as it can lead to the correct interpreta-
tion of a causal association, completely opposite to that of
a non-negated one.

• positive: no explicit negation of the causality. This is
the default category, as most causal associations are
expected to be positive.

• negative: the association has been negated according
to the description above. The negation may be indi-
cated through lexical clues such as no, not or fail.

4. Meta-knowledge of discourse causality
We have applied the adapted meta-knowledge annotation
scheme to all 19 full papers in the BioCause corpus, previ-
ously annotated with discourse causality associations. Pre-
vious studies have shown that the annotator background
does not affect the consistency of the resulting annotations
of meta-knowledge (Thompson et al., 2011). Therefore,
two annotators with background in computational linguis-
tics and experience in meta-knowledge annotation have un-
dertaken the annotation task. All causal associations have
been annotated with meta-knowledge information. The
two annotators have undergone a short training period,
in which they have become accustomed to the annotation
tool and guidelines and improved the agreement between
them. High levels of inter-annotator agreement have been
achieved, falling in the range of 0.88 - 0.95 Kappa, depend-
ing on the MK dimension. The Kappa scores for each MK
dimension are given in Table 1. The lowest Kappa occurs in
the case of KT, as it is the most complex dimension to anno-
tate. The five possible values can be confusing with specific
relations which lie at the border between labels. The high-
est score is obtained in the case of Polarity, as it is fairly
easy to recognise whether a relation is negated or not. The
few problems that arose were in cases where the negation
is implicit to the trigger itself. All disagreements have been
discussed after the annotation and a final option has been
agreed for each such disagreement by both annotators.
The dataset is available under a Creative Commons BY-SA-
NC licence from the site of the National Centre for Text
Mining (NaCTeM).
Table 2 summarises the distribution of annotation for each
category of each dimension in the MK scheme, together
with their relative frequency. In Table 3, we give the most
frequent clues for each category, together with their relative

MK subdim. Kappa
Knowledge type 0.88
Certainty 0.89
Polarity 0.95
Source 0.94

Table 1: Inter-annotator agreement per MK dimensions.

frequency for that category. The results included in both
tables are discussed in what follows.

MK dimension MK subdim. Count (Freq.)

KT

Analysis 663 (82.88%)
Fact 52 (6.50%)
Investigation 4 (0.5%)
Observation 62 (7.75%)
Other 19 (2.38%)

Certainty
L1 78 (9.75%)
L2 383 (47.88%)
L3 339 (42.38%)

Polarity positive 790 (98.75%)
negative 10 (1.25%)

Source current 722 (90.25%)
other 78 (9.75%)

Table 2: Meta-knowledge category distribution in Bio-
Cause.

MK dim. MK subdim. Frequent clues

KT

Analysis suggest (38.86%), indicate
(21.68%)

Fact shown to (60%), known to
(20%)

Investigation illuminate (100%)

Observation observe (45%), report
(30%)

Certainty
L1

may (45%), might (30%),
perhaps (8%)

L2 suggest (51.8%), indicate
(29.2%)

L3 definitely (40%), firmly
(30%)

Polarity Negative
not (62.5%), no (15%),
against (7%), rule out
(4%)

Source Current
in this study (67%), in this
paper (17%)

Other
citations (84%), previ-
ously (8%)

Table 3: Most frequent clues for each MK category with
their respective relative frequency (computed over the num-
ber of explicit clues) for that category.

4.1. Manual analysis

Here we provide some key statistics regarding the causal-
ity annotation produced, together with a discussion of the
characteristics of the corpus.
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4.1.1. Knowledge type
The most frequent annotated value is Analysis, constitut-
ing almost two thirds of the total number of causal associa-
tions. This is not surprising, since most causal associations
are the result of inference or interpretation of experimen-
tal results. Two other categories, Observation and Fact, are
less frequently annotated, occurring in just over 2% of all
annotations. Investigation appears even less, with only five
instances in the entire corpus. The number of Other rela-
tions is 21 (2.63%).
There are several lexical clues that mark this MK category.
The most common is suggest, which occurs in almost 39%
of the Analysis cases. The second most common is indicate,
which occurs in almost 22% of the Analysis cases. Other
clues include demonstrate, thus and therefore.

4.1.2. Certainty
More than half of the causal associations in the corpus are
expressed with some degree of uncertainty. That is, 57.62%
of associations have been annotated with uncertainty clues,
whilst 42.38% are certain or lack any uncertainty clue.
Under the speculated category, over 83% (47.88% per total)
of associations are reported with slight speculation (L2),
whilst just under 17% (10% per total) are annotated as hav-
ing a high level of speculation (L1). This is again an ex-
pected result, since most authors express their analyses with
a high level of confidence.
The most frequent clues that lead to uncertainty are verbs,
such as suggest and indicate, and modals, e.g., may and
might. Nevertheless, there are several other types of uncer-
tainty clues, such as adverbs (likely, maybe and perhaps).
An interesting observation is that most of the uncertain as-
sociations (96.30%) belong to the KT type Analysis. There
are very few instances of uncertain relation pertaining to
other knowledge types. Fact has two relations (3.84%),
whilst Observation has 12 relations (19.35%). Thus, al-
most 67% of all associations annotated as Analysis also
have some degree of uncertainty.
Speculated relations are mostly part of the Current value of
the Source dimension, and there are four negated speculated
relations (44% of all negations).

4.1.3. Source
Very few associations belong to the Other category, when
compared to Current. Just under 10% of all associations
have their source in other articles, whilst 90% express
knowledge created by the authors themselves.
Clues that are specific only to the Other category are cita-
tions to other articles. Other clues are phrases such as pre-
viously reported and X proposes that, where X substitutes
the names of researchers.
Causal relations that have their source in other research are
all positive from a Polarity point of view. However, they are
not all completely certain: there are four instances which
have L1 as their Certainty level, whilst another 16 are L2.
The rest of 57 are marked as L3.
The knowledge type of the causal relations is almost evenly
split between Analysis (42 relations) and Fact (33 rela-
tions). There are one Observation and one Other Knowl-
edge type relations from other sources. This fact is quite
intuitive – most work already published tends to be treated

as a fact or is analysed in connection with the research de-
scribed in the current work.

4.1.4. Polarity
A small number of associations have been annotated with
a Negative category in the Polarity dimension. Just over
1% of the annotations are marked as expressing a negated
causality. This is to be expected, since, in scientific dis-
course, authors tend to present their positive results instead
of negative ones. Nevertheless, it is vital to detect such in-
formation, since a simple negation completely changes the
meaning of a causal relation.
Clues for negations are varied, some belonging to closed-
class parts-of-speech, e.g. determiners (no), adverbs (not)
or prepositions (against), whilst others belong to open-class
parts-of-speech, such as verbs (rule out) and adjectives (im-
possible). Nevertheless, the adverbial not is the most fre-
quent, accounting for almost two thirds of negated causal
associations.
Negated causal relations always have the Source dimension
set to Current. It is very unlikely that authors of one study
directly contradict causal relations described in other re-
search.
Furthermore, five out of the nine negated relations have the
Certainty level set to L3. Two relation is set to L1, and
another two to L2.
Looking at negated relations from a Knowledge Type per-
spective, seven relations are of type Analysis, whilst two are
marked as Observation. The lack of occurrence of negative
instances amongst the other types of Knowledge Type is to
be expected, as it is usual that researchers investigate why
events occur, and not why they do not.

4.2. Automatic classification
We have experimented with several supervised machine
learning algorithms in the task of automatically classify-
ing causal discourse relations from the point of view of
each MK dimension. The range of classifiers covers rules
(JRip), trees (J48, Random Forests), support vector ma-
chines (SVM), Naı̈ve Bayes and meta-classifiers (Vote).
All classifiers are implemented in Weka (Witten and Frank,
2005; Hall et al., 2009). For Random Forests, we have eval-
uated different numbers of trees and random features, and
the best results were obtained with 10 trees and 5 random
features. The SVM classifier has been tested with different
kernels, i.e. linear, polynomial and radial basis function.
The best performance was obtained by using a second de-
gree polynomial kernel, but very closely followed by the
linear and RBF kernels. The Vote meta-classifier is con-
figured to consider the decisions of the other five classi-
fiers with a majority voting rule. In addition, we created a
baseline rule for each dimension (named Majority), which
marks all relations with the majority class label. This is due
to the highly skewed data present in the corpus.
The learners have been trained on a large feature set, in-
cluding the clues mentioned above. Lexical features are the
most important, as they provide direct information to clas-
sifiers. Besides the surface expression of the tokens, we
also include their lemmata, which is justified by the need
of generalisation: some inflected lexemes may occur very
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rarely (if at all) in the limited amount of training data, and,
in a real-world deployment, a learner may be perplexed
when encountering them. The tokenisation and lemmatisa-
tion steps are performed by employing the GENIA tagger
(Tsuruoka et al., 2005) trained on MEDLINE. Having bi-
nary features that flag the presence of negation particles or
modal verbs helps ML algorithms make better decisions.
Furthermore, syntax provides good support for the gener-
alisation of triggers and their associated meta-knowledge.
These are extracted from automatic parses created by the
Enju system (Miyao and Tsujii, 2008) trained on GENIA.
Syntactic features include the part-of-speech tag and syn-
tactic category, as well as dependency, constituency and c-
command information. C-command features, based on the
definition of Barker and Pullum (1990), indicate whether a
causal trigger c-commands, S-commands or VP-commands
constituents containing relevant cues.
Besides lexical and syntactic features, the algorithms have
learned using a semantic layer of annotations. These come
from the gold standard named entities and events that are
already present in the BioCause corpus, augmented with
new information automatically obtained from UMLS (Bo-
denreider, 2004), OSCAR (Jessop et al., 2011), NeMine
(Nobata et al., 2009), and EUPMC1.
All features have been extracted from a context window
spanning the full sentence in which the trigger is located.
We built separate models for each MK dimension, all of
which have been 10-fold cross validated. The main results
are given in Table 4. These represent the macro-average
F-scores only. However, due to the skewed data, we also
provide micro-average F-scores in the discussion of each
individual dimension.

Algorithm KT Certainty Polarity Source
Majority 18.15% 21.53% 49.72% 47.51%
SVM 36.31% 87.40% 84.02% 68.25%
RandFor 34.76% 83.53% 79.97% 73.77%
JRip 29.28% 77.92% 84.02% 71.52%
J48 25.45% 83.75% 49.72% 47.51%
N. Bayes 32.96% 77.49% 61.17% 62.35%
Vote 41.69% 84.62% 79.97% 70.87%

Table 4: Macro-average F-scores achieved by various learn-
ers per each MK dimension.

4.2.1. Knowledge type
Table 5 lists the detailed performance of the employed clas-
sifiers in the task of detecting the Knowledge Type of causal
relations. It includes the macro-average precision, recall
and F-score, as well as the micro-average F-score. The
large difference between the two scores comes from the fact
that this is a five-way classification, corresponding to the
five subdimensions of KT, and that the data is very skewed
across these five subdimensions.
As can be noticed, all classifiers perform better than the
baseline in a macro-average setting. However, in a micro-
average context, Naı̈ve Bayes is confused by the data im-
balance and is outperformed by the Majority rule by al-

1http://europepmc.org/

Algorithm ma P ma R ma F1 mi F1

Majority 16.62% 20.00% 18.15% 75.40%
SVM 39.94% 33.38% 36.31% 82.60%
RandFor 39.12% 31.28% 34.76% 82.20%
JRip 40.96% 22.78% 29.28% 77.60%
J48 27.50% 23.68% 25.45% 77.90%
N. Bayes 30.52% 35.82% 32.96% 74.50%
Vote 54.64% 33.70% 41.69% 83.80%

Table 5: Performance of various classifiers in identifying
the Knowledge Type of causal relations.

most 1%. The best performing classifier is the Vote meta-
classifier, which reaches 83.80% micro-average F-score
and 41.69% macro-average F-score. It also obtains the best
precision and recall amongst all classifiers, in both macro-
and micro-average settings.
Most errors arise because of the skewed distribution of the
labels. For instance, for Vote, there are only eight false
negatives for the Analysis label, but 82 false positives are
generated. The two instances in the Investigation label are
erroneously assigned to Analysis. This proves the tendency
of the classifiers to assign most instances from minority
classes to the majority class.

4.2.2. Certainty
A detailed account of the performance of the classifiers is
given in Table 6. Unlike in the case of Knowledge type,
the difference between macro- and micro-average is much
smaller. This is due to the fact that there are only three
possible labels that a classifier can assign.

Algorithm ma P ma R ma F1 mi F1

Majority 15.90% 33.33% 21.53% 47.70%
SVM 89.20% 85.67% 87.40% 90.90%
RandFor 88.00% 79.50% 83.53% 87.70%
JRip 91.40% 67.90% 77.92% 87.70%
J48 87.27% 80.50% 83.75% 81.30%
N. Bayes 76.03% 79.00% 77.49% 83.70%
Vote 87.33% 82.07% 84.62% 88.60%

Table 6: Performance of various classifiers in identifying
the Certainty of causal relations.

The best results are obtained by the SVM classifier, which
reaches 90.90% micro F-score and 87.40% macro F-score.
Class L1 is recognised with the lowest precision and re-
call amongst the three classes, due to its low number of
instances. The low scores of Naı̈ve Bayes and J48 damages
the performance of the Vote meta-classifier, which is the
second best amongst all algorithms.
The most important features for this dimension are, as ex-
pected, the certainty clues previously described. The fact
that triggers contain words such as may, probably, suggest
or can is a good indicator for the correct certainty level.
Many of the error cases happen between the two uncertain
classes, L1 and L2. It is usually the case that L1 relations
are wrongly classified as L2. Furthermore, there are several
instances of mostly L2, but also L1, classified as L3 and
vice-versa. For instance, in example (2), the causal relation
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is speculated, but the model decided that it is certain and
belongs to L3.

(2) [32] has shown that mutation of phosphotransferase sys-
tem (PST) in extraintestinal pathogenic E. coli (ExPEC)
can cause the loss of its colonization ability in extraintesti-
nal organs, and bacteria are cleared rapidly from the blood-
stream.

4.2.3. Polarity
The Polarity of causal relations is the most correctly recog-
nised MK dimension amongst all four in terms of micro-
average F-score, and the results for it are shown in Table 7.
This is due to the fact that this dimension has the most
skewed label distribution of all: 9 negative to 791 positive
instances. As a consequence, the baseline is very high as
well, reaching 98.30% micro F-score, but just under 50%
macro F-score.

Algorithm ma P ma R ma F1 mi F1

Majority 49.45% 50.00% 49.72% 98.30%
SVM 91.40% 77.75% 84.02% 99.30%
RandFor 89.70% 72.15% 79.97% 99.10%
JRip 91.40% 77.75% 84.02% 99.30%
J48 49.45% 50.00% 49.72% 98.30%
N. Bayes 58.90% 81.65% 61.17% 97.30%
Vote 89.70% 72.15% 79.97% 99.10%

Table 7: Performance of various classifiers in identifying
the Polarity of causal relations.

The best overall results are obtained by SVM and JRip, in
both macro- and micro-average settings. However, amongst
all classifiers, Naı̈ve Bayes manages to identify correctly
most of the minority class instances, reaching a recall of
66.67%. In contrast, its recall for positive instances and
precision for negative instances are the lowest, fact which
affects the final micro-F-score, making it perform worse
than the baseline rule in a micro setting. In addition, the
low performance of Naı̈ve Bayes, as well as that of J48,
influence negatively the result of the Vote meta-classifier,
which gets the second best result.
The most salient features are the placement of negation par-
ticles in the vicinity of triggers. This leads to some error
cases arising from those triggers which are negated not by
the use of negating particles (e.g., not), but by using inher-
ently negative triggers, such as in example (3). The verb
rule out implicitly suggests a negative polarity. However,
the sparse data in what regards relations negated by such
means affects its correct recognition.

(3) Therefore, the DNA-induced resistance of biofilms re-
quires both the cultivation and challenge under cation-
limiting conditions.
These latter two observations rule out the possibility that
negatively charged DNA simply interacts with cationic an-
timicrobial peptides and prevents their access to bacterial
cells.

4.2.4. Source
The results of the classifiers in the case of the Source of
causal relations are shown in Table 8. The best micro per-
formance is achieved by the JRip classifier, at 90.20% F-
score, whilst the best macro result is obtained by Random
Forest, at 73.77%. The difference between these two clas-
sifiers is not that large, being less than 2% for macro and
just 0.40% for the micro F-score. The main problem of
these two classifiers is the low recall for the Other label,
which is under-represented when compared to the Current
label. The best recall for this class is achieved by Naı̈ve
Bayes, which captures 47.40% of its instances. However,
thr precision drops significantly to only 24%, whilst JRip
and Random Forest reach up to 80%.
Most errors occur when instances of Other are classified as
Current.

Algorithm ma P ma R ma F1 mi F1

Majority 45.25% 50.00% 47.51% 86.00%
SVM 77.30% 61.10% 68.25% 89.60%
RandFor 86.15% 64.50% 73.77% 89.80%
JRip 84.30% 62.10% 71.52% 90.20%
J48 45.25% 50.00% 47.51% 86.00%
N. Bayes 59.00% 66.11% 62.35% 83.40%
Vote 84.85% 60.85% 70.87% 89.90%

Table 8: Performance of various classifiers in identifying
the Source of causal relations.

5. Conclusions and Future Work
This paper has described our approach to the enrichment
of the BioCause corpus, which contains discourse causality
associations, with meta-knowledge information. This type
of contextual information regarding causal relations is cru-
cial for their correct interpretation. Modifiers such as not
and might completely alter the meaning and certainty of a
relation, especially when placed in the context of a network
of causal relations. Furthermore, it is important to recog-
nise what type of knowledge the causal relations refer to
and whether it is new or old knowledge. This helps the cre-
ation of new, testable hypotheses and the assignment of lit-
erature support to those relations which contain references.
We have adapted an existing meta-knowledge annotation
scheme designed for biomedical events to the needs of dis-
course analysis. The annotation has been performed by two
humans, and the inter-annotator agreement between them is
high, ranging between 0.89 and 0.95 Kappa.
A manual analysis of how causality associations are ex-
pressed in the biomedical domain has been performed. This
brought light into what phrases are used to convey negation,
uncertainty, various knowledge types and source of state-
ments.
Additionally, machine learners have been trained to auto-
matically identify the value of each MK dimension for each
causal relation. The algorithms base their decisions on a
mixture of lexical, syntactic and semantic features, most
of which are produced from automatic parses by off-the-
shelf systems. Considering the skewness of the data, the
classifiers perform reasonably well. SVM obtains the best
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scores in the case of Certainty and Polarity, whilst Ran-
dom Forest is the best at recognising the Source dimension.
The best model for Knowledge Type considers all five algo-
rithms combined by the Vote meta-classifier. Since the data
is so sparse for some dimensions, more would be welcomed
in order to be able to create more accurate models.
As future work, we plan to include in the annotation the
24 full-text articles from the BioDRB corpus. The larger
amount of data will most likely provide a better understand-
ing of the role played by meta-knowledge in biomedical
scientific discourse analysis and how it can help improve
automatic discourse analysis.
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