
ClearTK 2.0: Design Patterns for Machine Learning in UIMA

Steven Bethard1, Philip Ogren2, Lee Becker2
1University of Alabama at Birmingham, Birmingham, AL, USA

2University of Colorado at Boulder, Boulder, CO, USA
bethard@cis.uab.edu, ogren@colorado.edu, lee.becker@colorado.edu

Abstract
ClearTK adds machine learning functionality to the UIMA framework, providing wrappers to popular machine learning libraries, a rich
feature extraction library that works across different classifiers, and utilities for applying and evaluating machine learning models. Since
its inception in 2008, ClearTK has evolved in response to feedback from developers and the community. This evolution has followed
a number of important design principles including: conceptually simple annotator interfaces, readable pipeline descriptions, minimal
collection readers, type system agnostic code, modules organized for ease of import, and assisting user comprehension of the complex
UIMA framework.

Keywords: NLP frameworks, machine learning, UIMA

1. Introduction
The Unstructured Information Management Architecture
(UIMA) framework for developing natural language pro-
cessing pipelines has grown in popularity since it was open-
sourced by IBM in 2005. More recently, UIMA has gained
recognition as the underlying architecture of the IBM Wat-
son system that defeated human champions in the game
show Jeopardy! (Ferrucci et al., 2010). However, the frame-
work only establishes an architecture for connecting NLP
components and does not directly support constructing ma-
chine learning classifiers based on sets of features.
The ClearTK framework1 was introduced to address this gap
(Ogren et al., 2008; Ogren et al., 2009) by providing:

• A common interface and wrappers for popular machine
learning libraries such as SVMlight, LIBSVM, LIB-
LINEAR, OpenNLP MaxEnt, and Mallet.

• A rich feature extraction library that can be used with
any of the machine learning classifiers. Under the cov-
ers, ClearTK understands each of the native machine
learning libraries and translates features into a format
appropriate to whatever model is being used.

• Infrastructure for using and evaluating machine learn-
ing classifiers within the UIMA framework.

Since its inception in 2008, ClearTK has been adopted by
multiple developers worldwide in both academia and indus-
try (including University of Colorado, Technische Univer-
sität Darmstadt, Apache cTAKES, Thomson Reuters, and
3M) and has been employed on diverse domains including
clinical text, social media and student writing. ClearTK has
been downloaded over 1700 times in just the past year, the
project site receives over 100 new visits a month, and 78
developers have starred the project in Google Code. This
growing user and developer base has provided a wealth of
feedback that has led to a large number of changes. In
this paper, we reflect on key lessons learned over the last 5
years, and how they generally inform the design of natural
language processing frameworks.

1http://www.cleartk.org/

2. Annotators should be conceptually simple
A core aspect of UIMA is the Annotator, which provides
a process method that inspects the document (a JCas in
UIMA), performs analyses, and stores resulting annotations.
This is a familiar construct, even to novice UIMA users,
as there are analogs in other frameworks, e.g. Stanford
CoreNLP’s CoreMap2 and GATE’s Document (Cunning-
ham et al., 2011). Our experience suggests that annotators’
process methods should orchestrate the core analysis code
in ways that are as straightforward and intuitive as possi-
ble. ClearTK in previous iterations has suffered from over-
abstraction of analysis code away from the process method –
resulting in difficult to understand code.
In the first versions of ClearTK, developers were required
to write two separate annotators: one for writing training
data and another for classification. In practice, the bulk
of the code in both annotators shared the same feature ex-
traction steps. Consequently, this overlapping functionality
was structured to remove this redundancy. The first version
of this abstraction used a call-back approach where users
only had to implement the feature extraction code. However,
users found the call-back style unintuitive as it diverged
heavily from the UIMA process conventions. Thus we
redesigned this abstraction into ClassifierAnnotator,
which allows users to write their feature extraction code in
the standard process method, but requires them to handle
two cases: training mode and classification mode. An ex-
ample of such an annotator is shown in Figure 1. Though
the change to ClassifierAnnotator requires additional
coordination within a single annotator, it is conceptually
simpler to learn.
We learned a similar lesson in designing an API for
Begin-Inside-Outside (BIO) style chunking classifica-
tion. The original approach consisted of a subtype of
ClassifierAnnotator that abstracted away aspects of
chunking, such as feature extraction and converting la-
bels from token-based chunk-based and back, into separate
classes that were dynamically loaded at instantiation time.
In ClearTK 1.2 we replaced this architecture with a set of
simple utility objects for converting between chunk labels

2http://nlp.stanford.edu/software/corenlp.shtml

3289



public class NamedEntityChunker extends CleartkSequenceAnnotator<String> {
...
private BioChunking<Token, NamedEntityMention> chunking = new BioChunking<>(

Token.class, NamedEntityMention.class, "mentionType");
...
public void process(JCas jCas) throws AnalysisEngineProcessException {

for (Sentence sentence : JCasUtil.select(jCas, Sentence.class)) {
// extract features for each token in the sentence
List<Token> tokens = JCasUtil.selectCovered(jCas, Token.class, sentence);
List<List<Feature>> featureLists = new ArrayList<>();
for (Token token : tokens) {
List<Feature> features = new ArrayList<>();
features.addAll(this.extractor.extract(jCas, token));
features.addAll(this.contextExtractor.extract(jCas, token));
featureLists.add(features);

}
// during training, convert NamedEntityMentions in the CAS into expected classifier outcomes
if (this.isTraining()) {
// extract the gold (human annotated) NamedEntityMention annotations
List<NamedEntityMention> namedEntityMentions = JCasUtil.selectCovered(

jCas, NamedEntityMention.class, sentence);
// convert the NamedEntityMention annotations into token-level BIO outcome labels
List<String> outcomes = this.chunking.createOutcomes(jCas, tokens, namedEntityMentions);
// write the features and outcomes as training instances
this.dataWriter.write(Instances.toInstances(outcomes, featureLists));

}
// during classification, convert classifier outcomes into NamedEntityMentions in the CAS
else {
// get the predicted BIO outcome labels from the classifier
List<String> outcomes = this.classifier.classify(featureLists);
// create the NamedEntityMention annotations in the CAS
this.chunking.createChunks(jCas, tokens, outcomes);

}
}

}
}

Figure 1: The process method of a CleartkAnnotator for BIO-chunking

and tokens labels, allowing for direct use of chunking within
a standard process method (as shown in Figure 1) without
need for specialized implementations of interfaces.

3. Pipelines should look like pipelines
Once a user has developed a number of annotators, they
typically string them together in a pipeline, indicating the se-
quence in which these annotators analyze a text. In ClearTK,
users develop a variety of pipelines for different tasks such
as training classifiers, making predictions with trained clas-
sifiers, testing classifier predictions against a gold standard,
etc. Our experience suggests that pipeline-based code should
be structured to make it easy to quickly understand what
annotators are running in what order.
Consider the case of model training and evaluation.
ClearTK’s first abstraction separated evaluation into various
classes and methods:

• The reader that loaded the training and testing data

• The preprocessing portion of a pipeline

• The classifier training portion of a pipeline

• The classifier prediction portion of a pipeline

• The evaluation portion of a pipeline

These items are easily separable and splitting them reduced
code duplication. (For example, the preprocessing portion
of the pipeline would be identical for training and testing).
However, because each of these items was implemented in a
different class or method, it was often difficult for a reader
to understand the big picture of what exactly was running in

each pipeline. In ClearTK 1.2, we simplified this abstraction,
resulting in a single evaluation class with just three methods
that must be defined:

1. Read a subset of data with a CollectionReader

2. Train a model given a CollectionReader

3. Test a model given a CollectionReader

A partial example of such an evaluation class is shown in
Figure 2. In exchange for some duplication (e.g. if training
and testing used the same preprocessing) developers are
rewarded with more interpretable, self-contained pictures of
the training and testing pipelines.
Feature transformation (e.g. normalizing feature values to
z-scores or scaling term counts by inverse document fre-
quency) is another example of structuring concerns around
pipelines. In early versions of ClearTK, these kinds of
transformations required running a specialized pipeline sep-
arately before the real pipeline to collect the sufficient statis-
tics. This was confusing to users because (1) two pipelines
were required for what was conceptually a single pipeline
and (2) feature transformations conceptually happen after
training data is written, not before. ClearTK 1.2 introduced
TrainableFeatureExtractors where a user instead:

• Runs the original pipeline for writing training data.
The TrainableFeatureExtractor will flag fea-
tures that need additional post-processing.

• Ends the pipeline with an InstanceDataWriter that
serializes the features for re-use.

3290



public class EvaluateNamedEntityChunker extends
Evaluation_ImplBase<File, AnnotationStatistics<String>> {

...
protected CollectionReader getCollectionReader(List<File> files) throws Exception {

return CollectionReaderFactory.createReader(UriCollectionReader.getDescriptionFromFiles(files));
}
...
public void train(CollectionReader collectionReader, File outputDirectory) throws Exception {

// assemble the training pipeline
AggregateBuilder aggregate = new AggregateBuilder();
// an annotator that loads the text from the training file URIs
aggregate.add(UriToDocumentTextAnnotator.getDescription());
// an annotator that parses and loads MASC named entity annotations (and tokens)
aggregate.add(MascGoldAnnotator.getDescription());
// an annotator that adds part-of-speech tags
aggregate.add(PosTaggerAnnotator.getDescription());
// our NamedEntityChunker annotator, configured to write Mallet CRF training data
aggregate.add(AnalysisEngineFactory.createEngineDescription(

NamedEntityChunker.class,
CleartkSequenceAnnotator.PARAM_IS_TRAINING,
true,
DirectoryDataWriterFactory.PARAM_OUTPUT_DIRECTORY,
outputDirectory,
DefaultSequenceDataWriterFactory.PARAM_DATA_WRITER_CLASS_NAME,
MalletCrfStringOutcomeDataWriter.class));

// run the pipeline over the training corpus
SimplePipeline.runPipeline(collectionReader, aggregate.createAggregateDescription());
// train a Mallet CRF model on the training data
Train.main(outputDirectory);

}
...

}

Figure 2: The getCollectionReader and train methods of a ClearTK evaluation class

• Invokes the TrainableFeaturesExtractor’s
train method on the serialized features to store
sufficient statistics.

• Uses the original data writer on the transformed fea-
tures to write out training data for a classifier.

We found that this approach aligned better with the concep-
tual expectations of our users.

4. Collection readers should be minimal
In UIMA, a CollectionReader is the connection be-
tween the source (file, URL, etc.) and the UIMA docu-
ment (JCas) object. Early versions of ClearTK used the
CollectionReader mechanism to both read in the text
and import various annotation formats (TreeBank, Prop-
Bank, etc.).
However, as ClearTK developed support for importing
more annotation formats, it became clear that this ap-
proach was problematic. UIMA allows only a single
CollectionReader at the beginning of each pipeline, so
you cannot, for example, have both a CollectionReader
for TreeBank and one for TimeML in the same pipeline,
even if both layers of annotation exist for your document.
The solution to this problem is to view these TreeBank
and TimeML readers not as CollectionReaders, but as
regular UIMA annotators whose process(JCas) method
utilizes external resources (e.g. a .mrg or a .tml file) to
produce annotations to be added to the JCas.
ClearTK now recommends only one CollectionReader,
URICollectionReader, which does nothing more than
create a JCas containing the source’s Uniform Resource
Identifier (URI). Reading the text or annotations over the
text is the responsibility of subsequent annotators. This

approach to developing readers has several advantages, in-
cluding more parallizable pipelines (which UIMA-AS can
take advantage of) and added accessibility by leveraging
users’ existing familiarity with UIMA annotators. Figure 2
shows an example usage of URICollectionReader.

5. Code should be type system agnostic
All UIMA annotators must declare a type system, which
defines the annotations and attributes that an annotator may
add to documents. Due to varying requirements imposed by
different domains and use cases, there is not yet a generally
agreed upon NLP type system for UIMA, and thus many
UIMA annotators cannot be combined easily. In ClearTK,
we have always been careful to decouple the machine learn-
ing framework from the type system. All of the machinery
for creating classifier-based annotators including feature
extraction, feature normalization, chunking, training, classi-
fication, etc. is completely type system independent.
However, other parts of ClearTK do depend on a specific
type system, e.g. for reading different annotations from
corpora, for wrapping the output produced by non-UIMA
annotators, and for constructing state-of-the-art systems like
ClearTK-TimeML (Bethard, 2013). It is quite difficult to
write a truly type-system agnostic UIMA annotator. For
example, the OpenNLP UIMA annotators are intended to be
type system agnostic, but in fact make type-system specific
assumptions, like representing the part-of-speech as a string-
valued attribute of a token annotation. To avoid this level
of specific type system dependence, we have found it to be
necessary to define interfaces for the various operations on
tokens, sentences, parses, etc. Such an approach has been
implemented in ClearTK 2.0’s wrappers for ClearNLP, and
we plan to extend this to other areas in the future.

3291



6. Modules should match natural subsets
ClearTK provides many different types of utilities (machine
learning wrappers, readers for various corpora, UIMA wrap-
pers for non-UIMA components like MaltParser or Stanford
CoreNLP, etc.) and so it has been necessary to split ClearTK
up into a small number of modules to allow users to depend
on only those parts of ClearTK that they need. In early ver-
sions of ClearTK, we structured these based on the types of
annotations being processed, e.g. code for reading PennTree-
bank trees was put into the same module as our wrapper for
OpenNLP’s parser. The idea was that if you were working
on, say, parsing, you would want access to all the different
parsing algorithms. However, we found that this approach
did not scale. For example, very few users would want to in-
clude all of OpenNLP, MaltParser, BerkeleyParser, Stanford
CoreNLP, etc. just to read trees from a PennTreebank file.
ClearTK 1.2 restructured the modules to match the natural
subsets of ClearTK functionality:

• Type system agnostic machine learning libraries and
feature extractors

• ClearTK’s version of a UIMA type system for NLP

• Feature extractors based on the ClearTK type system
(e.g. paths through constituency trees)

• Readers for various corpora, based on the ClearTK type
system

• Wrappers for non-UIMA components, based on the
ClearTK type system

We have found that this structure better matches the concep-
tual dependencies of ClearTK, and better enables ClearTK
users to use only the parts they want.

7. Users need help past the UIMA overhead
After the many improvements to ClearTK interfaces and
usability over the years, we have now reached a point where
much of the overhead of learning ClearTK is actually the
overhead of learning UIMA. To understand the UIMA frame-
work, you need to understand not just how to write an an-
notator with a process(JCas) method – which is what is
really at the heart of the framework – but also how to:

• Declare a type system that describes the annotations
you want your annotator to create

• Configure your build system to generate Java classes
from the type system

• Create code to read your training data into JCas objects

• Declare (using XML files or Java annotations) any pa-
rameters needed to initialize your annotator

• Create an AnalysisEngine object from your annota-
tor and the initialization parameters

• etc.

These tasks are fairly easy for a UIMA expert, but are of-
ten challenging and overwhelming for a new UIMA user.
Thus, to get new potential users of ClearTK up to speed, we
have found it helpful to have a UIMA expert put the above
items together. Then, the new users can focus on the core
problems that ClearTK is designed for: extracting features
and using the classifier in the process(JCas) method of
the annotator. We applied exactly this approach with new
users of ClearTK, and successfully developed both a student
response analysis system for SemEval-2013 (Okoye et al.,
2013), and a relation extraction system for Apache cTAKES
(Dligach et al., 2013).

8. Discussion
The development of the ClearTK framework has revealed
a number of key design patterns for NLP frameworks that
can help new users to more quickly understand and adopt a
framework. At their core, these patterns suggest aiming for
intuitive interfaces that leverage existing user knowledge,
and trying to minimize the number of conceptual dependen-
cies between the various parts of the framework.
While the design patterns discussed here are driven by the
specific needs of the ClearTK framework as it integrates
machine learning into UIMA, we believe that these patterns
could be generally useful across NLP frameworks such as
Stanford CoreNLP, GATE and NLTK (Bird et al., 2009).
For example, while Stanford CoreNLP does well from the
perspective of having a simple annotator interface and en-
couraging readable pipelines, it does not support type sys-
tem agnostic code – all code using Stanford CoreNLP must
translate to and from a fixed set of annotation types. Or, for
example, while NLTK does well at arranging its modules
to allow users to import only the parts of NLTK that they
need, a lot of functionality is packaged into the corpus read-
ers rather than providing generic corpus parsing annotators
that can be easily combined. These are not serious flaws
that would prevent the use of any of these frameworks, but
are potential avenues for improvement as the frameworks
themselves evolve.

9. Acknowledgements
This research was supported in part by the Strategic
Health IT Advanced Research Projects (SHARP) Program
(90TR002) from the Office of the National Coordinator
for Health Information Technology, and by Grant Number
R01LM010090 from the National Library Of Medicine. The
content is solely the responsibility of the authors and does
not necessarily represent the official views of the Office
of the National Coordinator for Health Information Tech-
nology, the National Library Of Medicine or the National
Institutes of Health.

10. References
Bethard, S. (2013). ClearTK-TimeML: A minimalist ap-

proach to TempEval 2013. In Second Joint Conference on
Lexical and Computational Semantics (*SEM), Volume
2: Proceedings of the Seventh International Workshop
on Semantic Evaluation (SemEval 2013), pages 10–14,
Atlanta, Georgia, USA, June. Association for Computa-
tional Linguistics.

3292



Bird, S., Klein, E., and Loper, E. (2009). Natural Language
Processing with Python. O’Reilly Media.

Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.,
Aswani, N., Roberts, I., Gorrell, G., Funk, A., Roberts,
A., Damljanovic, D., Heitz, T., Greenwood, M. A., Sag-
gion, H., Petrak, J., Li, Y., and Peters, W. (2011). Text
Processing with GATE (Version 6).

Dligach, D., Bethard, S., Becker, L., Miller, T., and Savova,
G. K. (2013). Discovering body site and severity modi-
fiers in clinical texts. Journal of the American Medical
Informatics Association, pages amiajnl–2013.

Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek,
D., Kalyanpur, A. A., Lally, A., Murdock, J. W., Ny-
berg, E., Prager, J., Schlaefer, N., and Welty, C. (2010).
Building watson: An overview of the DeepQA project.
AI Magazine, 31(3):59–79, July.

Ogren, P. V., Wetzler, P. G., and Bethard, S. (2008).
ClearTK: A UIMA toolkit for statistical natural language
processing. In Towards Enhanced Interoperability for
Large HLT Systems: UIMA for NLP workshop at Lan-
guage Resources and Evaluation Conference (LREC), 5.

Ogren, P. V., Wetzler, P. G., and Bethard, S. J. (2009).
ClearTK: a framework for statistical natural language pro-
cessing. In Unstructured Information Management Archi-
tecture Workshop at the Conference of the German Society
for Computational Linguistics and Language Technology,
9.

Okoye, I., Bethard, S., and Sumner, T. (2013). CU: Compu-
tational assessment of short free text answers - a tool for
evaluating students’ understanding. In Second Joint Con-
ference on Lexical and Computational Semantics (*SEM),
Volume 2: Proceedings of the Seventh International Work-
shop on Semantic Evaluation (SemEval 2013), pages 603–
607, Atlanta, Georgia, USA, June. Association for Com-
putational Linguistics.

3293


