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Abstract
In this paper, we describe and analyze a corpus of speech data that we have recorded in multiple modalities simultaneously: facial
motion via optical motion capturing, tongue motion via electro-magnetic articulography, as well as conventional video and high-
quality audio. The corpus consists of 320 phonetically diverse sentences uttered by a male Austrian German speaker at normal,
fast and slow speaking rate. We analyze the influence of speaking rate on phone durations and on tongue motion. Furthermore, we
investigate the correlation between tongue and facial motion. The data corpus is available free of charge for research use, including
phonetic annotations and a playback software which visualizes the 3D data, from the website http://cordelia.ftw.at/mmascs
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1. Introduction
For data-driven speech technology research, training cor-
pora of speech data are an essential asset that is often
created and used by research groups when required, but
less often made available for the general research commu-
nity. The creation of high-quality annotated corpora is a
highly time-consuming and hence expensive task. This is
true to an even larger extent when multiple modalities are
recorded simultaneously, because of the additional require-
ment of synchronization between the different modalities.
Furthermore, it can be argued that corpora including data
acquired using special hardware, like motion capturing and
especially Electro-Magnetic Articulography (EMA), have
an even greater value because the equipment itself and the
know-how to operate it are required for recording. To our
knowledge, there are only two corpora of EMA data avail-
able free of charge, both from the University of Edinburgh
(Wrench, 1999; Richmond et al., 2011). As far as speech
motion capture data is concerned, there is for example a
corpus of 10 speakers in affective dyadic interaction in
American English (Busso et al., 2008), and we have also
previously created a corpus of read speech from three Aus-
trian German speakers with facial motion capturing (Sch-
abus et al., 2012a)1. Recently, we have recorded a new in-
teresting corpus of speech data where both EMA and mo-
tion capturing data were recorded at the same time, which
we would like to share with the research community.
This new corpus differs from the existing ones in several
aspects. Most importantly, it combines facial motion cap-
ture data with intra-oral EMA data. In comparison to op-
tical motion capturing only, this has the obvious advantage
of also providing tongue motion data, which is impossible
to capture optically. In comparison to EMA data only, it

1That corpus is available from the website at http://
cordelia.ftw.at/fmsc

has the advantage of providing a larger number of tracked
points on the lips, eyelids, eyebrows and other areas of the
face. While it is in principle possible to use EMA coils also
on the face surface, the inexpensive and easy-to-attach op-
tical markers are much less intrusive for the speaker than
the EMA coils with their cable connection (one cable per
coil) to the articulograph. Another difference is that our
data is for Austrian German speech. One can imagine that
it might be interesting to investigate inter-lingual differ-
ences in speech motion, once a larger number of corpora
(of EMA and/or facial motion data) in various languages is
available (of course speaker-specific effects would need to
be accounted for). Finally, our data is different in that it
comprises data of speech at three different speaking rates
(normal, fast and slow).

In addition to general analytic usages, this corpus could be
useful for other fields of research. We have been investi-
gating 3D facial speech motion synthesis based on facial
motion capturing data (Schabus et al., 2011; Schabus et al.,
2012b; Schabus et al., 2013; Schabus et al., 2014), where
the additional tongue data could be used to train an ad-
ditional synthesizer for tongue motion, as in (Beskow et
al., 2003). Cross-modality control models for speech syn-
thesis, which have been investigated using EMA data and
speech (Ling et al., 2008; Ling et al., 2009) and using fa-
cial motion data and speech (Hollenstein et al., 2013) could
benefit from the usage of all three modalities in combina-
tion. Finally, we have used speech data at normal and fast
speaking rates before to create ultra-fast synthetic speech
via interpolation (Pucher et al., 2010). Incorporating addi-
tionally face and tongue motion data into such a system for
ultra-fast speech could improve modeling and hence syn-
thesis results.

The remainder of this paper is organized as follows. In Sec-
tion 2., we describe the recording procedure and the result-
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ing data corpus. In Section 3. we give information about the
form of the release, as well as about a 3D data visualization
software, which is part of the release package. Section 4.
provides some statistical information and data analysis re-
sults for the corpus. Finally, Section 5. summarizes and
concludes this paper.

2. Recordings
We have recorded a 30-year old male native speaker of Aus-
trian German reading 320 phonetically diverse sentences
off a computer screen. The recordings took place at the
premises of Ludwig-Maximilians-Universität in Munich,
inside a Studio Box Premium (Studiobox, 2014) record-
ing booth. 223 sentences of the recording script are from
a well-known German text corpus (100 “Berlin” sentences,
100 “Marburg” sentences, 16 “Buttergeschichte” sentences,
7 “Nordwind und Sonne” sentences). The remaining 97
sentences were selected automatically from a large news-
paper text corpus based on the improvement caused when
added to the selection with respect to the representation of
the diphone occurrence distribution in the entire large cor-
pus.
Facial movement was recorded using a NaturalPoint Opti-
Track Expression system (Naturalpoint, 2014) using seven
FLEX:V100R2 infrared cameras. This system records the
3D position of 37 reflective markers glued to the speaker’s
face at 100 Hz. Four additional markers on a headband al-
low the removal of rigid head motion. Additionally, the
system also records frontal-view gray scale video footage,
also at 100 Hz (synchronized), at a resolution of 640×480
pixels. The system’s standard 37 marker layout was used,
as depicted in Figure 1.
Articulatory movement was recorded with a Carstens
Medizinelektronik Articulograph AG501 (Carstens Medi-
zinelektronik, 2014) EMA system. In contrast to its prede-
cessor AG500, the AG501 does not feature an acrylic glass
cube around the speaker’s head, which rendered simultane-
ous optical marker recording impossible. The AG501 pro-
duces alternating magnetic fields, thus inducing currents in
the sensor coils attached to the speaker’s tongue and mouth.
The currents are transmitted via a cable from each sen-
sor to the measurement unit, where they are measured and
recorded. From these measurements, the system’s software
computes the 3D position of each sensor coil at 250 Hz.
Articulatory sensors were placed on the back, middle and
tip of the tongue, on the gums above the incisors and on
the nasal bridge (all five on the mid-sagittal plane). Two
more sensors were placed behind the ears, and finally an
eighth sensor was placed on the lower lip, between the cen-
tral lower lip and right lower lip markers of the OptiTrack
system. Figure 1 shows the position of most EMA sensors.
Using the sensors on the nasal bridge, above the incisors
and behind the ears, rigid head motion can be removed
from the data. The EMA data was filtered using a finite
impulse response low pass filter (Kaiser window) with cut-
off frequencies of 40 Hz (tongue tip), 20 Hz (tongue mid-
dle, tongue back, lower lip), and 5 Hz (behind ears, upper
incisors, nasal bridge).
Audio was recorded with a Sennheiser ME66 supercardioid
microphone, with a John Hardy M1 pre-amplifier. The mi-

Figure 1: Placement of facial markers and EMA coils

(a) (b)

Figure 2: Example still images from the gray scale video
from the OptiTrack system (a) and the color video from the
camcorder (b).

crophone signal as well as the synchronization signals from
the EMA and OptiTrack systems were captured with a Na-
tional Instruments Compact DAQ system at 25600 Hz. Au-
dio is encoded as 32-bit floating point PCM.
Additional video footage was recorded with a Sony DSR-
PD100AP digital camcorder at 25 frames per second (50
fields interlaced) and from an almost frontal view. Figure 2
shows example frames from the two kinds of videos.
All 320 sentences were first recorded at a normal speaking
rate, then again at a fast speaking rate and then again at a
slow speaking rate, in direct succession with short breaks.
Unfortunately, one of the tongue coils disengaged during
the slow part, and the recordings had to be aborted after
130 slow sentences.

3. Release and Playback Software
For the release, the data has been synchronized and cut into
separate files per utterance, in all modalities (audio, video,
EMA data, facial movement data). Phone borders were de-
termined by a flat-start forced alignment procedure using
HTK (Young et al., 2006) and the resulting quin-phone full-
context HTK label files and mono-phone label files are part
of the release. Tracking errors, which are common in op-
tical motion capturing (like marker swaps, trajectory gaps,
etc.) have been manually corrected to a large extent. EMA
data and facial marker data have been aligned in coordi-
nate space based on the position of the markers on the nasal
bridge of the two systems, after rigid head motion has been
removed from both 3D data streams.
The facial motion and EMA data are provided in the form
of text files containing matrices that represent spatial coor-
dinates of markers/coils per row, with one column per time
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Figure 3: Screen shot of 3D data visualization software in-
cluded in the corpus release

frame. Audio data is provided in the form of RIFF wave
audio files, mono channel, 25600 Hz, 16-bit signed inte-
ger PCM encoding. Video data is provided in the form of
H264/AAC MPEG-4 video files.
The release also contains a playback software implemented
in Python using OpenGL, which visualizes the 3D data
(facial markers and tongue coils) and also simultaneously
plays back the corresponding audio. Figure 3 shows a
screen shot of this software.
The corpus is available free of charge for research purposes
from the website http://cordelia.ftw.at/mmascs.

4. Data Analysis
To get a better understanding of the data we have recorded,
this section presents some statistics and analysis results on
the corpus. As already mentioned, we have 320 sentences
for both normal and fast speaking rate, and 130 sentences
for slow speaking rate. For symmetry, all analytics in this
section are based on the 130 sentences which we have avail-
able in all three speaking rates.
Figure 4 shows the distributions of the utterance durations
for the three speaking rates as boxplots, disregarding ini-
tial and terminal silences and intra-utterance pauses. As the
same 130 sentences were used, the figure shows that there is
a significant difference in duration between the three speak-
ing rates.
To quantify the different speaking rates in more depth, we
have looked at the phone durations as determined by the
flat-start forced alignment procedure. Figure 5 shows box-
plots of the phone durations, excluding all silences and
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Figure 4: Boxplots of utterance durations for the three
speaking rates (outliers not shown).
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Figure 5: Boxplots of phone durations for the three speak-
ing rates (outliers not shown).

pauses. The median phone durations for the slow, nor-
mal and fast speaking rate data are 160 ms, 82 ms and
58 ms, respectively, which are equivalent to 375, 732 and
1034 phones per minute, respectively. In addition to the
occurrence of longer phones, the data also show a larger
variability in phone duration with decreasing speaking rate.
Furthermore, when we partition this data by phone, we can
observe that the change of duration between speaking rates
is larger for long vowels and diphthongs than for short vow-
els and stops. This is illustrated in Figure 6, which shows
the duration distributions for some common short and long
vowels.
To achieve a faster speaking rate, i.e., to articulate the same
sequence of phones in a shorter time, three factors can be
modified: 1) the velocity of the articulator movements can
be increased, 2) the distance between the target articulator
positions can be reduced, and/or 3) the duration of phases
with stable articulator position can be shortened. Given the
data of our corpus, the first two are straightforward to as-
sess, and shall be investigated in the following.
Regarding the first factor, we have computed the move-
ment velocities for the three tongue sensors based on the
distance traveled between every two consecutive frames of
the EMA trajectories. Figure 7 shows the distributions of
peak velocities (greatest velocity within a phone) for the
three speaking rates. Although this data may contain some
noise, the increase in tongue motion velocity from slow to
normal and from normal to fast speaking rate is clearly vis-
ible. The same data, but partitioned by phone, is shown in
Figure 9. Again, this data is not completely reliable due to
possible problems in the automatic alignment and possible
tracking errors, and due to the fact that some phones do not
occur very often in the corpus. Nevertheless, it is interest-
ing to see that the order of phones is quite similar across
the three speaking rates when sorted by median (as in Fig-
ure 9). In particular, phones near the close/front corner of
the IPA vowel chart ([i], [i:], [y], [y:], [I], [Y], [e:], [ø:]) and
certain fricatives ([s], [S], [ç]) exhibit low peak velocities
(and thus appear close to the bottom of Figure 9), whereas
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Figure 6: Boxplots of phone durations of some common
short and long vowels, for the three speaking rates (outliers
not shown).
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Figure 7: Boxplots of peak movement velocities of the
three tongue sensors (outliers not shown).

vowels far from the close/front corner ([u:], [U], [o:], [O],
[a]) and diphthongs exhibit high peak velocities (and thus
appear close to the top of Figure 9).
Regarding the second factor, i.e., the influence of speaking
rate on tongue target positions, we have gathered for each
of the three tongue sensors (back, middle and tip of the
tongue) the deviation from its average position, as shown
in the boxplots of Figure 8. The figure shows each of
the x, y and z coordinates separately, which correspond
to the left/right, up/down and front/back directions from
the speaker’s point of view. A slight decrease in positional
variability can be seen for increased speaking rate, suggest-
ing that tongue movement needs to be reduced for faster
speech.
These findings are in line with, e.g., (Flege, 1988), where
increased speaking rate is reported to result from a combi-
nation of both increased movement velocity and decreased
divergence of the tongue from a “centroid” or “rest” posi-
tion.
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back y fast
back y normal
back y slow
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back x slow
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mid z normal
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mid x normal
mid x slow
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tip z normal
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tip y normal
tip y slow
tip x fast
tip x normal
tip x slow

Figure 8: Boxplots of mean-normalized spatial coordinates
of the three tongue sensors (outliers not shown).

Similar to (Yehia et al., 1998; Jiang et al., 2000; Beskow et
al., 2003), we have also looked at how well the tongue mo-
tion data can be predicted from the facial motion data and
vice versa. In a 10-fold cross validation setup, we have
computed a linear regression to predict one tenth of the
tongue (face) data from the corresponding face (tongue)
data, where the other nine tenths of the data are used to
estimate the predictor. Then Pearson’s correlation coeffi-
cients are computed between the predicted and the origi-
nally recorded tongue (face) data. Note that we excluded
the face markers on the eyebrows and eyelids for this anal-
ysis step because their movement can be expected to be un-
related to phone articulation. The average correlation coef-
ficients resulting from this procedure are shown in Table 1.
The results are comparable to the ones of the “Sentences,
3 coils” condition in (Beskow et al., 2003) (tongue from
face: 0.525, face from tongue: 0.357), which is the condi-
tion most similar to our setup. It can be seen that prediction
of tongue motion from face motion is more successful than
prediction in the opposite direction. There does not seem
to be a clear influence of speaking rate on the values in Ta-
ble 1.

Speaking Rate Face from Tongue Tongue from Face

Slow 0.234 0.445
Normal 0.226 0.558
Fast 0.279 0.523

Table 1: Average Pearson’s correlation coefficients be-
tween measured and predicted marker coordinates
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Figure 9: Boxplots of peak movement velocities of the three tongue sensors per phone (outliers not shown), for (a) slow,
(b) normal, and (c) fast speaking rates.

5. Summary and Conclusion

This paper presented the new MMASCS multi-modal an-
notated synchronous corpus of speech, which consists of si-
multaneously recorded facial motion capture data, electro-
magnetic articulography data, audio and video, of an Aus-
trian German speaker reading the same corpus at normal,
fast and slow speaking rate. The data is released free
of charge for research purposes including phonetic labels,
documentation as well as a 3D visualization software to
play back the 3D data.
Our own future work with this corpus will include audio-
visual speech synthesis with tongue modeling, as well as
investigating the benefit of face and tongue data for (audio-

only) synthesis of fast speech. We hope the corpus will
prove useful also for other applications in the speech re-
search community.
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