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Abstract
Kashmiri is a resource poor language with very less computational and language resources available for its text processing. As
the main contribution of this paper, we present an initial version of the Kashmiri Dependency Treebank. The treebank consists
of 1,000 sentences (17,462 tokens), annotated with part-of-speech (POS), chunk and dependency information. The treebank has
been manually annotated using the Pān. inian Computational Grammar (PCG) formalism (Begum et al., 2008; Bharati et al., 2009).
This version of Kashmiri treebank is an extension of its earlier version of 500 sentences (Bhat, 2012), a pilot experiment aimed at
defining the annotation guidelines on a small subset of Kashmiri corpora. In this paper, we have refined the guidelines with some
significant changes and have carried out inter-annotator agreement studies to ascertain its quality. We also present a dependency parsing
pipeline, consisting of a tokenizer, a stemmer, a POS tagger, a chunker and an inter-chunk dependency parser. It, therefore, con-
stitutes the first freely available, open source dependency parser of Kashmiri, setting the initial baseline for Kashmiri dependency parsing.
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1. Introduction
The need for manually annotated linguistic resources
is widely acknowledged in the field of computational
linguistics. Due to their importance for basic as well
as advanced NLP applications, the last decade has seen
nearly an exponential increase in the creation of these
linguistic resources in a wide range of languages. Syntactic
treebank is one such important resource which has seen a
rigorous development among the world languages due to
its widespread usage. A syntactic treebank is, by definition,
a set of syntactic trees capturing the syntactic or semantic
structure of sentences. Creation of these treebanks has
interested both linguists and computational linguists. For
the former, they provide insights about the linguistic theory
they have been built upon, and the later use them for the
development of data driven parsers. Usually, treebanks are
multi-layered. At every layer a separate but related set of
linguistic information is marked. Annotation at the lower
layer facilitates the annotation at the higher layer. In this
way, treebank development follows a pipeline approach,
with different levels of linguistic information annotated
one after the other. In this paper, we setup a treebanking
pipeline for Kashmiri following a treebanking pipeline for
Indian languages. We also present the basic computational
tools used in the pipeline and discuss some of the theoreti-
cal issues concerning the Kashmiri treebanking.

The paper is organized as follows. Section 2 provides a
quick overview of Kashmiri - its genealogy and special
grammatical features. Section 3 describes the Indian Lan-
guage treebanking pipeline. Section 4 discusses annotation
of Kashmiri corpora based on the IL annotation pipeline. It
also discusses the experimentation for the creation of tools
using the treebank data. Finally, Section 5 concludes the
paper with some future directions.

2. About Kashmiri
Kashmiri language belongs to the Dardic sub-group of the
Indo-Aryan family. It is spoken primarily in the Kashmir
Valley, in Jammu and Kashmir. According to the census of
2001, it has approximately 5,632,698 speakers throughout
India and Pakistan. It is one of the 22 scheduled languages
of India1.

Kashmiri is a V2 language like German in which tensed
clauses are subjected to verb second constraint. The finite
verbal element in these clauses always occurs in the sec-
ond position, i.e., the position immediately following the
first phrasal constituent (Hook and Manaster-Ramer, 1985;
Bhatt, 1995; Bhatt, 1999). In the cases where there is an
auxiliary verb carrying tense information, it occupies the
second position in the clause but the main verb occupies
the final position. Consider examples 1 and 2 for an illus-
tration of v2 phenomenon in Kashmiri. In example 1, auxil-
iary chu ‘is’ occupies clause second position while the verb
diwan ‘give’ occurs at the end. Tensed verb dits ‘give’ fol-
lows the first phrasal constituent in example 2.
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1http://en.wikipedia.org/wiki/Kashmiri language

748



Kashmiri is inflectionally rich language. The morpho-
syntactic information, like ’person’, ‘number’, ‘gender’
and ‘case’, is realized through a portmanteau morph.
Among the major word classes, nouns decline for number,
gender and case, and verbs conjugate for tense, aspect and
modality (TAM). Apart from TAM, verbs carry agreement
features of one of their arguments and can also undergo dif-
ferent morphological processes such as passivization and
causativisation. Similar to English, tense information ei-
ther occurs on the main verb or can stand as a free word in
the form of tense auxiliaries.

3. Indian Language Treebanking Pipeline
The dependency treebanks for Indian Languages based
on CPG formalism are developed following a generic
annotation pipeline. The process of treebank development
under the pipeline consists of a series of steps namely (i)
Tokenization, (ii) Morph-Analysis, (iii) POS-tagging, (iv)
Chunking, and (v) Dependency annotation. Annotation
process begins with the tokenization of raw text. The
tokens so obtained during the process are annotated
with morphological and POS tag information in the next
steps. After morph-analysis and POS-tagging locally
dependent contiguous tokens are grouped together into
chunks. The text processing mentioned in these steps
has been automated with the help of a battery of NLP
tools, namely tokenizer, morph analyzer, POS-tagger and
chunker, which have been developed in-house and have
pretty good accuracy. The output of each tool is manually
corrected and validated by human annotators. The final
step in the pipeline is the manual dependency annotation.
Only the inter-chunk dependencies are marked leaving
the intra-chunk dependencies unspecified. The strategy
has been adopted to reduce the time consuming manual
labor which is hallmark of syntactic annotations. The
intra-chunk dependencies are made explicit automatically
at a later stage of the treebank development. This strategy
is motivated by the fact that intra-chunk relations are highly
predictable and can be automated if the chunk boundaries
and the chunk heads are specified.

As aforementioned, we follow the annotation pipeline for
Kashmiri treebanking. We will discuss the development
of various tools used in the pipeline so that the semi-
automated nature of the annotation process can be justified.
The complete toolkit can be downloaded from here2.

3.1. Tokenisation
Tokenisation is a relatively easy task for the languages
written in Roman script. However, the task becomes quite
complex for languages written in other scripts, particularly,
for the languages using persio-arabic script. Persio-arabic
script poses two problems to tokenisation; namely, space
omission and space insertion. A space character has
hardly any significance in visual word identification as a
word boundary marker, thus, it can be omitted altogether.
It is needed to generate the correct typography of a word
(Durrani and Hussain, 2010) which has considerable role

2http://researchweb.iiit.ac.in/ riyaz.bhat/Resources/parser.tar.gz

in readability of the text. However, due to the impact of
technology which, by and large, is itself under the impact
of English, the space character has become more or less a
standard word boundary marker. Therefore, space charac-
ter has now acquired two functions in languages written
in Persio-Arabic script: to separate words and to generate
correct typography. In the current work, following Urdu
treebanking pipeline, text is tokenized using the space
character as word boundary marker. Human annotators,
while validating the output of the morphological analyzer,
correct the wrong segmentation and join the word segments
using underscore “ ” . At a later stage, the underscores
“ ” are replaced with zero width non-joiner character
“ZWNJ”3, which converts the text into its natural form (by
removing the extra “ ” character) and addresses the space
insertion problem. In the future, we will attempt to auto-
mate the identification of words which are split in multiple
tokens for correct typography, so that the text tokenisa-
tion can be made more reliable without human intervention.

3.2. Morph Segmentation
Kashmiri is inflectionally rich language with nouns and
verbs inflecting for different set of grammatical infor-
mation. Nominals inflect for number, gender and case
which are realized through a single portmanteau morph,
e.g. in the noun, insaan-an (human-Erg.SG.M) ‘-an’
is an ergative marker which also carries singularity and
masculinity information with it, hence, a portmanteau
morph. Further, nominal modifiers like demonstratives,
quantifiers and adjectives agree with their head noun
for the number, gender and case, e.g. in the NP, yam-is
ak-is bad-is ladak-as (this-DAT.SG.M one-DAT.SG.M
big-DAT.SG.M boy-DAT.SG.M) all the dependent words
(modifiers) agree with the head ladake ‘boy’ in terms of
number, gender and case information which is condensed
on a single dative marker (-is/-as). Besides the inflec-
tional information, Kashmiri nouns and verbs also have a
derivational morphology (for more details see (Koul and
Wali, 2006)). Therefore, automatic segmentation of such
markers from their roots can be done easily. Similarly,
verbs carry tense, aspect and mood (TAM) information and
show agreement properties. Kashmiri verbs can also be
inflected for emphatic, honorific, negative and interrogative
markers. In addition to these pragmatic markers, the
verbs exhibit an interesting phenomenon of pronominal
cliticization. The clitic may be only subject enclitic,
only object enclitic or both. these clitics show PNG
agreement with the corresponding argument, e.g. shong-us
(slept-1PC.SG.M = I-M slept). Furthermore, Kashmiri
has morphological causatives and passives, i.e. causatives
and passive forms are derived by clean morphological
process. Suffixation of ‘-inaav’ to the root form produces
a causative form and suffixation of ‘-ni’ produces passive
form. All these markers can be easily segmented with
hardly any need to compensate morphophonemic changes.
In the Indian language treebanking pipeline, a paradigm
based morph analyzer is used for the morph analysis. Such
a tool, however, has not yet been built for Kashmiri. As an

3http://en.wikipedia.org/wiki/Zero-width non-joiner
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alternative, we use an unsupervised morphological parsing
algorithm (Dasgupta and Ng, 2006) for the morph analysis
of Kashmiri text. The accuracy of the algorithm run of
13,585 unique words is 72.73%. In the future, we plan to
build a high coverage paradigm based morph analyzer for
Kashmiri.

3.3. POS-Tagging
We have used the current version of Indian Language Ma-
chine Translation (ILMT) pos tag set for POS tagging the
Kashmiri corpus without any additional changes (Bharati et
al., 2006). We have manually tagged around 61,741 words
(3,409 sentences). The tagged corpus is used for building a
statistical POS tagger for Kashmiri. The data set is split into
training and testing by a ratio of 80:20. We used CRF++
(Lafferty et al., 2001) 4 package to build the POS tagger.
In the baseline, we used a context window of 4 words; for
every word capturing its context till 2 preceding and follow-
ing words. To address the data sparsity and OOV problem
caused by the rich morphological nature of Kashmiri, we
used the automatic morph analysis. In the first experiment,
we used the morph segmenter, discussed in Morph Segmen-
tation above, to generate the stem and affixes of a word. We
achieved an accuracy of 79.16%, an increase of 2.52% from
the baseline. In the second experiment, we used the first and
last 4 characters of a word. This increased the accuracy by
6.81% from the baseline.

Baseline Morph Segmentation Morph Segmentation

Accuracy (%) 76.64 79.16 83.45

Table 1: POS-Tagging Accuracy

3.4. Chunking
We have manually chunked the already pos tagged corpus
of 3,409 sentences (41,678 chunks). We are using the
ILMT guidelines for chunking (Bharati et al., 2006),
however, with significant changes addressing the verb-
second (V2) phenomenon in Kashmiri. Unlike other Indian
languages, auxiliaries in Kashmiri can stand away from
the main verb in the second position of a clause as a
separate constituent. The notion of a verb group, where
verb and its auxiliaries act as a highly cohesive unit, is
weaker in Kashmiri. We have introduced few additional
chunk tags for verb and auxiliary projections not used in
ILMT guidelines treating every verb and auxiliary as a
separate unit rather than a part of a bigger verb group. The
additional chunk tags are presented in Table 2.

S.No. Tag Description
1 AUXP All Auxilaries
2 VCM Main Verb with separate tense auxilary
3 VCF Tense verb
4 VCNN Gerund
5 VCNF Non-finte Verb
6 VCINF Infinitive

Table 2: New Chunk Tags

4http://crfpp.googlecode.com/svn/trunk/doc/index.html?source=navbar

We used the manually chunked data for building an auto-
matic chunker. We used the CRF++ for this purpose. The
data is split by 80-20 for training and testing the chunker.
We set the baseline with a simple context window of 2
preceding and following words. The chunking accuracies
are improved with the introduction of POS tag information
as shown in Table 3.

Baseline Gold POS-Tag Automatic POS-Tag
Accuracy (%) 75.35 92.77 81.34

Table 3: Chunking Accuracy

3.5. Dependency Annotation
Among the 3,409 sentences manually POS tagged
and chunked, we annotated 1,000 sentences (11,848
nodes/tokens) with the dependency structures. We are
using the dependency annotation guidelines proposed in
(Begum et al., 2008; Bharati et al., 2009). The guidelines
are based on the Computational Pān. inian Grammar for-
malism inspired by an ancient Indian grammarian named
Pān. ini (Bharati et al., 1995). Figure (1) shows annotation
of an example sentence based on the guidelines. The
labels starting with ‘k’ are Pān. ini’s Karaka relations which
are central to CPG formalism. A Karaka relation is a
grammatical relation that holds between a verb and its
arguments or some adjuncts.

We also carried an annotator agreement study on a set of
100 sentences. The data set was separately annotated by
two expert linguists. The agreement statistics shown in Ta-
ble 4 suggests a good understanding of annotators of the an-
notation guidelines and the morpho-syntax involved in the
given set of corpus. The major disagreement is observed for
the major dependency labels namely k1 ‘agent/subject’, k2
‘patient/theme/object’ and k1s ‘noun complement’ which
indicates that the arguments which bear k1, k2 and k1s rela-
tions with a verb are most confusing grammatical relations
in the treebank. It seems morpho-syntactic cues serve as
poor guide in certain contexts. Some of the reasons for the
disagreement are the size of a sentence (lower agreement
for sentences with >50 words), higher degrees of argument
scrambling, ambiguity in morpho-syntactic cues (case suf-
fixes) and the lack thereof etc.
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which we even get in the Ramayana and
Mahabharata.’
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Figure 1: Dependency Tree of an Example Sentence

No. of Annotations Agreement P(a) P(e) κ

1132 880 0.777 0.089 0.756

Table 4: Kappa Statistics

The annotated corpora is used to build a first dependency
parser of Kashmiri which we plan to use in future to
bootstrap the treebank. The data set is split into training,
testing and development sets by the ratio of 80-10-10 in the
conll formatt. We used the MaltParser (Nivre et al., 2007)
for parsing experiments. MaltParser uses a transition-based
approach to dependency parsing. In order to select the
best algorithm and tune the parameters of MaltParser,
we used MaltOptimizer (Ballesteros and Nivre, 2012)
on the training data. As suggested by MaltOptimizer,
we experimented with Covington parsing algorithm with
non-projective settings. Current version of Kashmiri tree-
bank has 0.02 non-projective edges, which is way lower
compared to other Indian languages (Bhat and Sharma,
2012). We experimented with different feature sets both
gold as well as automated. The results are reported in Table
5.

Baseline for parsing is set using just the raw tokens. Auto
Lemma and Auto POS features are extracted using the
POS-tagger and Morph segmenter that we presented in this
work. Since Kashmiri has very rich morphology, we ei-
ther need a good lemmatizer or enough data to address the
problem of data sparsity. Even though results are not that

5k1 ‘Agent’, k2 ‘Patient’, k1s ‘Noun Complement’, r6 ‘gen-
itive’, ccof ‘co-ordination’, pof , ‘Part of a Complex Predicate’,
nmod relc ‘Relative Clause’

promising, we have set the baseline for further research on
Kashmiri dependency parsing.

Features LAS (%) UAS (%) LAcc (%)
Baseline 25.71 42.91 33.30

Auto Lemma 25.71 46.05 32.89

Gold POS 42.71 66.50 48.28

Auto POS 34.51 53.64 42.31

Gold Chunk 45.14 67.00 47.77

Gold POS,
Gold Chunk

46.36 70.55 49.49

Auto Lemma,
Gold POS,
Gold Chunk

40.89 62.65 46.66

Auto Lemma,
Auto POS

33.00 53.04 39.68

Table 5: Effect of different features on the Malt parser.

4. Conclusion
As a contribution to Kashmiri language, we presented two
important computational resources for its text processing.
These are:

1. A manually annotated Kashmiri dependency treebank,
in which 3,409 sentences are POS-tagged and chunked
while 1,000 sentences are annotated with dependency
structures. We made few changes to the guidelines
(Bharati et al., 2006) to address and accommodate the
v2 phenomenon in Kashmiri. To assure the quality of
the treebank, we carried out an inter-annotator study.
A kappa value κ=0.76 shows sufficient agreement be-
tween the 2 expert annotators and thus assures the
quality of the Kashmiri treebank.

2. A dependency parsing pipeline, which includes, a to-
kenizer, a morph segmenter, a pos tagger, a chunker
and an inter-chunk dependency parser. All tools per-
form well (>80) except the dependency parser, which
suffers due to the lack of enough data used for its train-
ing.

For future work, we plan to annotate all the 3,409 POS-
tagged and chunked sentences with dependency structures.
Since the dependency structures in the current version
of the treebank are annotated between chunk heads, we
also plan to express the dependencies between tokens in
a chunk.
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