
JUST.ASK, a QA system that learns to answer new questions from previous
interactions

Sérgio Curto, Ana Mendes, Pedro Curto, Luı́sa Coheur and Ângela Costa
IST/INESC-ID

Rua Alves Redol 9
1000-029 Lisbon, Portugal

name.surname@l2f.inesc-id.pt

Abstract
We present JUST.ASK, a publicly available Question Answering system. Its architecture is composed of the usual Question Processing,
Passage Retrieval and Answer Extraction components. Several details on the information generated and manipulated by each of these
components are also provided to the user when interacting with the demonstration. Since JUST.ASK also learns to answer new questions
based on users’ feedback, (s)he is invited to identify the correct answers. These will then be used to retrieve answers to future questions.

Keywords: Question Answering, Pattern Matching, User Feedback

1. Introduction
Question Answering (QA) systems allow users to express
their information needs in terms of natural language ques-
tions and to receive the exact answers to those questions.
In this paper, we present JUST.ASK, an open-domain QA
system, specially tailored for factoid questions that is freely
available.1 Nevertheless, non factoid-like questions (like
definitions) are also addressed. It implements several
Artificial Intelligence techniques and takes advantage of
different available information sources and tools. Some
of its components can be easily modified/enhanced, al-
lowing straightforward comparisons of (new) techniques.
JUST.ASK attains state of the art results in Question Classi-
fication (Silva et al., 2011) and is detailed in (Mendes et al.,
2013) and, to our knowledge, it is the first QA system that
learns how to answer questions based on previous success-
ful interactions. In this paper, besides the usual responses
(answer plus supporting snippets), some internal data is
also reported, like the result of the question classification
or the generated clusters of candidate answers. Moreover,
the user feedback about the correctness of the answers is
also stored in order to be further applied to extract patterns
and learn how to answer new questions.
This paper is organised as follows: in Section 2. we make a
brief overview of JUST.ASK architecture, in Section 3. we
detail its main components and in Section 4. we present the
learning component. In Section 5. we describe the demo, in
Section 6. we present some related work, and in Section 7.
we present the main conclusions and point to future work.

2. JUST.ASK general architecture
When a new question is posed to JUST.ASK, its dataflow
comprises the following steps: a) Question Processing –
the question is interpreted; b) Passage Retrieval – a set of
relevant passages/documents is retrieved from the available
information sources; c) Answer Extraction – candidate an-
swers are extracted and the correct ones selected. Figure 1
details JUST.ASK architecture.

1https://www.l2f.inesc-id.pt/wiki/index.
php/Downloads

Question-Answering
Answer 

Extraction

Question

Correct?

Pattern-
based

Patterns 
KB

NER-
based

Answer

Pattern Learning
Pa

ss
ag

e 
R

et
rie

va
l

Q
ue

st
io

n
Pr

oc
es

si
ng

Yes

Q
ue

st
io

n
Pr

oc
es

si
ng

Pa
ss

ag
e 

R
et

rie
va

l

Pa
tte

rn
 B

ui
ld

in
g

1

2

DocumentDocument

Document
Document

Document

Figure 1: JUST.ASK general architecture

3. Overview of JUST.ASK components
3.1. Question Processing
The Question Processing component is responsible for two
main tasks: question analysis and question classification. It
receives as input a natural language question that is anal-
ysed by the Berkeley Parser (Petrov and Klein, 2007),
trained on the QuestionBank (Judge et al., 2006), which
returns the question tokens and the question syntactic com-
ponents. Then, JUST.ASK question classifier exploits the
widely used Li and Roth’s (2002) two-layer question type
taxonomy, consisting of 6 coarse grained categories and 50
finer grained ones, and allows the usage of different classi-
fication techniques. Thus, classification can resort to hand-
built rules or machine-learning techniques, such as Support
Vector Machines (SVM) or Naı̈ve Bayes. State of the art
results were attained by the classifier of JUST.ASK when
modeling the task of question classification as a supervised
learning classification problem (using SVM), although the
most successful features used to train the model (unigrams

2603



and semantic headword) are generated by the rule-based
classifier. A detailed description of the classification task in
JUST.ASK can be found in (Silva et al., 2011). Figure 2 de-
scribes the Question Processing component of JUST.ASK.

Question

Processed Question

Question 
Processing

Question Classifier

Question
Analizer

Tokenizer

Syntactic Analyser

Headword Extractor

SVM

Naïve Bayes

Rule-based

...

Figure 2: The Question Processing component

3.2. Passage Retrieval
The Passage Retrieval component of JUST.ASK receives as
input the previously processed question and outputs the set
of relevant passages for the posed question. JUST.ASK em-
ploys a multi-strategy approach to passage retrieval, with
each strategy tailored to a specific group of question cate-
gories. Different strategies involve the use of different in-
formation sources and different query formulations. At
the moment, JUST.ASK uses Lucene2 search engine and
the Bing search API3 to retrieve relevant passages from
unstructured sources (either specific corpora or the Web);
Wikipedia4 and DBpedia (Auer et al., 2007) are repos-
itories of semi-structured content also used by the sys-
tem. Due to their encyclopaedic nature, JUST.ASK uses the
semi-structured sources to answer non factoid-like ques-
tions that require longer answers. In particular, Wikipedia
is utilised to answer DESCRIPTION:DEFINITION and HU-
MAN:DEFINITION questions. Also, for questions whose
cardinality is greater than one – i.e., list questions that re-
quire more than one answer – Wikipedia is also used. Once
the information source to be used has been selected, and
the queries have been formulated, the final step is to sub-
mit the queries to the information source’s endpoint and re-
trieve the results. These queries are all submitted and pro-
cessed in parallel, using multiple threads, in order to max-
imize the performance of the system. The results of each
query are aggregated (with duplicates removed), and sent
to the answer extraction component for further processing.
Metadata about the results, such as the rank of each search
result, is also stored and is available to be used when select-
ing the final answer. Figure 3 details the Passage Retrieval
component of JUST.ASK.

2http://lucene.apache.org/.
3https://datamarket.azure.com/dataset/

8818F55E-2FE5-4CE3-A617-0B8BA8419F65
4http://www.wikipedia.org/.

Relevant Passages

Passage
Retrieval

Searcher
LuceneSearcher

BingSearcher

WikipediaSearcher

DBPedia Searcher

Processed Question

KeywordQueryFormulator

FocusQueryFormulator

...
Query Formulator

...

Query

Figure 3: The Passage Retrieval component

3.3. Answer Extraction
The Answer Extraction component receives as input the
data gathered in the previous steps (that is, both the pro-
cessed question and the retrieved relevant passages) and is
divided in two stages responsible for candidate answer ex-
traction and final answer selection.
Considering the candidate answer extraction, strategies for
each particular question category or groups of question cat-
egories are implemented. For instance, for NUMERIC type
questions, we employ an extensive set of regular expres-
sions to extract candidate answers, whereas for HUMAN
type questions, we use a machine learning-based named en-
tity recognizer. WordNet-based recognizers and Gazetteers
are also used.
In what regards the final answer selection, we start by nor-
malising candidate answers that belong to categories NU-
MERIC:COUNT and NUMERIC:DATE. Then, candidate an-
swers are aggregated by lexical equivalence. The score of
the new answer is the sum of the scores of all answers
it comprises. A clustering step is performed afterwards,
based on a measure that determines the similarity of two
candidate answers. We can chose from the overlap distance
and the Levenshtein distance (Levenshtein, 1966) normal-
ized to the maximum length of the two answers being com-
pared (other measures can be easily integrated in Just.Ask).
The chosen distance is used in conjunction with a stan-
dard single-link agglomerative clustering algorithm, which
works as follows: initially, every candidate answer starts in
its own cluster; then, at each step, the two closest clusters,
up to a specified threshold distance, are merged. The dis-
tance between two clusters is considered to be the minimum
of the distances between any members of the clusters (as
opposed to complete-link clustering, which uses the maxi-
mum). Finally, we filter the clusters, by discarding the ones
in which an answer is contained in the original question,
and the longest answer of the cluster with highest score is
returned. Figure 4 shows the Answer Extraction component
of JUST.ASK.

4. Learning with JUST.ASK

In a typical interaction with a QA system, a question is
posed and its answer is returned. Usually, after being pre-
sented to the user, the system’s answers are discarded from
further processing. However, there is much information

2604



Answer
Extraction

Answer Normalizer DateNormalizer

NumericNormalizer

...

Processed 
Question StatisticalRecognizer

RegExpRecognizer

GazeteerRecognizerEntity Recognizer
Candidate Answers

Relevant
Passages

Answer

...

Candidate
Answer

Extraction

Final
Answer

Selection Answer Aggregator

Answer Clusterer

Cluster Filter

Figure 4: The Answer Extraction component

conveyed by the correct answer to a question that is sim-
ply lost in every interaction. For example, knowing that
1756 solves the question When was Mozart born? might be
useful when answering the question When was JFK born?.
In a nutshell, our approach is based on (lexico-syntactic)
patterns. Each one of these patterns relates a question to its
answer, through the constituents of the sentence that con-
tain (parts of) the question and the answer. To learn pat-
terns, we use a minimally supervised approach where seeds
are question/answer pairs. The process of learning patterns
comprises three different sequential steps: a) the Question
Processing step, where several actions are performed on
the question, including its syntactic analysis and semantic
classification; b) the Passage Retrieval step, where multiple
queries are built from the question and the answer, and used
to retrieve passages from the information sources (the Web
or local corpora); and, c) the Pattern Building step, where
the elements from the question, the answer and the retrieved
passages are chosen to build the patterns. The learned pat-
terns are then stored and indexed by the semantic category
and syntactic segmentation of the seed question.
It is worth mentioning that, in this work, we define a pat-
tern as a sequence of lexical and syntactic elements. For
instance, “NP VBD [by] NP?” is a pattern learned from The
Divine Comedy written by Dante to answer the question
Who wrote The Divine Comedy?. In the pattern, the syntac-
tic elements5 refer to the syntactic chunks of the question,
except the one with the subscript question mark, which in-
dicates the answer. The lexical content of the pattern is
stated between square brackets.
Whenever a user gives feedback to JUST.ASK, by confirm-
ing that the answer to his/her question is correct, the system
uses that question/answer pair to build new patterns. These
patterns will be available in future interactions and will be
used to extract candidate answers to new questions.

5. JUST.ASK demo
In Figure 5 we present a screenshot of a demo, showing the
final answers to the question What is the capital of Soma-
lia?.
As previously stated, the user can see some of the internal
information created and manipulated by the system, namely

5We use the Penn Treebank II Tags (Bies et al., 1995).

the question headword, the question category, the POS tags
of each word of the question and its syntactic constituents,
the retrieved passages, the candidate answers and the re-
sulting clusters. Also, the user has the opportunity to con-
firm the correctness of the answers returned from the sys-
tem (Mark as correct/Mark as incorrect), which will allow
JUST.ASK to create new patterns and learn how to answer
new questions. In this version of the demo, however, we
are only storing this information, and we do not resort to
the pattern-based approach to extract candidate answers.
This demo of JUST.ASK only requires a browser and an
internet connection. It can be tested in
http://aurora.l2f.inesc-id.pt/Just.Ask-Web

6. Related Work
Many works in the literature use questions and their cor-
rect answers in strategies for QA (several of them take
advantage of the datasets of questions and answers built
in the context of evaluation fora, like the Text REtrieval
Conference (TREC) or the Cross-Language Evaluation Fo-
rum (CLEF)).
The use of Question/Answer (Q/A) pairs as training in-
stances to (semi-)supervised learning machinery in QA is
however not limited to the task of building patterns to can-
didate answer extraction. Sun et al. (2006) use Q/A pairs to
learn classifiers that identify the correct answers for a ques-
tion in a sentence. The first classifies a sentence as contain-
ing (or not) a correct answer to the posed question; if the
sentence is classified positively, the second classifies each
word as correct (or not). Moschitti and Quarteroni (2011)
focus on the answer selection to definition questions, and
base their work on the cross-pair similarity model (Zan-
zotto and Moschitti, 2006) that learns rewrite rules between
two entailment pairs (Text T, Hypothesis H). They use ques-
tions and their answers as training instances and study the
improvements achieved when using generalizations to syn-
tactic/semantic structures and applying sequence/tree ker-
nel technology in a SVM. Lita and Carbonell (2004) rep-
resent questions as points in a multidimensional space and
group them in clusters according to their similarity, based
on the idea that similar questions are solved by similar
strategies. Different models are learned from each cluster
that serve three different purposes: 1) estimate a distribu-
tion of the question’s semantic category; 2) include cluster-
specific content in the queries submitted to the document
retrieval module; and, 3) identify if an answer is present in
a text snippet. When a new question is posed, it is repre-
sented in the same space and the models of the clusters in
its neighborhood are used.
Our pattern-based approach to candidate answer extraction
allows JUST.ASK to learn to answer new questions based
on previous successful interactions. For that, the system
relies on the user feedback about the correctness of the
returned answer(s). When it comes to systems that use
past interactions to answer new questions, the approach
of Harabagiu et al. (2001) is a rare example described in
the literature: by using a caching mechanism, answers to
previous similar questions are reused, which avoids trig-
gering the entire QA process. The similarity is measured
in terms of the number of (lexico and semantic) matches

2605



Figure 5: JUST.ASK demo

between content words of equal morphological category
in both (current and cached) questions. Other works exist
along the line of reusing answers from past questions in re-
cent questions, specially applied to Community Question-
Answering sites.6 Here, the goal is to reduce to amount of
unanswered questions and the main challenge is typically to
identify the past question(s) that is(are) the most similar to
the new question, the one(s) that convey the same informa-
tion need. For example, Shtok et al. (2012) use a two-stage
approach that, besides choosing the most appropriate past
question through a ranking mechanism, also identifies the
best answer to the new question from the list of answers to
the top-ranked past questions. Finally, it should be men-
tioned that, although the direct user feedback is rarely used
in traditional QA, its application is explicit in this type of
sites, where answers are ranked based on several features,
including the number of votes attributed by the community
members.

7. Conclusions and Future Work
We presented JUST.ASK, a QA system that is freely avail-
able for research purposes. Users can have access to some
internal information and, since JUST.ASK is able to learn
from previous interactions, they can contribute to this pro-
cess by indicating if an answer is correct. As future work,
besides exploring the several steps of JUST.ASK, in par-
ticular the Answer Selection component, we would like to
allow the user to provide the answer if the system is not able
to deliver a correct one. We would also like to evaluate how
robust the learning component is to wrong user feedback.

6In these sites, questions and answers are given
by humans. Examples of such sites are Yahoo! An-
swers (http://answers.yahoo.com/), StackOver-
flow (http://stackoverflow.com/) or Quora (http:
//www.quora.com/).

8. Acknowledgements
This work was supported by national funds through
FCT – Fundação para a Ciência e a Tecnologia, un-
der project PEst-OE/EEI/LA0021/2013. Sérgio Curto and
Pedro Curto scholarships were supported under project
FALACOMIGO (ProjectoVII em co-promoção, QREN n
13449). Ana Cristina Mendes was supported by a PhD
fellowship from Fundação para a Ciência e a Tecnologia
(SFRH/BD/43487/2008).

9. References
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., and Ives,

Z. (2007). Dbpedia: A nucleus for a web of open data.
In In 6th Int‘l Semantic Web Conference, Busan, Korea,
pages 11–15. Springer.

Bies, A., Ferguson, M., Katz, K., MacIntyre, R., Tredin-
nick, V., Kim, G., Marcinkiewicz, M. A., and Schas-
berger, B. (1995). Bracketing guidelines for treebank ii
style penn treebank project. Technical report, University
of Pennsylvania.

Harabagiu, S., Moldovan, D., Pasca, M., Mihalcea, R.,
Surdeanu, M., Bunsecu, R., Girju, R., Rus, V., and
Morarescu, P. (2001). The role of lexico-semantic feed-
back in open-domain textual question-answering. In
Proc. 39th Annual Meeting of the Association for Com-
putational Linguistics, pages 282–289. ACL.

Judge, J., Cahill, A., and van Genabith, J. (2006). Ques-
tionbank: creating a corpus of parse-annotated questions.
In ACL-44: Proc. 21st Int. Conf. on Computational Lin-
guistics and the 44th annual meeting of the Association
for Computational Linguistics, pages 497–504. ACL.

Levenshtein, V. I. (1966). Binary Codes Capable of
Correcting Deletions, Insertions and Reversals. Soviet
Physics Doklady, 10:707–710, February.

Li, X. and Roth, D. (2002). Learning question classifiers.
In Proceedings of the 19th international conference on

2606



Computational linguistics, pages 1–7, Morristown, NJ,
USA. Association for Computational Linguistics.

Lita, L. V. and Carbonell, J. G. (2004). Instance-based
question answering: A data-driven approach. In Pro-
ceedings of the 2004 Conference on Empirical Methods
in Natural Language Processing , EMNLP 2004, A meet-
ing of SIGDAT, a Special Interest Group of the ACL,
held in conjunction with ACL 2004, 25-26 July 2004,
Barcelona, Spain, pages 396–403.

Mendes, A. C., Coheur, L., Silva, J., and Rodrigues, H.
(2013). Just.ask – a multi-pronged approach to question
answering. Artificial Intelligence Tools.

Moschitti, A. and Quarteroni, S. (2011). Linguistic kernels
for answer re-ranking in question answering systems.
Information Processing and Management, 47(6):825 –
842.

Petrov, S. and Klein, D. (2007). Improved inference for un-
lexicalized parsing. In Human Language Technologies
2007: The Conference of the North American Chapter of
the Association for Computational Linguistics; Proceed-
ings of the Main Conference, pages 404–411, Rochester,
New York, April. Association for Computational Lin-
guistics.

Shtok, A., Dror, G., Maarek, Y., and Szpektor, I. (2012).
Learning from the past: answering new questions with
past answers. In Proceedings of the 21st international
conference on World Wide Web, WWW ’12, pages 759–
768. ACM.

Silva, J., Coheur, L., Mendes, A., and Wichert, A. (2011).
From symbolic to sub-symbolic information in question
classification. Artificial Intelligence Review.

Sun, A., Jiang, M., and Ma, Y. (2006). A maximum en-
tropy model based answer extraction for chinese ques-
tion answering. In Proceedings of the Third interna-
tional conference on Fuzzy Systems and Knowledge Dis-
covery, FSKD’06, pages 1239–1248, Berlin, Heidelberg.
Springer-Verlag.

Zanzotto, F. M. and Moschitti, A. (2006). Automatic learn-
ing of textual entailments with cross-pair similarities.
In Proceedings of the 21st International Conference on
Computational Linguistics and the 44th annual meeting
of the Association for Computational Linguistics, ACL-
44, pages 401–408, Stroudsburg, PA, USA. Association
for Computational Linguistics.

2607


