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Abstract
The task of corpus-dictionary linkage (CDL) is to annotate each word in a corpus with a link to an appropriate dictionary entry
that documents the sense and usage of the word. Corpus-dictionary linked resources include concordances, dictionaries with word
usage examples, and corpora annotated with lemmas or word senses. Such CDL resources are essential for many tasks including
assisting language learners, linguistic research, philology, and translation. Lemmatization is a common approximation to automating
corpus-dictionary linkage, where lemmas stand in for the headwords of an actual dictionary. In our machine-assisted CDL system
design, data-driven lemmatization models provide machine assistance to human annotators performing the actual CDL task. Assistance
is provided in the form of pre-annotations that will reduce the costs of CDL annotation. In this work we adapt the discriminative string
transducer DirecTL+ to perform lemmatization for classical Syriac, a low-resource language. We compare the accuracy of DirecTL+
with the Morfette discriminative lemmatizer. DirecTL+ achieves 96.92% overall accuracy, an improvement of 0.86% over Morfette
but at the cost of a longer time to train the model. Error analysis on the models provides guidance on how to apply these models in a
machine assistance setting for corpus-dictionary linkage.
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1. Introduction
The task of corpus-dictionary linkage (CDL) is to an-

notate each token in a corpus with a link to an appropriate
dictionary entry in order to document the token’s sense and
usage, and to gather related tokens under a representative
headword. When there is no suitable dictionary entry for a
given word token a new entry must be created. A lexicogra-
pher could follow this process to produce a dictionary (Kil-
garriff, 2005); likewise, a concordance editor could employ
this process to compile a concordance for a selected cor-
pus. CDL resources include dictionaries with word usage
examples, concordances, and corpora annotated with lem-
mas or word senses. Such CDL resources are essential for
many tasks including assisting language learners, linguistic
research, philology, and translation.

Manual construction of CDL resources is costly in
terms of human annotator time and tedium which limits the
size and scope of CDL annotated resources (Kiraz, 1994).
The temporal costs of CDL annotation can be reduced by
providing machine assistance to expert annotators in the
form of automatic pre-annotations (Ringger et al., 2008;
Carmen et al., 2010; Felt et al., 2013), which should addi-
tionally increase the feasible size and scope of CDL anno-
tated resources and in turn provide more quality data with
which to refine machine-learned models for automatic CDL
annotation. For common languages, crowdsourcing might
be a viable way to link corpus words to a dictionary; how-
ever, CDL for uncommon or old languages, such as clas-
sical Syriac, is not generally crowdsourceable because the
pool of qualified workers is insufficient.1 Furthermore, un-
common or old language corpora are primarily interesting

1We submitted a Syriac lemmatization task to CrowdFlower in
the fall of 2013. None of the 3,051 workers that attempted the trial
job performed at the required minimum accuracy of 75%.

to language experts who may be invested in providing qual-
ity annotations voluntarily.

The level of granularity of a dictionary determines the
complexity of the CDL task for both humans and machines.
Since most dictionaries organize dictionary entries around
the lemmas (i.e., headwords, baseforms) of the language,
linking tokens in the corpus to lemmas in such dictionar-
ies requires the ability to determine the correct lemma of
each word token. Linking tokens in a corpus to a dictio-
nary at this finer granularity requires an understanding of
the morphology of the language. Of course, beyond the
level of lemmas, dictionaries can also organize the docu-
mentation of a single lemma as multiple entries, organized
by the grammatical category (part-of-speech) and/or senses
of the word. For this finer granularity, CDL further requires
word-sense disambiguation.

In this work we focus on corpus-dictionary linkage as a
lemmatization task, not focusing for the moment on disam-
biguating among multiple dictionary entries or sub-entries
for a particular lemma. Whereas the morphological analy-
sis task traditionally enumerates candidate lemmas (for our
purposes, also "baseforms") for a given word token along
with its morphological attributes, the task of discrimina-
tive lemmatization is to disambiguate and either choose
from among the alternatives or rank them by some mea-
sure. Hence, discriminative lemmatization is a tagging pro-
cess. For inflections and declensions of word types with
regular morphology, a token is likely to resemble a sub-
string of its baseform (e.g., “walked” contains its base-
form “walk”). For irregular forms, such correspondence
is less likely (e.g., “went” versus “go”). However, be-
cause of the substring correspondence of most word tokens
and their baseforms, discriminative lemmatization can be
implemented with general machine learning approaches to
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string transduction trained from representative data.
We break the discriminative lemmatization process into

two tasks: token segmentation (or simply segmentation),
which separates prefix and stem and suffix morphemes, and
stem-baseform linkage. Using sequence labeling methods,
automatic segmentation can be performed with high accu-
racy. For example, in our work with classical Syriac, seg-
mentation can be performed with 98.87% accuracy. For
that reason, we focus exclusively on the harder task of stem-
baseform linkage. In this paper, we adapt the DirecTL+
discriminative string transducer (Jiampojamarn et al., 2008)
to perform stem-baseform linkage for classical Syriac and
compare its performance with the Morfette (Chrupała et al.,
2008) approach. These results and the accompanying error
analysis will inform and guide our ongoing work in ma-
chine assisted corpus-dictionary linkage.

2. Syriac Corpus-Dictionary Linkage
By text volume, Syriac is the largest dialect of Aramaic.

Classical Syriac was the primary spoken and written lan-
guage of the Christian Near East through the eighth cen-
tury and is still used in the liturgy of the present Syriac
Christian churches. Syriac has twenty-two letters (literals)
like Hebrew; classical Syriac is usually written with very
few diacritics (for vowels or other pronunciation marks).
We use the Library of Congress’ transliteration scheme for
Syriac.2 Syriac words are comprised of the following parts,
with examples given in Table 1:

• stem: the main part a word token; the stem is a mor-
phological inflection of a baseform

• prefix: clitic preceding the stem; some tokens do not
have a prefix

• suffix: clitic following the stem; some tokens do not
have a suffix

• baseform: (i.e., lemma) the basic word-form from
which stems are inflected

• root: the word-form from which baseforms are de-
rived; many Semitic roots consist of three literals

Word Token Prefix Stem Suffix Baseform
9 ’mr ’mr ’mr

10 lhwn l hwn l
11 pylt.ws pylt.ws pylt.ws
12 lmlkkwn l mlk kwn mlk’
13 ’zqwp ’zqwp zqp

Table 1: Some Syriac (transliterated) words from John
19:15 in the Peshitta New Testament and their prefix, stem,
and suffix parts with the associated baseforms.

Since a particular orthographic stem may be an inflec-
tion of two or more distinct baseforms, a discriminative
lemmatizer must disambiguate among them. Syriac dictio-
naries are generally organized into entries for both base-
forms and root forms. Jessie Payne Smith’s (JPS) Compen-
dious Syriac Dictionary (Payne Smith, 1903) contains more

2http://www.loc.gov/catdir/cpso/romanization/syriac.pdf

than 16,000 such entries. Furthermore, some dictionary en-
try headwords are homographs, introducing ambiguity into
the collection (now a multi-set) of baseforms. Thus, a step
beyond disambiguating among alternative baseforms is to
disambiguate among homographic baseforms. By con-
trast, prefixes and suffixes of a given word token are on av-
erage much less ambiguous than stems and baseforms and
are generally enumerated in a Syriac grammar.

While our ultimate goal is to link arbitrary Syriac cor-
pora to entries in the JPS dictionary, this work focuses on
stem-baseform linkage, the second and most challenging
step of lemmatization, as a preliminary step to full corpus-
dictionary linkage. To appreciate the scale of the data to
which our CDL models will ultimately be applied, consider
the Syriac Electronic Corpus (SEC) project of the Center
for the Preservation of Ancient Religious Texts in the Neal
A. Maxwell Institute for Religious Scholarship at Brigham
Young University. The aims of the project are to collect,
digitize, annotate, and publish a large corpus of classical
Syriac texts spanning multiple authors and centuries. To
date the project has collected and digitized almost 6 mil-
lion words of text, including a subcorpus consisting of all
of the writings of Ephrem the Syrian (d. 373 A.D.). This
subcorpus, subsequently referred to as EPHREM, is of par-
ticular historical interest. The next step in the project is to
link each word in EPHREM to entries in the JPS dictionary
and to extend the dictionary where entries are missing.3

EPHREM contains approximately 465,000 word tokens,
more than four times as many as the Peshitta New Testa-
ment. By linearly interpolating from annotation timing data
collected by Felt et al. (2013) in their user study of ma-
chine assistance for Syriac morphological annotation, we
estimate it might take a single typical Syriac scholar more
than two years to fully link EPHREM to the dictionary — as-
suming the annotator works 20 hours per week (48 weeks
per year). The time to fully annotate is reduced to under
one year if automatic pre-annotations are provided and au-
tomatically refined as the annotator corrects the suggested
annotations.4 Thus, machine assistance has the potential to
play a critical role in this particular corpus-dictionary link-
age project. Beyond EPHREM, machine assistance is even
more vital for annotating the entire SEC.

We further estimate the number of unique stem and
baseform types to be identified in the linkage from
EPHREM to the JPS dictionary by linearly interpolating
from corpus metrics on the PNT. Assuming EPHREM dis-
plays the same token-to-type ratio as the PNT, it will con-
tain approximately 70,000 word types, 34,000 stem types,
and 13,000 baseform types. Although the JPS dictionary
contains over 16,000 distinct entries for roots and base-
forms, it will undoubtedly need to be expanded in order
to accommodate new types as EPHREM is linked.

Our experiments in this paper employ stem-baseform
linkage data from the annotated Peshitta New Testament
(PNT). The original morphological annotation of the PNT
was done manually by The Way International Foundation

3http://cpart.maxwellinstitute.byu.edu/home/sec/about
4These time estimates are lower bounds since EPHREM con-

tains more poetic and metaphorical language than the New Testa-
ment apocrypha text studied by Felt et al. (2013).

3799



over the course of 15 years. Kiraz (1994) digitized and re-
fined those morphological annotations into the Syriac Elec-
tronic Data Retrieval Archive III (SEDRA3). McClanahan
et al. (2010) subsequently adapted the SEDRA3 annota-
tions to include suffix annotations. The current annotated
PNT used in this work has 109,640 word tokens, 16,439
word types, 7970 stem types, 3038 baseform types, and
1800 root types.5

3. Related Work
Morphological analysis enumerates all possible lemma-

tizations (baseforms) for the stem of a given word token
(along with the token’s segmentation and morphological
attributes) and can therefore be used as a component of
corpus-dictionary linkage. Kiraz (2000) built a finite state
morphological analyzer for Syriac and Arabic, but unfor-
tunately the implementation is no longer available. Tim
Buckwalter’s morphological analyzer for Arabic is perhaps
the best known analyzer for a Semitic language.6 However,
traditional morphological analysis only enumerates possi-
ble baseform links and does not rank them.

Morphological disambiguation extends morphological
analysis by ranking candidate analyses based on some mea-
sure of the correctness of the analysis given word con-
text. To assist annotators with automatic stem-baseform
link proposals, a morphological disambiguation system is
necessary. Habash and Rambow (2005) built an Arabic
morphological disambiguation system that uses a machine-
learned classifier for each morphological attribute. They
present methods for combining the best individual morpho-
logical tags into a joint tag that is comparable to the quality
of morphological analyses obtained from a morphological
analyzer. They achieve a morphological tag accuracy of
97.6%. Recently, Lindgren (2011) built a morphological
analyzer for classical Syriac called dkrMorph, which pro-
vides some basic disambiguation functionality by ranking
candidate analyses according to frequency of occurrence in
a training set. Despite the simplicity of its ranking algo-
rithm, dkrMorph reports 94.42% accuracy on a heldout set
of stem-baseform links; 99.75% accuracy on known stems
seen in the training data and 46.20% on unknown stems
encountered only in the heldout set.

McClanahan et al. (2010) built a probabilistic morpho-
logical disambiguation system for classical Syriac called
SyroMorph. SyroMorph’s segmentation module uses a
conditional Markov model that interpolates distinct mod-
els for known and unknown word types. For known
word types, a maximum entropy (maxent) classifier disam-
biguates among known segmentations for the word. For
unknown word types, a sequence-labeling approach is em-
ployed using a maximum entropy Markov model to decide
whether each character in the word is in the prefix, in the
stem, or in the suffix. As noted in Section 1, the seg-
mentation model achieves 98.87% overall accuracy on the
Syriac PNT, making Syriac segmentation a mostly solved
problem. SyroMorph’s stem-baseform linker uses a hy-
brid model that interpolates a maxent classifier for known

5All counts are for non-diacritized units even though the PNT
has diacritized word tokens.

6http://www.qamus.org/

word types with a discriminative lemmatizer for unknown
word types. The lemmatizer is Morfette, introduced by
Chrupała et al. (2008), which will be discussed further
in Section 4. When the stem-baseform linkage module is
trained and tested on heldout stem-baseform data, Syro-
Morph achieves 96.19% accuracy overall, 98.05% accuracy
on known stems, and 78.40% accuracy on unknown stems.
This work by McClanahan et al. provides a point of com-
parison for the work reported in this paper.

DirecTL+ is a general discriminative string transducer
which has been applied to the letter-to-phoneme problem
(Jiampojamarn et al., 2008), and name transliteration (Ji-
ampojamarn et al., 2009). Jiampojamarn et al. (2007) rec-
ognized the potential to use DirecTL+ for morphological
analysis, but to our knowledge we are the first ones to do
so. We describe our application of DirecTL+ to the stem-
baseform linkage task in Section 4.

Kilgarriff (2005) describes how dictionaries can be cu-
rated using the Word Sketch Engine (Kilgarriff and Run-
dell, 2002). A word sketch summarizes the words that co-
occur with a particular target word in a corpus, organized
by the frequency of the collocations and morphological at-
tributes of co-occurring words. Word sketches offer a lex-
icographer information with which to manually build and
refine a dictionary but do not automatically link word oc-
currences to existing natural dictionary entries.

4. Models and Features
As noted in the introduction, word tokens and their

baseforms are often similar, possibly even sharing some
substring(s). Thus, string transduction models can be
used to perform lemmatization. However, to disambiguate
among possible baseforms for a given stem, the transducer
will need to take a word’s local context (sentence) into
account. The Morfette model, which has state-of-the-art
results for stem-baseform linkage in classical Syriac, is a
discriminative lemmatizer that accommodates the transduc-
tion of words in isolation or in the context of neighboring
words. The DirecTL+ model is a general discriminative
string transducer. Inasmuch as DirecTL+ has no built-in
notion of words or sentential context, we present a pre-
processing step that combines multiple stem-baseform link-
age problems into a single sentence-level string transduc-
tion problem. The following sub-sections describe Morfette
and DirecTL+ in more detail, including an enumeration of
the word and local-context features the model implementa-
tions presently provide.

4.1. Morfette
The Morfette approach to lemmatization uses a maxi-

mum entropy classifier to predict an edit script for a given
stem; the script is then applied to the stem to produce the
baseform (Chrupała et al., 2008). The original Morfette im-
plementation uses a minimum edit script zero-indexed from
the end of the input string (Chrupała et al., 2008); e.g., for
the stem-baseform pair (mlk, mlk’) the edit script would be
<(Insert, ’, 0)> to transform mlk to mlk’. McClanahan et
al. (2010)’s Morfette implementation uses a minimum edit
script zero-indexed from the beginning of the input string;
e.g., to transform mlk to mlk’ the edit script is <(Insert, ’,
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2)>. The edit operators considered by the maximum en-
tropy model are learned from labeled stem-baseform pairs.
Not all of the edit operators in the model will apply to each
input unit, thus the decoder disregards non-applicable oper-
ators for a given context; e.g., say the edit script <(Delete,
’, 0), (Delete, w, 2)>, learned from the stem-baseform pair
(’zqwp, zqp), had high probability for the stem mlk but the
script would not be applicable because mlk does not have
an aleph (’) at position 0 or a waw (w) at position 2.

Individual Morfette models can operate on stems in iso-
lation, using stem features to predict edit script classes.
When the Morfette model is composed into a conditional
Markov model, features from neighboring words (local
context) can additionally be employed, giving the model
the potential to disambiguate stems based on their usage in
a sentence.

SyroMorph’s Morfette implementation provides the
feature templates summarized in Table 2. All of the fea-
ture templates are employed to collectively extract a sparse
feature vector. Word context feature templates that only
extract information from the input stem include WORD,
WORDLEN, CHARACTER, PREFIX, and SUFFIX. The
WORD template extracts the stem itself as a feature.
The WORDLEN template extracts the length of the stem
as a feature. We corrected the CHARACTER template
to extract the characters in the stem as features; it had
been miscoded to emit word.length copies of the same
feature, thus being redundant with the WORDLEN fea-
ture. The PREFIX template extracts the prefixes of length
[1,min(5, word.length)] for stems longer than one char-
acter. Similarly, the SUFFIX template extract the suffixes
of length [1,min(10, word.length)] for stems longer than
one character. (Note that these features are not to be con-
fused with the prefix and suffix morphemes of a word to-
ken.)

Feature templates that operate on the local context (the
stem and its surrounding stems) include EOS and PREV-
TAGS. The EOS (End Of Sentence) template extracts the
position of the word from the end of the sentence if its po-
sition is less than the configured Markov order. The PREV-
TAGS template extracts sequences of baseforms from the
stem’s preceding stems; extracted sequences are of length
1 to the configured Markov order (inclusive).

4.2. DirecTL+
The DirecTL+ approach to string transduction uses a

joint discriminative hidden Markov model and monotone
phrasal decoder (Jiampojamarn et al., 2008; Jiampojamarn
et al., 2010). As a pre-processing step before training the
model, the input and output data must be aligned. Jiampo-
jamarn et al. (2007) implemented a monotone (no crossing)
many-to-many (M2M) alignment algorithm that determines
the mapping between character subsequences in the input to
character subsequences in the output. The algorithm is pa-
rameterized by the maximum number of characters allowed
in any subsequence, or chunk, on the input and output sides,
and whether characters on the input or output side can be
deleted. The many-to-many aligned data is then used to
train DirecTL+. The discriminative HMM(Collins, 2002)
employs the Viterbi algorithm to predict the best output

Name Template Example
W WORD word mlk
W WORDLEN word.length 3
W CHARACTER character {m, l, k}
W PREFIX length, prefix

string
{m, ml}

W SUFFIX length, suffix
string

{k, lk}

L EOS distance from
end

N/A∗

L PREVTAGS (Markov or-
der, tag, tag,
..., tag)

{(1, pylt.ws),
(2, pylt.ws, l)}

Table 2: Morfette feature templates for SyroMorph 2.2.
Here word means stem. W indicates word context features;
L indicates local context features. Examples are for stem
mlk in the context of John 19:15 assuming Markov order 2.

string for a given input string. The monotone phrasal de-
coder works in conjunction with the discriminative HMM
to chunk individual characters into subsequences consistent
with the chunks in the many-to-many aligned training data.

Adapting DirecTL+ to stem-baseform linkage, we build
two kinds of input-output string pairs for training: isolated
word pairs, and sentence pairs. The isolated word string
pairs consist of just the stem-baseform pair for a single to-
ken; for example, after M2M processing (see Section 5) the
input string for mlk is m-l.k and the output string for mlk’
is m-l.k.’ (“-” delimits chunks and “.” indicates charac-
ters combined into chunks). To enable DirecTL+ to lem-
matize stems given their local context, we first pre-process
the isolated word string pairs with the M2M tool, and then
concatenate the word alignments into a sentence string. The
input string is thus a stem sentence and the output string is a
baseform sentence. This method of pre-processing ensures
that DirecTL+ will always predict a baseform sentence with
one and only one baseform for each stem in the input be-
cause the item delimiter chunk (#) is always mapped to it-
self; an alternate method of first concatenating stems and
baseforms into strings and then running the M2M tool to
learn alignments allows the item delimiter to be chunked
with other characters and thus does not guarantee that Di-
recTL+ will predict one and only one baseform for each
stem.

At test time DirecTL+ will predict the transduction to
the output string as well as the chunking of the input string,
so the input string does not need to be pre-processed by the
M2M utility but rather only broken down into individual
characters. When testing lemmatization for stems in their
local context, the stems in a sentence again need to be con-
catenated together.

DirecTL+ provides the features summarized in Table 3,
which can be seen as word or local context features given
the particular pre-processing of the data. The n-gram con-
text template extracts all n-grams of input chunks of size
[1, n] within a window c of the current chunk. The transi-
tion template extracts the output chunk for the current input
chunk’s preceding chunk. The linear chain template pairs
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the output chunk for the input chunk’s preceding chunk
with each of the n-grams extracted by the n-gram context
template. The joint n-gram template extracts n-grams of
size [1, n] of input-output-chunk pairs for chunks preceding
the current chunk. With these features and the monotone
phrasal decoder that explores possible chunks, DirecTL+
captures much of the same information as the WORD,
CHARACTER, PREFIX, and SUFFIX feature templates in
Morfette. DirecTL+ cannot model the WORDLEN feature.

5. Experimental Design
To determine how well DirecTL+ performs stem-

baseform linkage we compare it against Morfette and a
strong baseline stem-baseform linker. We build Morf-
ette and DirecTL+ models that operate on stems in isola-
tion, only using word context features, which we denote
Morfette-W and DirecTL+-W. Similarly, we build mod-
els that operate on stems in their local context, denoted
Morfette-L and DirecTL+-L. This section describes the pa-
rameterization and training of each model. The accuracy
values of the models are then evaluated and compared to
one another in the next section.

The models are trained and tested on non-diacritized
stem-baseform data from the Syriac PNT. The gold-
standard stems are used as test input, as opposed to run-
ning SyroMorph’s segmentation module and taking its pre-
dicted stems as test input. To conduct better error analysis
on unknown stems we use a 60-20-20 training-validation-
test split of the data, whereas previous evaluations of stem-
baseform linkage on the PNT have used an 80-10-10 split
(McClanahan et al., 2010; Lindgren, 2011). Using 60%
of the data for training instead of 80% should not hurt
model performance too much, since training on 35% of the
data yields high performance on a variety of morphological
tasks on the PNT (McClanahan et al., 2010). 10-fold cross
validation experiments are run over a combination of the
training and development test data.

The baseline model memorizes the most frequently
used baseforms for each stem in the training data and then
predicts the most frequent baseform for a given known stem
in the test data. For unknown stems the baseline model sim-
ply predicts the stem itself as the baseform.

For both the Morfette-W and Morfette-L models we use
all word context feature templates, and for Morfette-L, all
local context feature templates provided by SyroMorph 2.2.
We use all of the extracted features instead of selecting only
rare or non-rare features. We allow the log likelihood max-
imization of the maximum entropy model to run until im-
provements are less than 10−6. The decoder beam size is
set to 5. Though the maximum entropy models in Morfette-
W operate on words in isolation, the models are still com-
posed in a conditional Markov model in the code so as to
get a baseform prediction for each stem in the sentence.

To determine a good many-to-many alignment of the
Syriac data we ran the M2M alignment tool, trained Di-
recTL+ on the aligned output using a minimal set of n-
gram features (context size of 3), and then compared the
accuracy achieved by DirecTL+ given the different param-
eterizations of the M2M tool. We conducted a search over
the cross-product of the maxX [1,5], maxY [1,5], delX

(yes/no), and delY (yes/no) parameters of M2M. The maxX
parameter is the maximum number of characters allowed in
an input chunk. Similarly, the maxY parameter is the max-
imum number of characters allowed in an output chunk.
The delX parameter controls whether chunks can be deleted
from the input, which is represented by mapping the input
chunk to a null output chunk. Similarly, the delY parame-
ter controls whether chunks can be deleted from the output,
which is represented by mapping a null input chunk to the
output chunk; deleting an output chunk is the same as in-
serting an input chunk. The best parameters turned out to
be maxX = 3, maxY = 3, delX = yes, delY = no, based on
performance on the validation set.

Using the M2M pre-processed data, DirecTL+ models
were then built adding one feature template at a time and
searching for good parameters for the , again based on per-
formance on the validation set. For the DirecTL+-W model
the best feature template configuration was to include n-
grams with a context window of size 5 (allowing up to 11-
grams), transition features (Markov order of 1 hard-coded),
linear chain features, and joint n-gram features with n =
2. DirecTL+ always employs a beam search when joint n-
gram features are used. We kept the default beam size of
20. For the DirecTL+-L the best feature template config-
uration was to include n-grams with a context window of
size 4 (allowing up to 9-grams), transition features, and lin-
ear chain features. We did not include joint n-gram features
since they did not improve accuracy.

6. Results
To understand the expected performance of the mod-

els we performed 10-fold cross validation on the com-
bined training and validation data. Table 4 reports the
models’ overall, known, and unknown accuracies and cor-
rect and total counts. All of the models were tested on
the same partitioning of the data with the exception of
DirecTL+-W.7 Each of the models achieves above 90%
overall accuracy, including the baseline model, and each
discriminative model performs better than the baseline ex-
cept for DirecTL+-W. The accuracy gains by Morfette-W,
Morfette-L, and DirecTL+-L come from their better gen-
eralization to unknown stems. The baseline model gener-
alizes to unknown stems at about 20% accuracy, whereas
all of the discriminative models generalize at about 60%
accuracy, including DirecTL+-W. Indeed, DirecTL+-W
achieves the highest mean unknown accuracy, but its high
variance makes it less stable than the other discrimina-
tive models. As expected, data-driven discriminative gen-
eralization works better than the heuristic of predicting
unknown stems to be their own baseforms. Considering
known stems, while all the discriminative models achieve
more than 93%, none achieve better accuracy than 98.29%
as achieved by the baseline approach of memorizing the
most frequent baseform for each seen stem.

We evaluated the models on the blind test data to ensure
that the expected performance seen in cross validation was
consistent with the generalized performce, and to compare

7DirecTL+-W was run on a distinct partition from a different
random seed due to experimenter’s error.
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Name Word Context Example Local Context Example
n-gram context
1-grams ’.z.q, w, p ..., m, l.k, #, ’.z.q, w, p, ...
2-grams (’.z.q, w), (w, p) ..., (m, l.k), (l.k, #), (#, ’.z.q), (’.z.q, w), (w, p), ...
transition
order-1 z.q z.q
linear chain
1-grams [ <’.z.q, w, p> × z.q] [ <..., m, l.k, #, ’.z.q, w, p, ...> × z.q]
2-grams [ <(’.z.q, w), (w, p)> × z.q] [ <..., (m, l.k), (l.k, #), (#, ’.z.q), (’.z.q, w), (w, p), ...> × z.q]
joint n-gram
1-grams [’.z.q, z.q] ..., [m, m], [l.k, l.k.’], [#, #], [’.z.q, z.q], ...
2-grams none ..., ([m, m], [l.k, l.k.’]), ([l.k, l.k.’], [#, #]), ([#, #], [’.z.q, z.q]), ...

Table 3: DirecTL+ feature templates examples. Examples given are relative to the second input chunk, w, in the M2M
pre-processed stem ’.z.q-w-p in its context of John 19:15. Bigrams are indicated by (chunk-1, chunk-2); unigrams have
no surrounding parentheses; n-grams where n > 2 are not shown. Pairings of input and output chunks are indicated by
[input-chunk, output-chunk]. The notation “<•> × chunk” indicates an element-wise pairing of the elements in <•> with
the chunk.

All Acc. All Correct Known Acc. Known Correct Unk. Acc. Unk. Correct
Total Count N/A ∗8756± 118 N/A ∗8411± 105 N/A ∗345± 20

Baseline 95.31± 0.34 8347± 109 98.29± 0.18 8267± 104 23.05± 4.03 80± 14
Morfette-W 96.14± 0.29 8419± 113 97.62± 0.25 8211± 104 60.00± 2.91 207± 16
Morfette-L 95.96± 0.31 8402± 113 97.42± 0.25 8194± 104 60.33± 2.62 208± 15
DirecTL+-W∗ 92.67± 0.94 8115± 127 93.93± 0.66 7904± 107 61.40± 12.51 211± 51
DirecTL+-L 96.71± 0.26 8468± 106 98.24± 0.20 8263± 103 59.36± 2.65 205± 15

Table 4: Mean and std. dev. values for accuracy and related counts with 10-fold cross validation. Measures are per stem.
Max. values in bold. Unknown values for Morfette-L in bold due to its stability. ∗All models were cross-validated on the
same data partition except for DirecTL+-W, which has comparable total count values: All Total Count 8756± 91, Known
Total Count 8414± 91, Unknown Total Count 342± 17.

with previously reported results. Table 5 reports accuracies,
as well as correct and total counts. Of the models tested
in this work, DirecTL+-L achieves the best overall accu-
racy at 96.62% and known stem accuracy at 98.30%, while
DirecTL+-W does best on unknown stems with 61.78%.
Compared to previously reported results in similar circum-
stances, DirecTL+-L still does best overall. SyroMorph’s
hybrid Morfette model (as opposed to its plain Morfette
model) has the best reported unknown accuracy of 78.40%;
however, training and testing scenarios differ here as well:
we trained on 80% and tested on 20% of the data, while
the original SyroMorph was trained on 90% and tested on
10% of the data. The latter difference in data configura-
tion may explain the difference in known accuracy: using
a larger training set makes more of the stems known and
unambiguous at test-time.

DirecTL+-L’s superior performance as measured by
accuracy, is tempered by the time required to train the
model. DirecTL+-L took roughly 25 times longer to train
(100 minutes) than it did to train Morfette-L (3.7 minutes),
which is likely due to the fact that DirecTL+ does Viterbi
decoding during its online discriminative training. The long
training time might be suitable for stem-baseform linkage
in batch, offline processing for small data sets, but it would
scale poorly to our intended machine assistance scenario
where the stem-baseform linkage model is iteratively re-
fined as data is annotated. Morfette-W therefore appears to

be better suited to provide dynamically adaptive machine
assistance as it achieves the second highest overall accu-
racy but can be trained more quickly.

For further comparison, the results reported for dkr-
Morph (Lindgren, 2011) in terms of known accuracy are
higher than ours, but a number of differences make the re-
sults difficult to compare. First and foremost, the task is not
the same: dkrMorph uses the PNT dataset directly from SE-
DRA3 without the additional suffix segmentation informa-
tion employed by our models and with diacritics. Also, the
dataset partition is not the same: dkrMorph trained on 90%
and tested on 10%, 10,960 cases, of the PNT dataset. Over-
all accuracy was 94.42%, and accuracy on known cases was
reported to be 99.75%, while accuracy on unknown cases
was 47.20%.

One possible approach to achieve even better ac-
curacy, and therefore better pre-annotations for use in
machine-assisted corpus-dictionary linkage, is to combine
the strengths of the different models. For example, combine
the memorization of the baseline model—that does well
on seen stems—with the generalization and disambiguation
abilities of the discriminative models for unseen and am-
biguous stems respectively. SyroMorph’s hybrid Morfette
model takes this approach and achieves (now) the second
highest reported overall accuracy on the PNT and the high-
est unknown accuracy. We do not combine models in this
work, but we do conduct error analysis to better understand

3803



All Acc. All Correct Known Acc. Known Correct Unk. Acc. Unk. Correct
Total Count N/A 22,080 N/A 21,269 N/A 811
Baseline 95.57 21,101 98.20 20,887 26.39 214
Morfette-W 96.04 21,205 97.48 20,372 58.32 473
Morfette-L 96.06 21,209 97.47 20,730 59.06 479
DirecTL+-W 92.76 20,481 93.94 19,980 61.78 501
DirecTL+-L 96.92 21,399 98.30 20,907 60.67 492
SyroMorph 96.19 N/R 98.05 N/R 78.40 N/R

Table 5: Accuracy and related counts per model on blind test data. Measures are per stem. Max. values in bold. SyroMorph
results as reported by McClanahan et al. (2010) using a test set with 11,290 stems. N/R indicates not reported.

the strengths and weaknesses of each model.
Returning to the 10-fold cross validation results on the

training and validation data, we examine the true labels on
the test data (per fold, with aggregate statistics reported)
and categorize the stems into the following error cases:

• known stable unambiguous (KSU): the stem has the
same one baseform in the training and test data

• known latent ambiguous (KLA): the stem has one
baseform in the training data, but has one or more ad-
ditional baseforms in the test data

• known stable ambiguous (KSA): the stem has the
same two or more baseforms in the training and test
data

• known dynamic ambiguous (KDA): the stem has
two are more baseforms in the training data, and has
one ore more additional baseforms in the test data

• unknown unambiguous (UU): the stem has one base-
form in the test data

• unknown ambiguous (UA): the stem has two or more
baseforms in the test data

Table 6 reports the 10-fold cross validation performance of
the Baseline, Morfette-L and DirecTL+-L models for each
error case, due to their superior performance.

The known stable unambiguous case is the largest, ac-
counting for about 80% of all of the test stems in each
fold. Out of the unambiguous stems in the training data
(KSU + KLA), 99.1% remain unambiguous at test time,
while 0.9% have new additional baseforms. The baseline
model achieves perfect memorized accuracy on the KSU
stems, and a little above 50% accuracy on KLA stems but
with a standard deviation of 25%, indicating that the novel
ambiguous baseforms occur on average about two out of
four times in the test data. Morfette-L and DirecTL+-L
come close to perfect accuracy for the KSU case as well;
however, more analysis must be done to determine if train-
ing the discriminative models on the high volume of KSU
stems hinders the models’ ability to generalize in the am-
biguous or unknown cases as it might try to focus on mem-
orizing stem-baseform mappings instead. Morfette-L and
DirecTL+-L models perform better than the baseline on the
KLA case, indicating that they can generalize a little bit to
novel baseforms for seen stems.

The known stable and dynamic ambiguous cases (KSA
and KDA) are harder than the known unambiguous (KSU
+ KLA) cases. The baseline model achieves 90.70% on
KSA stems which indicates that most occurrences of an

ambiguous stem use the most frequent baseform seen dur-
ing training. The fact that Morfette-L performs at 90%,
slightly worse than the baseform, implies that it also tends
to predict the most frequent baseform. The DirecTL+-L
model achieves better accuracy than the baseline model, at
93.48%, indicating that it is able to disambiguate among
some stems’ known baseforms. Similar patterns are seen
in the KDA case, although the percentage of test stems that
are even more ambiguous than in the training data is only
0.15% so it is unclear whether DirecTL+-L is generalizing
to capture novel test-time baseforms or just disambiguating
among known baseforms.

Morfette-L and DirecTL+-L are able to generalize
much better than the baseline model for unknown unam-
biguous stems, which is consistent with the overall un-
known performance observed before. However, on un-
known ambiguous stems there is no apparent winner among
the three models given the fact that the number of ambigu-
ous unseen stems is very small. Although the UA error case
is small (0.58% of all unknown tokens, 0.02% overall), fur-
ther analysis might reveal whether the baseline model and
discriminative models use effectively the same generaliza-
tion hypothesis to predict the stem itself as the baseform, or
whether they, in fact, use complementary hypotheses.

7. Conclusion
We evaluated several models for stem-baseform link-

age, a form of corpus-dictionary linkage. We adapted the
DirecTL+ discriminative string transducer and compared
it with the state-of-the-art Morfette lemmatizer and with a
strong baseline. Both Morfette with word or local context
features and DirecTL+ with local context features perform
better than the baseline in overall accuracy. DirecTL+ with
local context achieves about 96.92% overall accuracy on
the Syriac Peshitta New Testament, the best reported accu-
racy on this data set.

In future work we will explore more fully the inter-
active, online setting in which the stem-baseform linkage
model is refined while expert annotators provide additional
links between the corpus and the dictionary. Furthermore,
we intend to explore hybrid models for this linkage task
by combining the best transductive models with the strong
memorizing baseline. From our error analysis it is clear that
with sufficient baseform-linked (labeled) data most of the
remaining unlinked stems are known and unambiguous, so
incorporating a memorization module in the hybrid would
result in high baseline accuracy. Moreover, known ambigu-
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KSU Acc. KSU Correct KLA Acc. KLA Correct KSA Acc. KSA Correct
Total Count N/A 7050± 101 N/A 61± 40 N/A 1297± 55

Baseline 100.00± 0.00 7050± 101 51.10± 24.97 39± 42 90.70± 0.98 1176± 57
Morfette-L 99.04± 0.21 6983± 100 53.59± 23.29 40± 42 90.17± 0.93 1170± 57
DirecTL+-L 99.40± 0.08 7008± 99 55.41± 22.51 41± 42 93.48± 0.86 1212± 56

KDA Acc. KDA Correct UU Acc. UU Correct UA Acc. UA Correct
Total Count N/A 3.4± 2.7 N/A 344± 20 N/A 1.3± 1.1
Baseline 50.44± 15.60 1.8± 1.7 23.03± 4.00 79± 14 27.77± 31.03 0.40± 0.70
Morfette-L 46.87± 23.34 1.7± 1.8 60.41± 2.64 208± 14 36.11± 28.70 0.50± 0.71
DirecTL+-L 53.77± 17.72 1.9± 1.7 59.47± 2.61 205± 15 27.77± 31.03 0.40± 0.70

Table 6: Mean and std. dev. values for accuracy and related counts with 10-fold cross validation. Measures are per stem
token. Maximum mean values bolded per error case. The unknown unambiguous values for Morfette-L are also bolded as
it is the most stable (i.e., has high mean and small variance).

ous stems and unknown stems can be handled in the hybrid
model by a discriminative model (or models) using local
context. As the human annotators work through the corpus,
many stems will be exposed as ambiguous or more ambigu-
ous given novel baseform links from the human annotators.
To assist the annotators in identifying potential ambiguity,
the hybrid model will also need a component model to pre-
dict novel baseforms not currently in the labeled data, or at
least not currently paired with a particular stem type, so as
to detect latent and dynamic stem ambiguity.

We are also intrigued by the root-and-pattern features
of dkrMorph and look forward to exploring those features
further in the discriminative framework.

To provide machine assistance for corpus-dictionary
linkage, we will combine the hybrid stem-baseform linker
model with the SyroMorph segmentation model, likewise
adapted to operate in an iterative transductive fashion, and
a model to disambiguate baseforms among dictionary en-
tries with homographic headwords. This pipeline will then
be used in a live application to assist Syriac scholars link
each word in the corpus of Ephrem the Syrian’s writings to
Jessie Payne Smith’s Compendious Syriac Dictionary.
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