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Abstract
With growing interest in the creation and search of linguistic annotations that form general graphs (in contrast to formally simpler, rooted
trees), there also is an increased need for infrastructures that support the exploration of such representations, for example logical-form
meaning representations or semantic dependency graphs. In this work, we heavily lean on semantic technologies and in particular the data
model of the Resource Description Framework (RDF) to represent, store, and efficiently query very large collections of text annotated
with graph-structured representations of sentence meaning.
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1. Motivation
Much work in the creation and use of language resources
has focused on tree-shaped data structures,1 as are com-
monly used for the encoding of, for example, syntactic or
discourse annotations. Conversely, there has been less fo-
cus on supporting general graphs until recently, but there
is growing interest in graph-structured representations, for
example to annotate and process semantic analyses. Even if
syntax arguably can be limited to tree structures, this is ob-
viously not the case in semantics, where a node will often
be the argument of multiple predicates (i.e. have more than
one incoming arc), and it will often be desirable to leave
some nodes unattached (with no incoming arcs), for seman-
tically vacuous classes as, for example, particles, comple-
mentizers, or relative pronouns.

Large, semantically annotated resources remain scarce,
but several ongoing initiatives promise to deliver
graph-structured linguistic annotations in large vol-
umes (Flickinger et al., 2010; Rosén et al., 2012). Of
these, we will use data from the so-called WikiWoods
Treecache of Flickinger et al. (2010) as our motivating
example, in part because in recent work Flickinger et al.
(2012) have complemented this resource with a collection
dubbed DeepBank, a fresh annotation of the venerable
Wall Street Journal (WSJ) text from the Penn Treebank
(PTB; Marcus et al., 1993), offering the same layers of
semantic annotations as WikiWoods. With some 700,000
tokens of (manually annotated) text in DeepBank and some
48 million (automatically parsed) tokens in WikiWoods,
general-purpose search over linguistic annotations at this
scale is an R&D challenge in its own right, even more
so seeing as both resources make central use of general
graph-structured data. Figure 1 presents an example of
a semantic dependency graph in DeepBank; here, we
observe both node re-entrancies and partial connectivity, as
technique, for example, is the argument of the determiner
(as the quantificational locus), the modifier similar, and

1Formally, trees are a restricted form of graphs, where every
node is reachable from a distinguished root node by exactly one
directed path.

the predicate apply. Conversely, the predicative copula,
infinitival to, and the preposition marking the deep object
of apply have no semantic contribution of their own. We
discuss this example further in §2. below.

In this work, we investigate the use of semantic tech-
nologies, and in particular of the data model of the Re-
source Description Framework (RDF), to represent, store,
and search (very) large-scale linguistic graphs. We demon-
strate how different types of semantic dependency graphs
can be encoded in RDF and discuss some of the design
choices involved; we then summarize a practical experi-
ment, using increasing volumes of data from DeepBank
and WikiWoods and benchmarking two open-source triple
stores. This is in contrast to ongoing work by Meurer
(2012), who (to query the annotations of Rosén et al., 2012)
approaches the same abstract challenge through a general-
ization of the TIGERSearch query language (König & Lez-
ius, 2000) and a custom-built indexing and search infras-
tructure. Ultimately, it will of course be desirable to com-
pare the two candidate solutions with regards to, for exam-
ple, efficiency, scalability, flexibility, and implementation
cost.

2. Example: Semantic Dependency Graphs
Semantic annotations in the DeepBank Treebank and the
WikiWoods Treecache are couched in the framework of
Minimal Recursion Semantics (MRS; Copestake et al.,
2005), a designer language for underspecified logical-form
meaning representation. In ongoing work, we investigate
the embedding of complete MRS graphs into RDF, but in
the following we will focus on two ‘reductions’ of MRS for
reasons of simplicity and space.

Oepen and Lønning (2006) propose a lossy (i.e. non-
reversible) conversion from MRS into a variable-free de-
pendency graph, duped Elementary Dependency Structures
(EDS). Figure 2 shows the EDS analysis for our running
example: graph nodes (one per line) correspond to elemen-
tary predications from the underlying logical form and are
connected by directed arcs, listed in parentheses, which are
labeled with MRS argument roles: ARG1, ARG2, etc. (where
BV denotes what is the bound variable of a quantifier in the
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A similar technique is almost impossible to apply to other crops, such as cotton, soybeans and rice.

ROOT
ARG2 ARG3

ARG1 ARG2 AND_CARG1ARG1

BV

ARG1 CONJARG1

Figure 1: Example bi-lexical semantic dependencies (DM; taken from DeepBank).

full MRS).2 Note that, while EDS already brings us rel-
atively close to ‘classic’ depedency representations, there
are graph nodes that do not correspond to individual words
from our running example, for example the underspecified
quantifiers for the bare noun phrases (udef_q) and the bi-
nary conjunction implicit_conj that ties together cotton with
soybeans and rice; furthermore, just as we saw in Figure 1
already, some words of the underlying sentence are seman-
tically empty; and the EDS does not form a tree, as there
are re-entrancies in the graph (e.g. at node x6).

Our original bi-lexical semantic dependency graph from
Figure 1 above in fact resulted from a further simplifi-
cation step—‘projecting’ predicate–argument information
from the EDS onto individual tokens of the underlying
utterance—defined by Ivanova et al. (2012) as DELPH-IN
MRS-Derived Bi-Lexical Dependencies (DM). Comparing
the two graphs, we observe that some argument relations
pertaining to covert quantifiers cannot be represented in the
pure bi-lexical form, and the coordinate structure has been
‘flattened’ in the spirit of Mel’čuk (1988). Our discussion
of RDF embedding in the following section is applicable
to both types of dependency graphs (and others, similar in
nature), but we will focus on the EDS format, because it is
somewhat richer and more general.

{ e12

1:_a_q(BV x6)
e9:_similar_a_to(ARG1 x6)
x6:_technique_n_1
e12:_almost_a_1(ARG1 e3)
e3:_impossible_a_for(ARG1 e18)
e18:_apply_v_to(ARG2 x6, ARG3 x19)
2:udef_q(BV x19)

e25:_other_a_1(ARG1 x19)
x19:_crop_n_1
e26:_such+as_p(ARG1 x19, ARG2 x27)
3:udef_q(BV x27)
4:udef_q(BV x33)

x33:_cotton_n_1
5:udef_q(BV i38)

x27:implicit_conj(L-INDEX x33, R-INDEX i38)
6:udef_q(BV x43)

x43:_soybeans/nns_u_unknown
i38:_and_c(L-INDEX x43, R-INDEX x47)
7:udef_q(BV x47)

x47:_rice_n_1
}

Figure 2: Elementary Dependency Structure (EDS).

3. Background: RDF and SPARQL
The RDF data model is based upon the idea of mak-
ing statements about resources in the form of subject–

2In the textual rendering of our EDS in Figure 2, nodes are pre-
fixed with unique identifiers, which serve to denote node reentracy
and the targets of outgoing dependency arcs.

predicate–object triples. The subject denotes the resource,
and the predicate denotes traits or aspects of the resource,
thus expressing a relationship between the subject and the
object. A database that can store such expression and eval-
uate queries to them is called a triple store.

The simple data model of RDF and its ability to model
disparate, abstract concepts has also led to its increasing
use in knowledge management applications unrelated to
Semantic Web activity. A collection of RDF statements in-
trinsically represents a labeled, directed multi-graph. As
such, an RDF-based data model is more naturally suited
to certain kinds of knowledge representation than the rela-
tional model and other ontological models.

SPARQL is an RDF query language, that is, a formal lan-
guage to search triple stores, allowing one to retrieve and
manipulate RDF data. It is fully standardized and con-
sidered one of the key technologies of the Semantic Web.
A SPARQL query can consist of triple patterns, conjunc-
tions, disjunctions, and optional patterns. Figure 3 shows
an example, searching for an EDS configuration where ap-
ply takes crops as its ARG3.

PREFIX ltg:<http://www.uio.no/ltg#>
select ?id ?text where {
?x ltg:label "_apply_v_to" .
?x ltg:in ?id .
?y ltg:label "_crop_n_1" .
?x ltg:ARG3 ?y .
?id ltg:text ?text

}

Figure 3: Example SPARQL query.

In this query each line represents a triple, and elements
starting with question mark are variables. The query pro-
cessor searches for sets of triples that match the patterns
expressed in the query, binding variables in the query to
the corresponding parts of each triple. The result of the
SPARQL query is a set of instantiations of the variables
?id and ?text, the identifiers and surface strings for all
matching EDS graphs.

The use of RDF to encode linguistic data is not new. Ar-
guably the most popular type of data stored in RDF are
lexica, instantiating models like Lemon3 or the W3C Sim-
ple Knowledge Organization System (SKOS)4. Chiarcos
(2012) discuss the encoding of linguistically annotated cor-
pora in RDF, suggesting interoperability and query flexi-
bility as key advantages of this approach. Another RDF
framework for the representation of linguistic annotations
is presented by Rubiera et al. (2012), demonstrating that

3http://lemon-model.net/.
4http://www.w3.org/2006/07/SWD/SKOS/xl/

20080414.
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@prefix eds:
<http://www.delph-in.net/rdf/eds#>.

eds:predicate
rdf:type owl:DatatypeProperty;
rdfs:domain eds:Node ;
rdfs:range xsd:string .

eds:carg
rdf:type owl:DatatypeProperty ;
rdfs:domain eds:Node ;
rdfs:range xsd:string .

eds:Role
rdf:type owl:ObjectProperty;
rdfs:domain eds:Node;
rdfs:range eds:Node.

eds:ARG1
rdf:type owl:ObjectProperty;
rdfs:subPropertyOf eds:Role.

...

Figure 4: Excerpt from EDS ontology (in Turtle syntax).

RDF is a suitable data model to capture multiple annota-
tions on the same text segment, and to integrate multiple
layers of annotations. However, both studies are focused
on flat or tree-structured linguistic data.

4. Semantic Dependency Graphs in RDF
To store the MRS, EDS, and DM graphs from DeepBank
and WikiWoods in RDF, we created a small ontology to
represent the semantics of these data types. In a nutshell,
the ontology provides a generic representation of a directed
graph with (potentially complex) node and edge labels. The
full MRS ontology (not discussed in detail here) distin-
guishes different types of nodes, corresponding to full pred-
ications vs. individual logical variables vs. hierarchically
organized sub-properties of variables. The EDS and DM
ontologies, on the other hand, essentially make do with a
single type of graph node (corresponding to the vertices in
the examples of Figures 1 and 2). The dependencies proper,
i.e. labeled arcs of the graph, are encoded as object proper-
ties. A fragment of the ontology created for the EDS format
is shown in Figure 4.

On the node class, the predicate property holds the node
label in EDS.5 In the DM ontology, there are three label-
like node properties: form, lemma, and pos (of which the
latter record additional lexical information, not shown in

5Predicate names in MRS (and thus EDS) by convention have
internal structure, such that there is a design choice here; one
could tease apart separate components as distinct properties, to
make the structure explicit at the cost of increased triple counts,
or simply rely on SPARQL regular expressions over our current
predicate strings.

<_1> eds:predicate "_a_q"^^xsd:string;
rdfs:type eds:Node;
eds:BV <x6>

Figure 5: Example RDF fragment of one EDS node.

Figure 1). We define separate object properties for each ar-
gument label, ARG1, . . . , ARG4, BV, L-INDEX, R-INDEX, etc.
To demonstrate this encoding, Figure 5 shows parts of the
RDF corresponding to the first EDS node in Figure 2. In
general, we have found the RDF and OWL modeling facil-
ities a good match for the linguistic properties of our three
formats for meaning representation, including the use of
multiple inheritance for underspecification in MRS.

5. A First Experiment: Sesame and Jena
As a first calibration experiment, we converted the EDS
graphs from DeepBank and WikiWoods into RDF, yield-
ing around 12 million and 4.3 billion triples, respectively
(for the semantic dependencies of about 37 thousand and
48 million sentences in the two resources, respectively).
Judging from experience reports with contemporary triple
stores, these are large but not unrealistic counts. We have
experimented with two widely used and freely available
triple stores and evaluated their potential to store and query
the triples generated in the two corpora we have converted
in RDF.

One highly flexible triple storage framework is Sesame,6

used in diverse industries such as pharmaceutical, health-
care, and manufacturing for integrating disparate data
sources. It provides a generic application programming in-
terface that allows experimentation with different back-end
implementations of a triple store at low adaptation costs.
Sesame comes with two built-in triple stores, called Mem-
oryStore and NativeStore—keeping data and indexes ei-
ther in-core or on-disk—with different space–time trade-
offs. Storing all semantic graphs from DeepBank in ei-
ther MemoryStore or NativeStore was straightforward, re-
quiring about 3gbyte of memory for in-core storage. Both
stores responded to complex SPARQL queries in fractions
of a second.

The second triple store we have investigated is Apache
Jena.7 It too is an open-source Semantic Web framework
for Java. It provides an API to extract data from and write
to RDF graphs. In many respects, Jena is quite similar to
Sesame; though, unlike Sesame, Jena also provides support
for the Web Ontology Language (OWL), including various
internal reasoners. Like Sesame, Jena offers two imple-
mentations of a triple store, viz. (a) SDB, a store based on
a relational database; and (b) TDB, an on-disk implemen-
tation of a triple store. We measured the performance of
these RDF stores in two types of experiments.

Indexing The first experiment involved the indexing pro-
cess. We have measured the indexing time and the disk
space occupied by each of the implementations of tripple
store in the Sesame and Jena frameworks. For the mem-
ory store we measured the (virtual) memory footprint of the

6http://www.openrdf.org/.
7https://jena.apache.org/
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Sesame Jena
Memory Native SDB TDB

Time 13 sec 25 sec 35 sec 20 sec
Space 1.1GB 800MB 710MB 720MB

Table 1: Indexing time and space for DeepBank.

Sesame Jena
Memory Native SDB TDB

Time (ms) 52 88 122 60

Table 2: Average query repsonse time for DeepBank.

indexing process. The results obtained by this experiment,
using the ‘smaller’ DeeepBank corpus, are show in Table 1.

As is evident from the table, for this data set indexing
times are broadly comparable, and fast enough to store all
of the RDF triples from DeepBank in less than a minute for
the different implementations. Next we have proceeded to
index the RDF triples derived from the WikiWoods corpora.
However, our attempts at injecting increasing portions into
Sesame turned up technical difficulties from about 100 mil-
lion triples upwards, well below the total number of triples
in the resource. We tried to index the triples in portions of
100 milion triples per file. The indexing time of the first
file took than a day to finish. These observations were not
encoraging enough to consider Sesame a good option for
bigger collections of semantic graphs. The indexing speed
of the Jena SDB store was not encoraging either, at about
18 hours for the first 100 million triples. On the other hand,
the Jena TDB store succeded in indexing all the triples de-
rived from the Wikiwods corpus in 42 hours. It occupied
750GB of disk space.8

Search In this second experiment, we seek to compar the
response times for each of the triple store implementations
in Sesame and Jena. The experiment consisted in evalu-
ating ten hand-constructed queries with different complex-
ity, measuring the average speed with which each imple-
mentaion returns the expected result. As we were not able
to index the WikiWoods corpus in Sesame or Jena SDB,
we compared only the indexes generated for the DeepBank
data. The results obtained in this experiment are shown in
Table 2.

Although a comparison in terms of artificially constructed
queries may not be fully indicative of end user experience,
assuming there would potentially be a larger variability in
queries posed by actual users, our results for DeepBank
suggest that all four RDF triple stores provide a fully vi-
able solution to search over a substantive collection of se-
mantic graphs. This even more so, as in our ongoing work
on building on-line search services (see §6. below) we can
at times obtain great reductions in query times by combin-
ing the RDF triple store with a family of simple textual in-
dexes (hash tables, essentially), to perform query optimiza-

8There exist triple stores like AllegroGraph (http://www
.franz.com/agraph/allegrograph/) with success sto-
ries of triple sets counting in the trillions, albeit on fairly high-end
hardware. Part of our objective is to see how far current RDF
technologies can be pushed on modern commodity equipment.

tion, for example ording the sub-components of a SPARQL
query according to ‘specificity’, i.e. the number of matches
found for a token string or wildcard. In this benchmark,
Jena TDB (using on-disk storage, where in our setup we
keep all indexes on a RAID of solid-state drives) performs
nearly competitive to the in-memory triple store of Sesame.
Combined with its greatly superior scalability to the much
larger WikiWoods corpus, we conclude that Jena TDB on
balance is the best choice for our needs, among the four
solutions benchmarked to date.

6. For Non-Experts: Query by Example
Using SPARQL to search for potentially complex seman-

tic relations in an RDF triple store requires an understand-
ing of both (a) the target representations and (b) the inter-
nal structures of the embedding RDF model. We believe
that RDF technologies score high on expressivity as well as
scalability, but obviously a query like the one in Figure 3
will be hard to pose for non-experts. To lower the techno-
logical barrier to entry, we are currently experimenting with
a query-by-example front-end to the Jena query processor,
essentially defining a generalization of the textual EDS rep-
resentation to express search patterns over either the MRS,
EDS, or DM formats.. For example, the where condition
of our above SPARQL query could be characterized as fol-
lows:

{_apply_v_to(ARG3 x ), x :_crop_n_1}

With suitable user interface support, a pattern like this can
be expanded into a full-blown SPARQL query by a proce-
dure similar to the mapping from EDS to RDF triples. In a
sense, this technique can be interpreted as a templatic meta-
language for (parts of) SPARQL queries, and we anticipate
using a similar approach for the incorporation of additional
custom (linguistic) query operators (as defined natively in
the infrastructure of Meurer, 2012, for example).

As a first ‘production’ instance of this paradigm, we have
built a public search interface to the semantic dependency
graphs used in Task 8 of the 2014 Workshop for Semantic
Evaluation (SemEval).9 This data combines the DeepBank
DM graphs with another two formats for bi-lexical seman-
tic dependency graphs (called PAS and PCEDT), over the
same set of sentences. With minimal adaptations to the DM
ontology, and defining a simple and compact query lan-
guage along the lines above, we have been able to import
this data into our infrastructure and have the impression
that the resulting on-line search service is perceived well.
Figure 6 shows a sample session, searching for object equi
verbs, i.e. a configuration of two DM nodes (described one
per line in the query interface) that both share an argument:
the variable ‘x’ in this example identifies the shared argu-
ment, which is the ARG2 (deep object) of one DM node, and
ARG1 (deep subject) of another. In addition to the shared ar-
gument between the two nodes, the second DM node in the
query (identified by the variable ‘e’) is further required to

9http://alt.qcri.org/semeval2014/task8/
provides more details on this task and on the data involved,
as well as a link to the on-line search interface built from the
techniques discussed here.
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Figure 6: DM search interface and result visualization, as used in conjunction with Task 8 of SemEval 2014.
.

have a verbal pos property (indicated by the ‘/’ search op-
erator in conjunction with ‘*’ wildcarding), and be any type
of argument to the first of the two nodes.

7. Ongoing & Future Work
This preliminary report on our ongoing efforts to adapt
stock RDF technologies to the storage and retrieval of vast
volumes of graph-structured linguistic annotations demon-
strates the general feasibility of semantic technologies for
storing and querying the substantial number of semantic
graph in the DeepBank Treebank. In a sense, Jena provided
us with a versatile search solution for the relatively complex
linguistic annotations in a comparatively large treebank (of
some 37,000 sentences) at quite moderate implementation
cost.

In future work we seek to analyze more thoroughly the
space of possible encodings and storage solutions, with the
goal of documenting relevant trade-offs and limits to scal-
ability and making available on-line additional search in-
terfaces to common (semantic) annotation formats and data
sets.10 At the same time, we are working to generalize and
parameterize our code base, so as to make it available for
re-use and adaptation under an open-source license.

Besides such technical experimentation, we are also
keenly interested in the application of additional semantic
technologies, in the general realm of reasoning over RDF
triple stores. To offer at least an indication of the direction
of this work, in our running example crops, the third seman-
tic argument to the apply predicate, is related to cotton, soy-
beans, and rice through a two-place relation introduced by

10See http://wesearch.delph-in.net/ for an up-to-
date list of existing semantic search interfaces built on top of our
RDF-based infrastructure.

the multi-word preposition such as. In this configuration,
it is a common ‘inference’ to interpret the ARG2 of such
as as an instance of the broader crops class; furthermore,
the three-way conjunction allows a distributive reading—
informally speaking, multiplying out incoming dependen-
cies to all leaf nodes in the coordinate structure, as is for
example done in the dependency scheme of de Marneffe
and Manning (2008). There are several candidate solutions
in the Semantic Web ecosystem that would seem to allow
the encoding and processing of such rules of ‘inference’
over the RDF universe, thus in principle making it possi-
ble to also allow queries for (a generalized version of) the
ARG3 of apply to match the nodes x33 (cotton), x43 (soy-
beans), and x47 (rice) from Figure 2. This potential ca-
pability, in our view, further goes to show that semantic
technologies—with built-in, general support for ontologi-
cal modeling, directed labeled graphs, and (some) tractable
reasoning capabilities—warrant more in-depth exploration
for problems in language resource creation and use.
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