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Abstract

Data annotation in modern practice often involves multiple, imperfect human annotators. Multiple annotations can be used to infer

estimates of the ground-truth labels and to estimate individual annotator error characteristics (or reliability). We introduce MOMRESP,

a model that improves upon item response models to incorporate information from both natural data clusters as well as annotations

from multiple annotators to infer ground-truth labels for the document classification task. We implement this model and show

that MOMRESP can use unlabeled data to improve estimates of the ground-truth labels over a majority vote baseline dramatically

in situations where both annotations are scarce and annotation quality is low as well as in situations where annotators disagree

consistently. Correspondingly, in those same situations, estimates of annotator reliability are also stronger than the majority vote

baseline. Because MOMRESP predictions are subject to label switching, we introduce a solution that finds nearly optimal predicted

class reassignments in a variety of settings using only information available to the model at inference time. Although MOMRESP

does not perform well in annotation-rich situations, we show evidence suggesting how this shortcoming may be overcome in future work.

Keywords: Bayesian models, corpus annotation, crowd-sourcing, identifiability

1. Introduction

To build labeled corpora and to train NLP models using

supervised learning methods we rely heavily on imperfect

annotators, ranging from nearly perfect experts to very im-

perfect workers in crowd-sourcing settings. Often we rely

on multiple annotators providing redundant annotations to

improve the quality of the resulting labeled data. Although

annotations produced by fallible annotators are not individ-

ually trustworthy, they can be used collectively to infer the

correct labels for data and also to estimate annotator error

characteristics. To be clear, in this paper, we use the term

annotation to refer to human input and label to refer either

to gold-standard reference labels or to model-predicted la-

bels.

In the machine learning literature, annotations are use-

ful first and foremost as a means of inducing a model that

can be used to predict the labels of new data. In other fields,

corpus labels are interesting in their own right because they

facilitate meaningful data analysis. For example, corpus

linguists employ corpora labeled with linguistic categories

to aid in the analysis of diachronic trends and patterns in

language (Kucera and Francis, 1967; Gardner and Davies,

2007). Estimating ground-truth labels is closely related to

the task of learning individual annotator error characteris-

tics, since these can be used to upweight trustworthy an-

notations and downweight others. Annotator error profiles

can also be used to elucidate opportunities to retain, train,

and advise annotators.

In this paper we introduce, implement, and evaluate a

model for the inference of ground-truth labels and anno-

tator reliability that utilizes features of the data as well as

annotations from multiple annotators; the two sources of in-

formation reinforce one another and make possible ground

truth inference that is superior to the available baselines.

∗The first and second authors contributed equally to this work.

The second author is now affiliated with Google.

2. Previous Work

Dawid and Skene (1979) laid the groundwork for in-

ferring ground-truth labels and estimating individual anno-

tator accuracy by proposing a statistical model known as

the “item-response” model. Carpenter (2008) and Paster-

nack and Roth (2013) describe models that are essentially

Bayesian versions of the same model. There is a grow-

ing body of variations and extensions to this simple item-

response model to account for correlations among annota-

tors or item difficulty (Carpenter, 2008; Hovy et al., 2013;

Lin et al., 2012; Raykar and Yu, 2012; Smyth et al., 1995;

Weld et al., 2011; Whitehill et al., 2009; Zhou et al., 2012).

Only human annotations are leveraged in the previously de-

scribed approaches. However, Lam and Stork (2005), in ef-

fect, extend the item-response model such that the inferred

label of a data item depends not only on annotations, but

also on the features of the data instance itself. Carroll et al.

(2007) propose a model that similarly takes advantage of

data features. However, neither of these proposed models

is implemented or evaluated in previous work.

Inferring labels and estimating annotator trustworthi-

ness can be seen as special cases of the fact-finding task

(Han, 2009; Pasternack and Roth, 2010) in which the an-

notators are sources of information and their annotations

are claims. However, the general task of fact-finding is far

more complex than the special case of data annotation.

Furthermore, there is a good deal of work focused on

the machine learning problem of training a useful model

from multiple error-prone annotations, especially in light

of recent interest in crowd-sourcing. However, much of

this work relies more on heavy redundancy than sophisti-

cated aggregation techniques (Snow et al., 2008). The de

facto standard approach is to infer ground-truth corpus la-

bels using a simple majority vote, assess inter-annotator

agreement to gain some confidence in the quality of the

labels, and then pass the resulting labeled corpus to a ma-
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J := number of annotators

K := number of labels

N := number of instances

F := number of features(word types)

θ ∼ SymDir(bθ ), dim(θ) = K

∀k : φk ∼ SymDir(bφ ), dim(φk) = F

∀ j,k : γ jk ∼ Dir(bγ jk
), dim(γ jk) = K

dim(γ j) = K ×K

∀i : yi|θ ∼Cat(θ), yi ∈ {1 . . .K}

∀i : xi|yi,φ ∼ Multinom(|xi|1,φyi
), dim(xi) = F

∀i, j : ai j|yi,γ j ∼ Multinom(|ai j|1,γ j,yi
), dim(ai j) = K

Figure 1: MOMRESP: a generative Bayesian model for in-

ferring ground-truth labels y from the annotations a of mul-

tiple annotators and from data x while modeling individual

annotator accuracies γ . ( | · |1 denotes the L1-norm.)

chine learning algorithm in order to train the desired model

in the traditional batch manner. Sheng et al. (2008) con-

struct training corpora in which each instance, annotated n

times, is replicated with each annotation and weighted by
1
n
. Models trained from this ‘soft’ labeling are shown to al-

ways be at least as good as, and usually better than, those

trained by majority vote. Jurgens (2013) experiments with

constructing similar weighted datasets using explicit anno-

tator input.

3. Methods

To take advantage of the opportunities presented by nat-

ural data clusters and multiple, potentially sparse annota-

tions, we now present MOMRESP, a generative Bayesian

model that can infer ground-truth labels from multiple,

noisy annotators and simultaneously estimate the error char-

acteristics of each annotator. We also present an MCMC

inference algorithm for the model.

3.1. Model

MOMRESP is inspired by Bayesian models described,

but not implemented or evaluated, in previous work (Car-

roll et al., 2007; Carroll, 2010; Haertel, 2013). It is called

MOMRESP because it adds a mixture-of-multinomials

(MOM) data component to a Bayesian item-response model.

The model is based on three main principles:

1. Ground-truth labels y are unobservable.

2. All annotations a may carry useful information, even

when incorrect.

3. A document’s words x can help in determining a doc-

ument’s label y.

Figure 1 presents the model as a directed graphical

model. The model assigns probability to variables as

though they were generated according to the following pro-

cess. First, label class proportions θ and word proportions

φk for each label class k ∈ {1 . . .K} are drawn. (K is the

number of label classes.) For each annotator j ∈ {1 . . .J},

a probability vector γ jk is drawn specifying the probabili-

ties of the annotations annotator j is likely to produce in

the presence of the label class k. (J is the number of an-

notators.) Thus, γ j can be seen as an annotator j-specific

confusion matrix (alternatively: a contingency table or er-

ror matrix), where each row sums to 1. For each of the

N documents, the ith annotated document is generated by

drawing a document label yi from the categorical distribu-

tion Cat(θ) and then drawing words xi from a multinomial

distribution with parameters φyi
and drawing annotations

ai j from a multinomial distribution with parameters γ jyi
.

Notice that in the absence of annotations a, this model

reduces to a mixture-of-multinomials document clustering

model. In the absence of any data x, this model becomes a

multinomial item-response model—a Bayesian version of

the approach of Dawid and Skene (1979).

3.2. Inference

Having formulated a generative model and specified a

distribution over every variable in the model means that we

can apply standard Bayesian statistical machinery such as

Markov Chain Monte Carlo inference to the task of infer-

ring the values of hidden labels y and annotator error char-

acteristics γ given some observed set of documents x and

annotations a, however incomplete the annotations may be.

We derive an efficient collapsed Gibbs sampler for y. Then

the per-annotator confusion matrix γ is constructed from

these samples after-the-fact, as described below.

Liu (1994) provides empirical and theoretical evidence

that analytically integrating out parameters where possible

(i.e., ‘collapsing’ the model) improves Gibbs sampling. Ac-

cordingly, we derive a collapsed sampler by analytically in-

tegrating out the parameters of the model (θ , φ , γ).

Let p(yi = c|yi′ 6=i) be the full conditional distribution

for yi. It represents the conditional distribution over possi-

ble values c for yi given the data and annotations and sam-

ple values for all other latent class labels yi′ where i′ 6= i.

We omit its derivation due to space constraints, merely not-

ing that it is very similar to the derivation for a mixture-of-

multinomials model (Walker, 2012). For notational simplic-

ity, we define the following count variables, which are dis-

ambiguated by the letters of their superscripts. For the pur-

pose of the full conditionals, each count variable excludes

the counts associated with the instance i being sampled (in-
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dicated by sums over i′ 6= i):

∀k : n
(θ)
k =

N

∑
i′ 6=i

1(yi′ = k)

∀ j,k,k′ : n
(γ)
jkk′

=
N

∑
i′ 6=i

a
1(yi′=k)

i′ jk′

∀k, f : n
(φ)
k f =

N

∑
i′ 6=i

x
1(yi′=k)

i′ f
.

That is, n
(θ)
k is the number of instances currently labeled

k; n
(γ)
jkk′

is the number of times that annotator j chose anno-

tation k′ on instances labeled k; and n
(φ)
k f is the number of

times word (or feature) f occurs with instances having an

inferred label value of k.

Using these count variables, the full conditional distri-

bution for the MOMRESP model has the following form:

p(yi = c|yi′ 6=i) ∝ (bθ +n
(θ)
c )

·
J

∏
j=1

(

K

∑
k′=1

(

bγ j
+n

(γ)
jck′

)

)−∑K
k′=1

ai jk′ K

∏
k′=1

(

bγ j
+n

(γ)
jck′

)ai jk′

·

(

F

∑
f=1

(

bφ +n
(φ)
c f

)

)−∑F
f=1 xi f F

∏
f=1

(

bφ +n
(φ)
c f

)xi f

(1)

where the notation xn̄ represents the rising factorial defined

as xn̄ := x(x+1)(x+2) . . .(x+n−1) and x−n̄ := 1

xn̄ .

Gibbs sampling yields samples that consist of label val-

ues for each yi. In our sampling experiments, we use the

label values y in the single last sample of the Markov chain

as the predicted corpus labels. Walker (2012)’s experiments

with a sampler for the mixture-of-multinomials model re-

veals that taking the last sample is an efficient way to sum-

marize the Markov chain without sacrificing the quality of

the samples. In order to estimate the accuracy vector γ jk

for annotator j on label k, we compute the mean of the

Dirichlet distribution for γ jk using the sufficient statistics

n
(γ)
jkk′

. The mean values of θ and φ are similarly estimated

using n
(θ)
k and n

(φ)
k f , respectively. In order encourage our

sampler to explore effectively, we anneal our sampler with

250 samples at each temperature of the following schedule:

1000,500,200,100,50,20,10,5,2,1. This is followed by

an additional 500 samples without annealing.

3.3. Class Correspondence Correction

The problem of class correspondence, or label switch-

ing, arises in unsupervised and semi-supervised mixture

models (Stephens, 2000). The model described in Section

3.1. assigns the same probability to any permutation of the

inferred class label types assignable to y. That is, we could

relabel every y whose value is class A to class B and vice

versa as long as we also swapped the rows in γ and φ that

correspond to class A and class B. The model has no reason

(aside from weak prior preferences) to prefer one of these

solutions over the other. However, inferred labels y are only

useful when they align with true gold-standard labels; there-

fore, we must solve the class correspondence problem.

Stephens (2000) points out that the problem of finding

an optimal (with respect to some loss function) reassign-

ment of inferred label classes can be posed and efficiently

solved as an instance of the well-known assignment prob-

lem. In this formulation, we have K ‘source’ classes as a

result of sampling, and each source class will be assigned

to one of K ‘destination’ classes. Let L(c′,c′′) be some loss

function that defines the cost of (re-)assigning source class

c′ to destination class c′′. Each possible assignment from

c′ to c′′ is represented with a boolean variable πc′c′′ , where

πc′c′′ = 1 indicates the presence of an assignment in the fi-

nal solution, and πc′c′′ = 0 indicates absence. Our objective

is to discover the solution π that minimizes

K

∑
c′=1

K

∑
c′′=1

πc′c′′L(c
′
,c′′)

subject to the following constraints

∀c′ ∈ {1 . . .K} :
K

∑
c′′=1

πc′c′′ = 1

∀c′′ ∈ {1 . . .K} :
K

∑
c′=1

πc′c′′ = 1

∀c′,c′′ : πc′c′′ ≥ 0

The first set of constraints ensures that each source class

is assigned once. The second set ensures that each desti-

nation class receives a single assignment. The final con-

straints ensure non-negativity. Although this formulation

allows for fractional assignments, the optimal solution is

guaranteed to have integer values because the constraint ma-

trix is totally unimodular (Burkard et al., 2009).

3.4. Loss Functions

The problem remains of choosing a loss function L. In-

tuitively, L’s purpose is to penalize decisions that assign in-

ferred label classes to the wrong gold-standard label classes.

We experiment with three loss functions. The first relies on

gold-standard labels; the second two do not.

CorrectCount

Confronted with a similar semi-supervised class corre-

spondence problem, Nigam and McCallum (2006) note that

it would be a relatively simple matter to align a small num-

ber of latent classes manually with true classes by inspect-

ing a few documents assigned to each class. The CORRECT-

COUNT loss function automates this insight by assuming

that some number of gold-standard labels are available for

the purposes of empirical class alignment. Predicted labels

y are compared with gold-standard labels to compute an er-

ror matrix E where Ekk′ is the number of times a document

with the gold-standard label k was predicted by the model

to have label k′. The ideal E is diagonal because a diago-

nal error matrix represents no errors in the predicted labels.

Transposed columns in E indicate that the model is “calling

things by the wrong name,” a symptom of label switching

in the inference process. Correcting transposed columns

involves changing the predicted label class at index c′ to

some better position c′′. CORRECTCOUNT measures the
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magnitude of the diagonal entry of the moved column in its

destination position:

LCC(c
′
,c′′) =−Ec′′c′

This loss function favors column assignments with strong

diagonal entries (i.e., good label accuracy) in a given error

matrix E. It is implicitly parameterized by the number of

gold-standard labels used to generate E. Were this num-

ber to equal the size of the corpus (an untenable situation),

using the resulting CORRECTCOUNT loss function in con-

junction with the LP solver would yield the highest possible

label accuracy achievable with any solution to the class cor-

respondence problem.

BestAnnotator

Assembling gold-standard labels is cumbersome, and it

begs the question which MOMRESP aims to address in the

first place. The BESTANNOTATOR loss function instead

only uses parameter estimates found in the model. Recall

that inference yields estimates of error characteristics γ j for

each annotator j, and each γ j matrix can be viewed as a

normalized confusion matrix. When inferred label classes

are permuted, the rows of matrix γ j are permuted. Suppose

there is an annotator ĵ whose annotations we believe to be

mostly in accord with the truth; i.e., for no class k is she

more likely to choose some other class k′. Unfortunately,

the model’s predicted γ ĵ is subject to label switching, man-

ifested as permutations of the rows of ĵ’s true confusion

matrix. Then our belief is that with the correct row order-

ing, γ ĵ is strongly diagonal. Thus, the intuition underlying

the BESTANNOTATOR loss function is that the overall di-

vergence of a given γ j from the identity matrix — assuming

γ j’s rows are in the proper order — should be small. Conse-

quently, we define this loss function using KL Divergence

from the indicated row of the identity matrix I:

LBA(c
′
,c′′) = KL(Ic′′ ||γ ĵc′)

AggregateAnnotator

Rather than relying on a single annotator, we might try

aggregating across annotators. AGGREGATEANN assumes

that for no class k are all annotators more likely to choose

some other class k′. Thus, we aggregate the error charac-

teristics γ of all annotators. Summed rows would not con-

stitute probability vectors, so rather than normalizing the

summed probability vectors and employing KL divergence,

this loss function measures the aggregated diagonal entry

of the row in its proposed destination c′′:

LAA(c
′
,c′′) =−

J

∑
j=1

γ jc′c′′

4. Experiments

Models dealing with multiple error-prone annotations

can be challenging to evaluate in a controlled way because

multiply-annotated benchmark datasets for classification

have not been established. Sheng et al. (2008) simulate

annotations for an annotator by corrupting the ground-truth

labels according to an accuracy parameter associated with

that annotator. They use a strategy they term Generalized

A1 A2 A3 A4 A5

HIGH 90 85 80 75 70

MED 70 65 60 55 50

LOW 50 40 30 20 10

CONFLICT 50† 40† 30† 20† 10†

Table 1: Annotator (A1-A5) accuracies for each quality

level (HIGH, MED, LOW, CONFLICT). † indicates that

errors are systematic (see text for details).

Round Robin (GRR) for determining which data instances

are annotated and with how many annotations. In GRR, an

instance is selected at random (without replacement) to be

annotated d separate times by annotators selected randomly

with replacement. After all instances have been annotated,

the process is repeated. Thus, an instance can be annotated

more than d times if revisited. GRR simulation has two

parameters of interest: the number d of annotations per in-

stance per round and annotator quality.

We use GRR with annotators from the quality pools

(one named pool per row) in Table 1. Each pool lists the ac-

curacy of five annotators, A1-A5 (five is an arbitrary choice

for the experiments). In the quality settings HIGH, MED,

and LOW, annotator errors are distributed uniformly across

the incorrect classes. Because there are no patterns among

errors, these settings approximate situations in which anno-

tators are ultimately in agreement about the task they are

doing, although some are better at it than others.

LOW

0.60

0.65

0.70

0.75

0.80

d =
 1

 0  4  8 12
Number of simulated annotations x 10,000

A
cc

ur
ac

y algorithm

LP

Greedy

Figure 2: Linear Programming (LP) versus Greedy search

(Greedy) for class correspondence correction. Both ap-

proaches use the same CorrectCount loss function.

The CONFLICT quality setting in Table 1 is special in

that annotator errors are systematic rather than uniform ran-

dom. Systematic errors are produced at simulation time

by constructing a confusion matrix (similar to ‘γ’) for each

simulated annotator with diagonals set to the desired ac-

curacy, and with off-diagonals sampled from a symmetric

Dirichlet distribution with parameter 0.1 for sparsity and

then scaled so that each row sums to 1. These draws from

a sparse Dirichlet yield error patterns that are quite self-

consistent. For example, annotator A5 in the CONFLICT

setting will label class B as B only 10% of the time, but

might label B as C 85% of the time. CONFLICT approx-

imates an annotation project where annotators understand

the annotation guidelines differently from one another.

3707



CONFLICT LOW

0.3

0.4

0.5

0.6

0.7

0.8

d =
 1

 0  4  8 12  0  4  8 12
Number of simulated annotations x 10,000

A
cc

ur
ac

y

algorithm

CorrectCountAll

CorrectCount200

CorrectCount100

CorrectCount50

CorrectCount20

Figure 3: Correcting the class correspondence problem using the CORRECTCOUNT loss function with various amounts of

manually labeled data to create its error matrix. Notice that performance does not plateau until about 200 items have been

manually labeled, or 10 per class.

CONFLICT LOW

0.0

0.2

0.4

0.6

0.8

d =
 1

 0  4  8 12  0  4  8 12
Number of simulated annotations x 10,000

A
cc

ur
ac

y

algorithm

None

CorrectCountAll

BestAnnotator

AggregateAnn

Figure 4: Class correspondence correction strategies. NONE takes the raw sampling results in which classes are essentially

randomly permuted. CORRECTCOUNT uses information from gold-standard labels for all the data and is an upper bound

on what is possible. BESTANNOTATOR uses the γ j of an arbitrarily selected annotator j. AGGREGATEANN uses the

aggregated γ matrices of all annotators, and performs at nearly the level of the upper bound in all settings tested (including

those not shown).

We use GRR to simulate the annotators in Table 1 an-

notating the 20 Newsgroups data set (Joachims, 1997),

which consists of approximately 20,000 documents evenly

divided among 20 classes. For each experiment, we ran-

domly select a subset of 17,000 documents to serve as

our corpus. 20 Newsgroups is an appropriate dataset be-

cause it is a well-known text classification benchmark and

has been used by previous work in evaluating related semi-

supervised mixture-of-multinomials models (Nigam et al.,

2006). In all plots, all graphed lines represent at least 20

randomized runs on different simulations (the corpus and

annotations change in every simulation), with error bars—

too small to see in most cases—representing one standard

deviation.

4.1. Class Correspondence Correction

In Section 3.3. we explained that label switching among

predicted label classes could be rectified by defining a loss

function over potential label class reassignments and using

linear programming to find the label class permutation in-

curring the smallest possible loss overall. To confirm that

linear programming is worth the time required to imple-

ment, Figure 2 demonstrates that in practice, using linear

programming to find the optimal alignment solution yields

gains over a simple greedy solution. Figure 2 graphs the

model’s inferred label accuracy after sampling and post hoc

class correspondence correction. Greedy and LP both use

the CORRECTCOUNT loss function with access to a full

confusion matrix, and both are given the same set of sam-

pled model parameters to correct. Greedy assembles a so-

lution by iteratively selecting the source class k correspond-

ing to the error matrix column with the largest value, and

then assigning it to the unclaimed destination class k′ that

will result in the largest value along the diagonal of the error

matrix. The optimal linear programming search, although

slower in practice, yields answers with a higher mean and

less variance than the greedy search.

In Figure 3 we explore how much manually labeled data

the CORRECTCOUNT loss function requires in order to be

effective. CorrectCount20 has access to 20 randomly se-

lected labeled instances, CorrectCount50 has access to 50,

and so on. CorrectCountALL has access to the full er-

ror matrix and should therefore be regarded as an upper

bound on improvements to be gained from realigning in-
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CONFLICT LOW
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Figure 5: Inferred label accuracy on the 20 Newsgroups dataset

ferred label classes. Notice that once approximately 200

gold-standard labels are available then CORRECTCOUNT’s

performance reaches its peak. That is roughly 10 labels per

class, and represents a non-negligible amount of work.

So as not to be dependent on any gold-standard la-

bels, the loss functions BESTANNOTATOR and AGGRE-

GATEANN use only inferred model parameters γ . Figure 4

compares their behavior with the upper bound CORRECT-

COUNT and ‘None,’ which indicates the performance of

samples whose latent class correspondence has not been

corrected. BESTANNOTATOR struggles badly in the CON-

FLICT setting in which annotators make systematic errors.

This is unsurprising, since CONFLICT violates the assump-

tion made by BESTANNOTATOR that an annotator exists

who is basically aligned with the truth. BESTANNOTATOR

does better in LOW where errors are made uniformly ran-

domly, however it still takes some time to overcome data

sparsity. AGGREGATEANN is robust to the systematic er-

rors in CONFLICT because the patterns in the errors are

washed out in aggregate. AGGREGATEANN is also more ro-

bust to data sparsity since it does not limit itself to drawing

on information from a single individual’s annotations. AG-

GREGATEANN follows the upper bound CORRECTCOUNT

so closely that we use it for all subsequent experiments.

Although because of space constraints we have focused

on select experimental conditions, the patterns seen in Fig-

ures 2, 3, and 4 hold for all other unshown experimental

settings, including for the MED and HIGH annotation set-

tings.

4.2. Inferred Label Accuracy

We now compare MOMRESP with majority vote,

dubbed MAJORITY. We run simulations that sweep the

annotator quality pools from Table 1 and annotations d ∈
{1,2,3,5,10} per instance per round. Accuracy is com-

puted by comparing the withheld gold-standard labels to the

label inferred by the model with corrected class correspon-

dences. In order to examine the question of inferred label

quality, this section examines accuracy over all items in the

dataset with one or more annotations. In Figure 5 we chart

accuracy as a function of the number of simulated annota-

tions. Because there may be multiple annotations per doc-

ument, these learning curves extend beyond the length of

the corpus. Curves end when every document has roughly

7 annotations.

Majority vote (MAJORITY) suffers from a number of

shortcomings. Because it shares no information among

instances, accuracy is constant until every item in the

dataset has been selected for annotation at least once

(at x-coordinate 17,000 · d) and instances begin to be re-

annotated. Not surprisingly, when annotation quality is

high and there are enough annotations per instance, major-

ity vote is sufficient to always select the correct label; e.g.,

when d = 10 and annotator quality is HIGH (not shown).

However, when annotations are sparse or of low quality,

there is significant room for improvement above the base-

line. Also notice that because majority vote implicitly as-

sumes that annotation errors are uniform random, MAJOR-

ITY particularly struggles to deal with the systematic errors

encountered in CONFLICT.

MOMRESP is superior to MAJORITY in the annotation

settings considered in Figures 5 and 6. MOMRESP allows

information from the features (word counts) to be used

when selecting a label; in effect, the features get a vote

alongside the annotations. Furthermore, class-conditional

word probabilities φ are shared among both annotated and

unannotated instances. Thus, MOMRESP is able to lever-

age information from all instances when inferring labels

for instances with annotations. This gives MOMRESP a

tremendous advantage in the early stages of corpus anno-

tation when annotations are too sparse or uncertain to trust,

such as where d = 1 and annotator quality is LOW.

4.3. Annotator Error Estimation

We now measure the effectiveness of the model in learn-

ing annotator accuracy. Because we simulated annotator er-

ror characteristics, we can compare model predictions with

the truth. We compute expected annotator accuracy accord-
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Figure 6: Root mean squared error (RMSE) between true and estimated annotator accuracy.

ing to each model and compare those predictions with the

simulation parameters used to generate the dataset. These

differences are aggregated across all annotators using root

mean-squared error. When RMSE is high, estimates of an-

notator accuracy are poor; when it is low, estimates are

good. For MOMRESP, expected annotator accuracy is com-

puted by inspecting the diagonals of the γ matrices. We

compare with a baseline approach (MAJORITY) defined to

be the percentage of times that each annotator agreed with

the majority vote label.

Figure 6 shows that a model’s ability to accurately learn

annotator error characteristics is closely related to its abil-

ity to infer correct corpus labels. MOMRESP enjoys an ad-

vantage in settings stages when it can use data evidence to

assess the likely quality of sparse annotations. MAJORITY

overtakes MOMRESP as redundant annotations accumulate.

MAJORITY provides poor estimates when faced with sys-

tematic annotator error in CONFLICT.

4.4. Failure Cases

The modeling assumptions made in MOMRESP cause

it to perform very poorly in settings where annotations are

far more informative than the natural data clusters. MOM-

RESP assumes that documents were generated by selecting

a class y and subsequently selecting words x and annota-

tions a based on class y. Accordingly, during inference

words and annotations are given equal consideration. How-

ever, when annotations are highly accurate and sufficiently

abundant, they contain far more information than the aver-

age word. For example, in Figure 7 annotators are highly

accurate, and each document has at least 3 annotations at

all times.

To test our hypothesized explanation of MOMRESP’s

bad behavior in these situations, we tried removing the

model’s data component, effectively turning it into a

Bayesian item-response model. This data-insensitive

model is called ITEMRESP in Figure 7. Notice that ITEM-

RESP performs as well as MAJORITY in annotation-rich set-

tings, but lacks the advantages of MOMRESP in annotation-

poor settings such as at the beginning of the MED col-
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Figure 7: Label accuracy (top) and RMSE between true and

estimated annotator accuracy (bottom). d=3 indicates that

each document is labeled 3 times before moving to the next

document, and MED and HIGH indicate that annotations

are highly reliable. MOMRESP’s data component becomes

a liability in these situations.

umn. These complementary strengths and weaknesses sug-

gest that were a model able to give appropriate weight to

the evidence coming from document words, it could en-

joy the complementary strengths of MOMRESP and ITEM-

RESP. Preliminary tests using ad-hoc weighting methods

are promising. A better solution will build the data compo-

nent weighting into the model in a principled way.

5. Conclusions and Future Work

We have presented MOMRESP, a model that incorpo-

rates information from both natural data clusters as well as

annotations from multiple annotators to infer ground-truth

estimates for the document classification task. We have

demonstrated that MOMRESP can use unlabeled data to im-

prove estimates of the ground-truth labels over a majority

vote baseline dramatically in situations where both anno-

tations are scarce and annotation quality is low as well as

in situations where annotators disagree consistently. Corre-
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spondingly, in those same situations, estimates of annota-

tor reliability are also stronger than the baseline. Because

MOMRESP predictions are subject to label switching, we

identified a solution that found nearly optimal predicted

class reassignments in a variety of settings using only in-

formation available to the model at inference time. MOM-

RESP does not perform well in cases where annotations are

more informative than natural data clusters. We showed

that when the data component is removed from the model

— turning it into a Bayesian item-response model — it per-

forms well in annotation-rich settings at the expense of per-

formance in annotation-poor settings. Future work will fo-

cus on combining the complementary strengths of MOM-

RESP and data-ignorant item-response models by refining

the structure of the model to weight the information from

the model’s data component in a principled way.
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