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Abstract
Current approaches to sign recognition by computer generally have at least some of the following limitations: they rely on laboratory
conditions for sign production, are limited to a small vocabulary, rely on 2D modeling (and therefore cannot deal with occlusions
and off-plane rotations), and/or achieve limited success. Here we propose a new framework that (1) provides a new tracking method
less dependent than others on laboratory conditions and able to deal with variations in background and skin regions (such as the
face, forearms, or other hands); (2) allows for identification of 3D hand configurations that are linguistically important in American
Sign Language (ASL); and (3) incorporates statistical information reflecting linguistic constraints in sign production. For purposes of
large-scale computer-based sign language recognition from video, the ability to distinguish hand configurations accurately is critical.
Our current method estimates the 3D hand configuration to distinguish among 77 hand configurations linguistically relevant for
ASL. Constraining the problem in this way makes recognition of 3D hand configuration more tractable and provides the information
specifically needed for sign recognition. Further improvements are obtained by incorporation of statistical information about linguistic
dependencies among handshapes within a sign derived from an annotated corpus of almost 10,000 sign tokens.
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1. Introduction

Despite the fact that monocular 3D hand pose reconstruc-
tion from 2D video is an insoluble problem because of
the large number of degrees of freedom and high occur-
rence of self-occlusion of hands and fingers, full 3D re-
construction of hand configuration is critical to the larger
task of computer-based sign recognition. For purposes of
sign recognition, we can, however, reduce the hand pose
space to a finite set of linguistically relevant hand con-
figurations using knowledge of American Sign Language
(ASL) phonology. For a large class of ASL “lexical” signs,
handshape identification can be further improved by lever-
aging statistical information about dependencies between
start and end handshapes for a given sign and between
the handshapes on the two hands (Thangali et al., 2011;
Thangali, 2013). By combining the linguistic constraints of
ASL with the geometric and kinematic constraints of a 3D
model, we achieve tractability.
For 3D hand pose reconstruction, we first generate a syn-
thetic training dataset comprised of a discrete set of hand
configurations spanning the set of linguistically important
ASL handshapes. We propose a Bayesian mixture of ex-
perts (BME) approach that trains a model of each hand con-
figuration based on a set of 2D image features from varying
poses. After tracking and segmenting the hand, we map
from the 2D features directly to the 3D pose based on our
trained model. After initialization, we use phonological
and geometric/kinematic priors to inform weights applied
to each predictor of the mixture model. This framework
makes it feasible to achieve the 3D hand pose reconstruc-
tion that provides the information necessary for sign lan-
guage recognition.
The accuracy of the identification of start and end hand-

shapes for individual ASL signs and, consequently, of
sign recognition enabled by handshape recognition, is fur-
ther improved by utilization of the American Sign Lan-
guage Lexicon Video Dataset (ASLLVD) (Neidle et al.,
2012), which provides statistical information, from a cor-
pus of nearly 10,000 sign tokens, reflecting the linguistic
dependencies among handshapes within a given sign for the
largest morphological class of ASL signs.

2. Previous work

Some success in sign recognition has been achieved using a 
variety of methods (e.g., Vogler and Metaxas, 1998; Vogler 
and Metaxas, 2004; Potamias and Athitsos, 2008; Thangali 
et al., 2011; Alon et al., 2009; Buehler et al., 2009; Yang et 
al., 2010; see also Ong and Ranganath, 2005; Von Agris et 
al., 2008; Vogler and Goldenstein, 2008). In many of the 
reported studies, the problem has been simplified in various 
ways, e.g., through restricting attention to limited vocabu-
laries. With the aim of accomplishing large-scale sign lan-
guage recognition, some researchers have focused on the 
essential linguistic parameters involved in sign production, 
including hand configuration, orientation, location in the 
signing space, and movement trajectory (Ding and Mar-
tinez, 2009; Ding and Martinez, 2007; Yuntao and Weng, 
2000; Vogler, 2003). See Thangali (2013, chapter 3) for an 
overview of research focused specifically on recognition of 
handshapes that are critical to the composition and discrim-
ination of signs.
Hand pose reconstruction methods in 3D have been either
generative (model-based) (Heap and Hogg, 1996; Ding
and Martinez, 2009; Ding and Martinez, 2007; Lu et al.,
2003) or discriminative (appearance-based) (Athitsos and
Sclaroff, 2003; Athitsos and Sclaroff, 2001; Yuntao and
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Figure 1: Synthetic Dataset: 3D reconstructions of hand configurations from Cyberglove joint angles.

Weng, 2000). However, both types of methods fail to con-
strain the problem adequately to deal with hands that have
noisy segmentation. In Thangali et al. (2011) handshape
recognition performed in 2D is enhanced by exploitation of
linguistic constraints. However, accuracy is severely lim-
ited by the inability of a 2D model to capture the entire
manifold of the 3D pose. Several papers (Potamias and
Athitsos, 2008; Athitsos and Sclaroff, 2003; Rosales et al.,
2001) attempt to reconstruct 3D hand pose. However, they
are limited by using chamfer distance matching, which fails
to generalize across different subjects. Such methods are
also limited to a relatively small set of hand configurations.

3. Hand Tracking
Accurately locating the hands is a critical preprocessing
step for 3D hand pose reconstruction. However, this task
itself is challenging, since hands can vary greatly in size,
shape, and viewpoint, can be closed or open, can be par-
tially occluded, can have different articulations of the fin-
gers, can be grasping other objects or other hands, etc.
Methods based on detecting hands independently using
skin detection (Wu and Huang, 2000; Zhu et al., 2000)
or Haar-like features (Kolsch and Turk, 2004; Ong and
Bowden, 2004; Viola and Jones, 2001) have shown lim-
ited success in unconstrained environments, which may be
due to lack of training data and insufficient usage of shape
information. Some success is achieved by detecting the
hand as a part of human pictorial structure (Buehler et al.,
2008; Karlinsky et al., 2010; Kumar et al., 2009). How-
ever, this method requires that several parts of the human
(e.g., head and arms) also be visible in the image. Further-
more, this method can be used to detect only the hand poses
for which they have been trained (e.g., they cannot deal
with self-occlusion). Furthermore, the computational cost
of these methods is considerable, which in turn constrains
their application in online tasks. Additionally, in Mittal et
al. (2011), a robust hand detection method is proposed that
combines skin color detection and shape detectors for both
hands and their context. However, this method trains 3 de-
tectors off-line, with high computational cost, and is also
not adaptive enough for handshapes with a large number of
degrees of freedom.
In this paper, we present a novel tracking framework that
decomposes the hand tracking task into tracking, detection,
and learning. The tracker makes use of the continuous tar-
get information from frame to frame, and the detectors lo-
calize all previously known appearances. The learning pro-

cess updates the online detector with missed detections and
false alarms, thereby reducing the detector’s confusion on
difficult cases in following frames.

4. Hand configuration Synthetic dataset
In order to make it possible to learn the mapping from 2D
image features to 3D hand configurations, the training data
must contain a large number of diverse examples that in-
clude variations in viewing angle, hand size, skin color, and
lighting. In order to meet these demands, a synthetic dataset
has been generated based on motion capture. Two native
signers wearing cybergloves demonstrated 87 handshapes
used by the American Sign Language Linguistic Research
Project (Neidle, 2011) (leaving out the 10 handshapes that
occur rarely, if ever, in our dataset). A comprehensive set
of hand orientations was recorded; subjects demonstrated
the handshapes across a full range of typical sign language
movements.
Next, a 3D hand mesh and texture were fitted to the joint
angle data (see Figure 1). The hand was rotated across a
discretized set of viewing angles with variations in lighting.
For generation of additional data, the mesh was varied for
different hand sizes and proportions, and the texture was
varied for different skin color and appearance.

5. Structured Pose Prediction
To enable recognition of hand pose from a given image
frame, we attempt to map from a vector of image features
to the 3D pose. As seen in Figure 2, this pose is represented
as a set of 5 finger tip and 15 joint positions in 3D space:
5 Metacarpophalangeal (MCP) joints that connect metaca-
pal bones to the proximal phalanges, 5 proximal interpha-
langeal joints (PIP) that connect proximal and intermediate
phalanges, 4 distal interphalangeal joints (DIP) that connect
intermediate and distal phalanges, and a carpometacarpal
joint (TCP) that connects the thumb metacarpal bone to the
wrist. If we can find a mapping from 2D image features to
their corresponding 3D hand structure, we will be able to
find a 3D pose for any arbitrary set of 2D image features
represented in our training dataset.
In order to find such a mapping, we must use an appropriate
regression method. First we must consider that image fea-
tures are interdependent, because features from an image
region tend to be related to other nearby regions. Gaus-
sian Processes have been shown to be effective methods
of modeling non-linear dependencies among features to an
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Figure 2: Joints Used to Model the Hand

output (Bo and Sminchisescu, 2010). However, the map-
ping from features to the manifold of hand poses is non-
linear. Fitting a single model to each hand configuration
would fail to provide a successful mapping. Furthermore,
we know that the multiple outputs (the different joints of
the hand pose) are not independent: they have a structure in
3D space, which means that the problem should be posed
as a structured prediction problem. Therefore, we use Twin
Gaussian Processes (TGP), an approach that has been used
successfully on full body tracking, and we apply it to the
hands. TGP not only models dependencies among image
features, but also captures correlations within the 3D struc-
ture (Bo and Sminchisescu, 2010). It uses two Gaussian
Processes, one from inputs to outputs, and one representing
the reverse mapping. The divergence between the Gaussian
Processes are minimized, so that similar observations map
to similar poses.
To train our model, we use the synthetic dataset to ex-
tract, from each handshape, features and corresponding 3D
hand poses. Image features are computed based on block
normalized HOG (histogram of oriented gradient) features
over multiple scales. These features allow us to capture
contours critical to the overall shape and the interior con-
tours of the fingers. We run TGP over multiple examples of
each handshape and learn the non-linear mapping function.

6. Assigning Handshape Probabilities
For the purpose of testing our new model, hand locations
are first acquired by our tracker from continuous ASL se-
quences. We segment the hands using skin color and com-
pute the block normalized HOG features. We use our
learned TGP function to map these features directly to a
pose in 3D Euclidean space. In order to assign this arbi-
trary 3D hand pose to an ASL handshape, we must compute
the distance from our learned pose to clusters that represent
each shape. However, in order to attain a more normalized
distance measurement that maximizes the distances among
clusters, we first transform the pose space into a lower di-

mensional space.
We use the Spectral Latent Variable Model (SLVM)
(Kanaujia et al., 2007) to learn the low-dimensional sub-
space representing the set of plausible 3D poses. The bi-
directional mapping learned using SLVM allows projec-
tion of out-of-sample data points from Euclidean space to a
lower dimensional latent space, and the back-projection of
latent points to the Euclidean space. Because SLVM pre-
serves global and local geometric properties of the modeled
data, it is ideally suited to modeling the hand pose space.
The lower dimensional latent space of all 87 ASL hand-
shapes can be seen in Figure 3. The convexity of the man-
ifold shows that learning a mapping to the 3D hand pose
space is a realistic goal.
Next, we compute the distances from our learned hand pose
to each handshape cluster in the lower dimensional latent
space. While these distances would allow us to assign a
handshape for each frame, it would be helpful to be able to
relate shape detections of different frames to one another
and to other probabilities, such as statistical distributions
that come from language knowledge. Therefore, for each
frame, we normalize the distances to each handshape clus-
ter and convert to a probability distribution P (S|x), where
S represents the discrete set of 87 possible ASL handshapes
for each frame x.

Figure 3: Multiple viewpoint visualization of the non-linear
lower dimensional subspace of 87 ASL handshapes of the
synthetic dataset

7. Linguistic Constraints
We achieve further improvements by leveraging linguistic
constraints that hold on sign production. For the class of
signs under consideration in this research, “lexical signs,”
the relationships between the start and end handshape for
both the dominant and non-dominant hands, are highly con-
strained, as is the relationship between the two hands, in
two-handed signs. Note that for sign identification, the
handshapes are the most linguistically informative at the
beginning and end of such lexical signs.
To leverage these linguistically based dependencies to im-
prove the accuracy of handshape recognition for the start
and end handshapes of each of the citation-form signs in the
data set, we set out to identify the handshape (on the dom-
inant hand) specifically at the start and end of each sign
and to exploit the statistics from the dataset reflecting the
dependencies.
For a given signing sequence we must first determine which
frames represent the start handshape and which represent
the end shape. For signs where the shape does not change,
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this division should not affect the ultimate accuracy compu-
tation. Although we do not currently explicitly detect when
shape changes occur, we follow a method that allows us to
identify the best frames to analyze, for a given sign, in or-
der to determine the start and end hanshapes of that sign.
We start by splitting each signing sequence in half. This
division is crude because it may not represent an optimal
division between start and end handshape frames and it po-
tentially includes intermediary frames where the handshape
may be changing. However, we are able to overcome this
lack of precision in two ways.
First, we apply a weighting scheme that applies larger
weights to frames at the start and end of the sequence and
smaller weights to frames in the middle. For signs with
shape changes, this is effective, because the most represen-
tative observations of handshapes are likely to occur at the
start and end of the sequence while the frames in the middle
are more likely to include intermediary shapes. We apply
an inverse Gaussian membership function where σ = bn2 c,
and where n is the number of frames in the sequence.
Second, a filter is used to threshold out frames that have
poor observation confidence. The reliability of the obser-
vation α is determined based on the normalized distance of
a prediction to the nearest handshape cluster in the SLVM
reduced space. This confidence metric is often low dur-
ing handshape changes because during handshape transi-
tions, the 3D configuration is likely to match none of the 87
canonical configurations, and because of motion blur that
often accompanies quick movements. This filter has the
added benefit of removing frames that may include noisy
image data due to motion blur or poor hand tracking. We
use a threshold of 80%, meaning we remove the bottom
20% of observations for each sequence.
Once the frames have been split and filtered, we define
joint probability distributions over the total of n frames
contained in each of the sequences being used to ana-
lyze the start frames P (Si|x1, ..., xbn

2 c) and end frames
P (Sj |x(bn

2 c+1), ..., xn), by computing the joint probability
distribution between the start and end segments over each
frame xk (See Equation 1). In Equation 2, we compute the
most likely start and end shapes for the sequence by taking
the joint probability of the two distributions.
In addition to computing the joint probability between start
and end handshapes, we also have prior information about
the distributions of start and end handshape co-occurrence
in ASL. A matrix of co-occurrence likelihoods Po(Si, Sj),
based on language statistics, represents probabilities based
on the frequencies of all start and end handshape pairings.
This prior distribution should be utilized in a way that is

proportional to our observation confidence: the better our
observation, the less we depend on the prior. Therefore, in
Equation 3 we apply the prior using a convex combination
of our joint probability P (Si, Sj |xi, ..., xn) and our prior
Po(Si, Sj), with the observation certainty coefficient α.

8. Experimental Results
Initial results are promising. After training on our synthetic
dataset of 87 handshapes, we test on the dominant hand of
100 ASL signs from the largest morphological type of signs
in ASL: so-called “lexical” signs; these signs are subject to
specific types of constraints that hold between handshapes
on the left and right hands, as well as between start and end
handshape for a given sign. The sample includes a total
of 77 handshapes linguistically important for ASL. The se-
quences cover 5194 frames and four subjects. About 40%
of the signs in the test sample involved a handshape change
on the dominant hand between the start and the end of the
sign, which is approximately representative of the percent-
age of such signs among the nearly 10,000 tokens in the
ASLLVD dataset.
TGP returns a hand pose, and probability distributions are
acquired for each frame. However, there is some noise in
the data because of frames that include poor hand tracking
and/or motion blur in the image. To minimize the effects of
such noise, we use a sliding window to smooth over a span
of 5 frames. First, each window is assigned a shape based
on majority voting of the most probable handshape in each
frame of the window. Accuracy (percent of correctly iden-
tified handshapes) across all instances was 64.03%. Next,
using our probabilistic framework, we compute the joint
probabilities over all frames in the window; using this ap-
proach, we reach an accuracy of 71.02%. Tracking, seg-
mentation, and recognition results for example frames can
be seen in Figure 4. This is a substantial improvement over
previous work using the same dataset that reported 32.1%
accuracy in handshape recognition (Thangali et al., 2011;
Thangali, 2013).
Finally, we test for improvement based on our application
of language knowledge. The joint probability distribution
from Eqation 2 over the start and end windows leads to an
improved overall accuracy of 74.71%. When the start and
end co-occurrence prior is applied to the joint distributions,
we achieve a final accuracy of 81.76%. Our overall ac-
curacy was already higher, on a per-frame/window basis,
than Thangali (2013) achieved for handshape recognition
of data from this same dataset (the ASLLVD) even after
incorporation of linguistic knowledge. When we combine
our handshape recognition with start and end handshape de-
pendency knowledge, our new overall accuracy far exceeds
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Figure 4: Hand tracking, segmentation, HOG features, and 3D hand configuration result

what has previously been reported. In the work reported
by Thangali, the use of linguistic knowledge resulted in an
increase in the handshape recognition rate from 30.4% to
44.4% (Neidle et al., 2012). In our approach, accuracy is
improved by 15.1%, from 71.02% to 81.76%. Overall, our
final accuracy represents an 84.1% improvement over those
previously reported results.

9. Conclusion
We have proposed a novel hand tracker and handshape
recognition method that enable us to predict 3D handshapes
from monocular imagery. Recognition is achievable be-
cause we limit the subspace of handshapes to those that are
part of the ASL inventory. Accuracy is improved further
by leveraging linguistically constrained handshape depen-
dencies. Our results already show significant improvements
over previous attempts to recognize handshapes in ASL. In
the future, additional linguistic and kinematic constraints
can be leveraged for further refinement of the handshape
recognition.
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