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Abstract
Distant supervision is a successful paradigm that gathers training data for information extraction systems by automatically aligning
vast databases of facts with text. Previous work has demonstrated its usefulness for the extraction of binary relations such as a
person’s employer or a film’s director. Here, we extend the distant supervision approach to template-based event extraction, focusing
on the extraction of passenger counts, aircraft types, and other facts concerning airplane crash events. We present a new publicly
available dataset and event extraction task in the plane crash domain based on Wikipedia infoboxes and newswire text. Using this
dataset, we conduct a preliminary evaluation of four distantly supervised extraction models which assign named entity mentions in
text to entries in the event template. Our results indicate that joint inference over sequences of candidate entity mentions is ben-
eficial. Furthermore, we demonstrate that the SEARN algorithm outperforms a linear-chain CRF and strong baselines with local inference.

Keywords: Distant-Supervision, Event-Extraction, Searn

1. Introduction
This paper explores a distant supervision approach to event
extraction for knowledge-base population. In a distantly
supervised setting, training texts are labeled automatically
(and noisily) by leveraging an existing database of known
facts. While this approach has been applied successfully
to the extraction of binary relations such as a person’s em-
ployer or a film’s director (Mintz et al., 2009; Surdeanu et
al., 2012), it has not previously been applied to event ex-
traction.
We make three main contributions. First, we present a new
research dataset for distantly supervised event extraction
centered around airplane crash events. The dataset consists
of a plane crash knowledge base derived from Wikipedia in-
foboxes and distantly generated entity-level labels covering
a corpus of newswire text. Second, we use this dataset to
conduct a preliminary evaluation of a number of extraction
models. Our results serve as a baseline for further research
in this domain. Third, our experiments demonstrate that
joint learning (here using the SEARN algorithm (Daumé III,
2006)) performs better than several strong baselines, even
in this complex and noisy setup.

2. Dataset and Slot-filling Task
We began by compiling a knowledge base of 193 plane
crash infoboxes from Wikipedia’s list of commercial air-
craft accidents.1 An example is shown in Table 1. From
these we selected 80 single-aircraft crashes (40 for train-
ing; 40 for testing) that occurred after 1987. This is the
timespan covered by our news corpus, which is comprised
of Tipster-1, Tipster-2, Tipster-3, and Gigaword-5.2

1http://en.wikipedia.org/wiki/List of accidents and incidents
involving commercial aircraft

2Available at catalog.ldc.upenn.edu/LDC93T3A and cata-
log.ldc.upenn.edu/LDC2011T07.

We define a slot-filling task over eight slot types (〈Flight
Number〉, 〈Operator〉, 〈Aircraft Type〉, 〈Crash Site〉,
〈Passengers〉, 〈Crew〉, 〈Fatalities〉, and 〈Survivors〉) as fol-
lows: Given a flight number, find values for the seven re-
maining slots. At test time, this involves retrieving rele-
vant documents from our newswire corpus and assigning
slot type labels (or NIL) to each entity in each document.
For high recall, we retrieve any document containing the
flight number string—e.g., Flight 967. This yielded 4,093
unique documents during training and testing.
Training data for these entity-level slot type decisions was
generated by distant supervision. First, hand-crafted rules
generated alias expansions for each slot value in the set
of training events.3 Then, for each training event, docu-
ments containing the flight number string and at least one
slot value (or alias) were retrieved from the corpus. Named
Entity Recognition software4 was run on each document
to identify entities, including numbers. Entity mentions
matching a slot value (or alias) were marked as positive
training examples for that slot type. Non-matching entities
were marked as negative (NIL label) examples. NIL ex-
amples were subsampled to achieve a 50/50 split between
positive and negative training examples. Table 2 shows fre-
quencies for each label. We make these noisily generated
training examples available as stand-off annotations.5

3. Experiments
Having introduced the general framework for distantly su-
pervised event extraction, in this section we present exper-
iments testing various models in the framework.

3E.g., Airbus is an alias for Airbus A320-211, and eight is an
alias for 8.

4http://nlp.stanford.edu/software/CRF-NER.shtml
5http://nlp.stanford.edu/projects/dist-sup-event-

extraction.shtml
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Slot Type Slot Value
Wikipedia Title Armavia Flight 967
isSinglePlaneCrash true
Aircraft Name N.A.
Aircraft Type Airbus A320-211
Crash Date 3 May 2006
Crash Type controlled flight into terrain pilot error
Crew 8
Fatalities 113
Flight Number Flight 967
Injuries 0
Operator Armavia
Passengers 105
Crash Site Sochi International Airport, Black Sea
Survivors 0
Tail Number EK-32009

Table 1: Sample plane crash infobox.

Label Frequency Named Entity Type
NIL 19196
Crash Site 10365 LOCATION
Operator 4869 ORGANIZATION
Fatalities 2241 NUMBER
Aircraft Type 1028 ORGANIZATION
Crew 470 NUMBER
Survivors 143 NUMBER
Passengers 121 NUMBER
Injuries 0 NUMBER

Table 2: Label frequency in noisy training data.

3.1. Experiment 1: Simple Local Classifier
First we used multi-class logistic regression to train a model
which classifies each mention independently, using the
noisy training data described above. Features include the
entity mention’s part of speech, named entity type, sur-
rounding unigrams, incoming and outgoing syntactic de-
pencies, the location within the document and the mention
string itself.6 These features fall into five groups, detailed
in Table 3. Each of the models described in this paper uses
these five features sets.
We compare this local classifier to a majority class base-
line. The majority baseline assigns the most common label
for each named entity type as observed in the training doc-
uments (see Table 2). Concretely, all locations are labeled
〈Site〉, all organizations are labeled 〈Operator〉, all numbers
are labeled 〈Fatalities〉, and all other named entities are la-
beled NIL. The remaining five labels are never assigned.
To compare performance on the final slot prediction task,
we define precision and recall as follows. Precision is the
number of correct guesses over the total number of guesses.
Recall is the number of slots correctly filled over the num-
ber of findable slots. A slot is findable if its true value ap-
pears somewhere as a candidate mention. We do not penal-
ize the extraction model for missing a slot that either was
not in the corpus or did not occur under our heuristic notion
of document relevance. For multi-valued slots, full recall
credit is awarded if at least one value is correctly identi-

6Parsing, POS tagging, and NER: Stanford Core NLP.
nlp.stanford.edu/software/corenlp.shtml

NE

Named Entity Features: Unigrams and part-of-
speech tags within the named entity mention, the
number of tokens in the mention, and the named en-
tity type of the mention.

LCon

Local Context: Unigrams and part-of-speech tags
within five tokens of the named entity mention, with
specific features for one, two, and three tokens be-
fore and after the mention.

SCon
Sentence Context: Unigrams and part-of-speech tags
in the same sentence as the target named entity.

Dep
Dependency Features: Incoming and outgoing de-
pendency arcs, lexicalized and unlexicalized.

LiD
Location in document: Is the target named entity
mention in the first, second, third, or fourth quarter
of the document?

Table 3: Feature sets for mention classification.

Precision Recall F1 Score
Maj. Baseline 0.026 0.237 0.047
Local Classifier 0.158 0.394 0.218

Table 4: Performance of local classifier vs. baseline.

Crash Site 8/50 = 0.16
Operator 5/25 = 0.20
Fatalities 7/35 = 0.20
Aircraft Type 4/19 = 0.21
Crew 15/170 = 0.09
Survivors 1/1 = 1.0
Passengers 11/42 = 0.26
Injuries 0/0 = NA

Table 5: Accuracy of local classifier by slot type

fied. For example, the slot-fill Mississippi would receive
full credit for the crash site Mississippi, U.S.A.
The performance of the local and majority classifiers are
shown in Table 4. The test set contained 40 test infoboxes
with a total of 135 findable slots. The local classifier con-
siderably outperformed the baseline. Table 5 breaks down
the accuracy of the local classifier by slot type.

3.2. Experiment 2: Sequence Model with Local
Inference

The local model just presented fails to capture dependen-
cies between mention labels. For example, 〈Crew〉 and
〈Passenger〉 go together; 〈Site〉 often follows 〈Site〉; and
〈Fatalities〉 never follows 〈Fatalities〉:

• 4 crew and 200 passengers were on board.

• The plane crash landed in Beijing, China.

• * 20 died and 30 were killed in last Wednesday’s crash.

In this experiment, we compare our simple local model to
a sequence model with local inference (SMLI). We im-
plement SMLI using a maximum entropy markov model
(MEMM) approach. In the local model, mentions in a sen-
tence are classified independently. In contrast, at each step
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Precision Recall F1 Score
Local Model 0.157 0.394 0.218
SMLI 0.153 0.417 0.224

Table 6: Performance of sequence model with local infer-
ence (SMLI).

in SMLI, the label of the previous non-NIL mention is used
as a feature for the current mention. At training time, this is
the previous non-NIL mention’s noisy “gold” label. At test
time, this is the classifier’s output on the previous non-NIL
mention.
Table 6 shows test-set results. SMLI boosted recall with
only a slight decrease in precision. The difference in recall
was statistically significant (p < 0.05).7 Qualitative anal-
ysis of SMLI’s feature weights revealed that the classifier
learned the patterns mentioned above, as well as others.

3.3. Experiment 3: Noisy-OR Aggregation
So far we have assumed exhaustive label aggregation—as
long as at least one mention of a particular value gets a par-
ticular slot label, we use that value in our final slot-filling
decision. For example, if three mentions of Mississippi re-
ceive the labels 〈Crash Site〉, 〈Operator〉, and NIL, then the
final slot-fills are Crash Site = Mississippi and Operator =
Mississippi. Intuitively, this approach is suboptimal, espe-
cially in a noisy data environment where we are more likely
to misclassify the occasional mention. In fact, a proper ag-
gregation scheme can act as fortification against noise in-
duced misclassifications.
With this in mind, we adopted Noisy-OR aggregation. The
key idea is that classifiers give us distributions over labels,
not just hard assignments. A simplified example is given
below for two mentions of Stockholm.

• Stockholm 〈NIL:0.8; Crash Site: 0.1, Crew:0.01, etc.〉
• Stockholm 〈Crash Site: 0.5; NIL: 0.3, Crew:0.1, etc.〉

Given a distribution over labels ` for each mention m in M
(the set of mentions for a particular candidate value), we
can compute Noisy-OR for each label as follows.

Noisy-OR(`) = Pr(`|M) = 1−
∏

m∈M

(1− Pr(`|m))

In the Stockholm example above, the Noisy-OR for 〈Crash
Site〉 and 〈Crew〉 are 0.95 and 0.11 respectively. A value is
accepted as a slot filler only if the Noisy-OR of the slot label
is above a fixed threshold. We found 0.9 to be an optimal
threshold by cross-validation on the training set.
Table 7 shows test-set results comparing Noisy-OR and ex-
haustive aggregation on the local and SMLI classifiers. We
see that Noisy-OR improves precision while decreasing re-
call. This is expected because Noisy-OR is strictly more
conservative (NIL-prefering) than exhaustive aggregation.
In terms of F1 score, Noisy-OR aggregation is significantly
better at p < 0.1 for the local model and p < 0.05 for the
SMLI.

7All significance tests reported in this paper were computed
using bootstrap resampling on test events with 10,000 trials.

Precision Recall F1 Score
Local Exhaustive 0.158 0.394 0.218

Noisy-OR 0.187 0.370 0.248
SMLI Exhaustive 0.153 0.417 0.224

Noisy-OR 0.185 0.386 0.250

Table 7: Exhaustive vs. Noisy-OR Aggregation.

Figure 1: Error propagation in SMLI classification.

3.4. Experiment 4: Joint Models
In the previous two experiments, SMLI had better recall
than our local model, but overall improvement was modest.
One possible explanation comes from an error propagation
problem endemic to this class of models. Consider the ex-
ample in Figure 1. At training time, USAirways has the
feature PREV-LABEL-INJURY. But suppose that at infer-
ence time, we mislabel 15 as 〈Survivors〉. Now USAirways
has the feature PREV-LABEL-SURVIVOR, and we are in a
feature space that we never saw in training. Thus we are li-
able to make the wrong classification for USAirways. And
if we make the wrong decision there, then again we are in
an unfamiliar feature space for Boeing 747 which may lead
to another incorrect decision.
This error propagation is particularly worrisome in our dis-
tant supervision setting due to the high amount of noise in
the training data. To extend the example, suppose instead
that at distant supervision time, 15 was given the incorrect
“gold” label 〈Fatalities〉. Now at test time, we might cor-
rectly classify 15 as 〈Injuries〉, but this will put us in an
unseen feature space for subsequent decisions because US-
Airways saw 〈Fatalities〉 at training time, not 〈Injuries〉.
An ideal solution to this error propagation problem should
do two things. First, it should allow suboptimal local deci-
sions that lead to optimal global decisions. For the previous
example, this means that our choice for 15 should take into
account our future performance on USAirways and Boeing
747. Second, models of sequence information should be
based on actual classifier output, not gold labels. This way
we are not in an unfamiliar feature space each time our de-
cision differs from the gold label.
In essence, we want a joint mention model—one which op-
timizes an entire sequence of mentions jointly rather than
one at a time. To this end, we tested two joint models: i)
a linear-chain CRF8, and ii) the SEARN algorithm (Daumé
III, 2006). The following sections describe our implemen-
tation of these models and experimental results.

3.4.1. Linear-Chain CRF Model
Conditional random fields (CRFs) provide a natural lan-
guage for joint modeling of sequences of mentions and their
associated labels (Lafferty et al., 2001). CRFs are particu-
larly well-suited to classification because they are discrim-

8Implemented using Factorie (McCallum et al., 2009)
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mention1 mention2 mention3

label3label2label1

 L  L  L

 ML  ML  ML

 LL  LL

Figure 2: Linear-chain CRF for mention classification.

inative models, i.e. they do not involve modeling depen-
dencies among mention features. For a sequence of men-
tions m and associated labels l, the conditional probability
is given as

P (l|m) =
1

Z(m)

∏
Ψi

exp

∑
j

λijfij(l,m)

 (1)

where we have introduced a set of factors {Ψi}, weights
{λij}, and features {fij}. We specialize to a linear-chain
CRF with three factors: ΨL, ΨLL, and ΨML (see Figure
2). The first factor captures label frequencies, the sec-
ond captures dependencies between labels of adjacent men-
tions, and the third captures dependencies between labels
and mention features.
Learning proceeds via stochastic gradient descent in con-
junction with the max-product algorithm, which is also
used during inference. Parameter updates are made using
confidence weighting with a learning rate of unity. Hyper-
parameters are chosen by maximizing the F1 score on a dev
set, i.e. after Noisy-OR aggregation, which resulted in the
following choices. Learning stops after nT = 4 rounds. In
Eqn. NoisyOR, only the nTOP = 3 most probable men-
tions enter the product for any given label. Finally, the
ΨML weights corresponding to NIL were reduced by a mul-
tiplicative factor x = 1.7 to prevent too many NIL labels at
inference.

3.4.2. SEARN Model
For our second joint model, we use the SEARN algorithm
to infuse global decisions into a sequence tagger. SEARN
is a general framework for training classifiers which make
globally optimized choices in a structured prediction task
(Daumé III, 2006). In our setting, SEARN generates a
model in which a mention’s label depends not only on its
features and the previous non-NIL label, but also on the
impact of this label for subsequent decisions later in the
sentence.
The algorithm operates by associating training mentions
with cost-vectors corresponding to the global, sequence-
wide impact of different label choices. These mentions
and cost-vectors are passed to a cost-sensitive classifier
for learning. In our implementation, we follow Vlachos

Algorithm 1: SEARN as a sequence labeling algorithm.

input : T = training sentences,
π = initial gold label policy,
C = cost-sensitive classifier,
k = number of iterations

Initialize current hypothesis h← π
for k iterations do

Initialize set of cost-sensitive examples S ← ∅
for sentence s in T do

for mention m in s do
Classify mentions left of m using h
Compute features φ for m
Initialize cost vector c = 〈〉
for each possible label l do

Let m have label l:
Classify mentions right of m
Let cost cm ← total errors in s

end
Add cost-sensitive example (φ,c) to S

end
end
Learn a classifier: h′ ← C(S)
Interpolate: h← βh′ + (1− β)h

end
output: h with π removed

and Craven (2011) in using the cost-sensitive classifier de-
scribed in Crammer et al. (2006), which amounts to a
passive-aggressive multiclass perceptron.
Inherent in this setup is the following chicken-and-egg
problem: we want to train an optimal classifier based on
a set of global costs, but we would like these global costs to
be computed from the decisions made by an optimal clas-
sifier. SEARN gives an iterative solution to this problem.
Algorithm 1 illustrates the basic framework. The algorithm
is seeded with an initial policy based on gold labels (akin
to our local sequence model, which uses gold labels for
previous-label features during training). At each iteration,
a new policy is learned from a cost-sensitive classifier and
interpolated with previous policies.
SEARN has a number of hyperparameters. By cross-
validation on the training set, we arrived at the following
settings: 4 SEARN iterations; 8 perceptron epochs per it-
eration; interpolation β = 0.3; perceptron aggressiveness =
1.0.

3.4.3. Joint Model Results
The test-set results comparing these joint models to SMLI
and our local model are shown in Table 8. All results use
Noisy-OR aggregation. Our SEARN model outperformed
the other models in precision and F1 score (p < 0.15). The
SEARN algorithm was able to model the inter-mention de-
pendencies described in Section 3.2 while avoiding the er-
ror propagation problem affecting SMLI.
Our CRF model was able to learn useful weights for la-
bel pairs. For example, it learned a high positive weight
for 〈Passengers, Crew〉 and a low negative weight for
〈Fatalities, Fatalities〉. However, performance did not im-
prove over our non-joint models. One explanation for this
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Precision Recall F1 Score
Local Model 0.287 0.370 0.248
Pipeline Model 0.185 0.386 0.250
CRF Model 0.159 0.425 0.232
SEARN Model 0.240 0.370 0.291

Table 8: Performance of joint, SMLI and local models.

Precision Recall F1 Score
LiD+Dep+Scon+LCon+NE 0.240 0.370 0.291
Dep+Scon+Lcon+NE 0.245 0.386 0.300
Scon+Lcon+NE 0.240 0.330 0.278
Lcon+NE 0.263 0.228 0.244
NE 0.066 0.063 0.064

Table 9: Feature ablation study on SEARN model.

comes from a key structural difference between our CRF
model and our SEARN and Pipeline models. In our CRF
model, edges connect adjacent named entities. In both
SEARN and SMLI, the dependency is with the previous
non-NIL named entity, ignoring any NIL labels that inter-
vene. This means the latter two models are more directly
sensitive to non-NIL labelings much earlier in the sentence.
The lack of a non-NIL label early in a sentence turns out to
be a strong signal that the sentence is not relevant to the
planecrash domain. Without this signal, the CRF classifier
frequently makes false-positive mislabelings in irrelevant
sentences, e.g. assigning 〈Site〉 to a location not related to
the crash. In general, the CRF model assigned labels more
liberally than the other models, leading to high recall, but
lower precision.

3.5. Experiment 5: Feature Ablation
In this final experiment, we conducted a features ablation
study to explore the impact of different input features. Our
models use five types of features as described in Table 3.
Table 9 shows the performance of our SEARN model as
feature sets are removed (without retuning hyperparame-
ters). Performance actually increases as location in docu-
ment (LiD) features are removed, but this result is not sta-
tistically significant. Removing dependency (Dep) features
causes a significant drop in F1 score (p < 0.1). Removing
sentence context (SCon) features causes a less significant
drop (p = 0.16). Finally, removing local context (LCon)
features causes a major decrease in performance (p< 0.01).

4. Conclusion
This paper has presented a preliminary study of distant
supervision applied to event extraction. We described a
new publicly available dataset and extraction task based on
plane crash events from Wikipedia infoboxes and newswire
text. We presented five experiments. In the first experiment,
we showed that a simple local classifier with a rich set of
textual features outperforms a naive baseline, depite having
access only to noisy, automatically generated training data.
In the second experiment, we extended our approach to a
sequence tagging model with local inference, showing that
by considering previous label decisions as features, recall
improves. In our third experiment, we demonstrated the
effectiveness of a Noisy-OR model for label aggregation.

In experiment four, we evaluated two models which apply
joint inference to the sequence labeling task. Our linear-
chain CRF model learned reasonable weights and improved
recall, but overall performance suffered. Our second jo-
ing model, based on the SEARN algorithm, performed best,
with considerable boost to both precision and F1 score.
Lastly, with a post-hoc ablation experiment, we showed that
syntactic information and local context are both important
for model success.
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