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Abstract
Distributional semantic models have been effective at representing linguistic semantics at the word level, and more recently re-
search has moved on to the construction of distributional representations for larger segments of text. However, it is not well
understood how the composition operators that work well on short phrase-based models scale up to full-length sentences. In this
paper we test several simple compositional methods on a sentence-length similarity task and discover that their performance peaks at
fewer than ten operations. We also introduce a novel sentence segmentation method that reduces the number of compositional operations.
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1. Introduction
Distributional semantic models Turney and Pantel (2010)
have been effective at representing linguistic semantics at
the word level, with comparison to human word similarity
judgements being one of the most important means of eval-
uating such models (Deerwester et al., 1990; Landauer and
Dumais, 1997; Bruni et al., 2012).
More recently, research has focused on how distributional
word representations can be combined, initially produc-
ing representations of short, two-word phrases (Mitchell
and Lapata, 2008; Mitchell and Lapata, 2010). Seman-
tic similarity has continued to figure prominently in eval-
uation, particularly the dataset of (Mitchell and Lapata,
2010), which includes human similarity judgements for
verb-object, noun-noun, and adjective-noun combinations.
In the last two years, similarity-based evaluations for longer
text segments have been introduced, specifically the Se-
mantic Textual Similarity (STS) shared tasks (Agirre et al.,
2012; Agirre et al., 2013). Using naturally occurring data,
these tasks represent a major increase in complexity, with
systems needing to adequately represent sentences of up to
40 words in length.
A variety of methods have been applied to STS tasks, some
of which make use of well-known composition operators
whose effectiveness was comprehensively demonstrated
on phrase similarity tasks. However, it is not known how
well such operators scale up. Consider the following STS
pair, which was given an average human similarity rating
of 3.8 on a scale of 1-5:

“I know of no pressure,” said Mr. Feith, the under
secretary of defense for policy.
“I know of nobody who pressured anybody,” Douglas
Feith, undersecretary of defense for policy, said at a
Pentagon briefing.

Elementwise multiplication of word vectors, for example,
underestimates similarity, since the proper name Feith has
an extremely sparse vector, which “zeroes out” the final
sentence representation. Vector addition overestimates sim-
ilarity, because of the dense vectors of the highly frequent

words in the sentence. Another problem is that the stop
words (of, no, ...) are clearly important for this sentence
pair, but play no part in the vector representations of tradi-
tional models.
In this paper, we test several compositional methods fa-
miliar used in phrase similarity experiments, and show
that, while they are applicable to short phrases, the
multiplication-based methods degenerate quickly as the
number of operations increases and that even the more sta-
ble summation operator is less accurate on STS data than
the lexical overlap baseline.
We introduce a novel sentence segmentation method that
re-introduces some of the discarded high-frequency terms
and reduces the number of composition operations required
to produce a sentence representation. We find that this
method can help with certain datasets, but is also less ac-
curate than lexical overlap. An analysis based on sentence
length suggests that phrase-based methods fail to scale up
to sentences longer than ten words.

2. Methods
Semantic similarity evaluations are based on a list of paired
items. A method must produce a similarity score for each
pair, which is typically compared indirectly against the gold
standard scores using a rank correlation measure. In this
paper we use Spearman’s rank correlation coefficient (ρ),
although we also tried Pearson and Kendall-τb and found
general agreement in trends.
Since rank correlation cannot express how accurate a
method is for any given sentence pair, and varies widely
with the makeup of the dataset, we also examine the data
using mean squared error (MSE). In order to apply MSE
we normalise the gold standard scores and model output
scores to r0, 1s with:

normpxq “

"

xi ´minpxq

maxpxq ´minpxq

*

i

(1)

where x is a list of scores.
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Weight WS353 MEN
tTest 0.60 0.68
tTest+RI 0.60 0.67
ML Orig 0.42 –

(a)

tTest ML Original
Comb Full VO NN AN VO NN AN
Prod 0.32 0.30 0.39 0.31 0.46 0.49 0.37
Sum 0.38 0.33 0.47 0.29 0.36 0.39 0.30
pConv 0.29 0.29 0.30 0.29 – – –
Conv 0.30 0.33 0.36 0.23 0.09 0.05 0.10
bigram 0.31 0.24 0.46 0.40 – – –

(b)

Table 1: (a) Word similarity and (b) phrasal similarity results.

2.1. Evaluation Datasets
To verify the performance of our vectors on word similar-
ity tasks, we used WS353 (Finkelstein et al., 2002), con-
taining 353 word pairs, and MEN (Bruni et al., 2012), con-
taining 3,000 word pairs. To verify performance of word
and bigram distributional vectors on phrase similarity, we
used the phrase similarity dataset (ML2010) and evaluation
technique from (Mitchell and Lapata, 2010).
The largest datasets annotated for similarity between longer
texts come from the STS track of the SEMEVAL confer-
ence Agirre et al. (2012). We used the MSRpar dataset,
which consists of 1,500 grammatically correct and diverse
sentence pairs. We also used the SMT dataset, which con-
tains 1,193 pairs of grammatical sentences and their (possi-
bly ungrammatical) translations.

2.2. Distributional Vectors
We used a corpus of 450 million cleaned and lemmatised
tokens from a September, 2012 snapshot of Wikipedia, and
constructed vectors by using sentences as co-occurrence
contexts. The set of context words C consisted of the
10,000 most frequent words occurring in this dataset, with
the exception of standard stopwords and the 25 most fre-
quent words in the corpus. Therefore, a frequency vector
for a target word wi P W is represented as ~wi “ tfwicjuj ,
where cj P C, |C| “ 10000, W is a set of target words in a
particular evaluation dataset, and fwicj is the co-occurrence
frequency between the target and context words.
We first reweight our co-occurrence vectors with tTest

tTestp ~wi, cjq “
ppwi, cjq ´ ppwiqppcjq

a

ppwiqppcjq
(2)

where ppwiq “

ř

j fwicj
ř

k

ř

l fwkcl
, ppcjq “

ř

i fwicj
ř

k

ř

l fwkcl
, and

ppwi, cjq “
fwicj

ř

k

ř

l fwkcl
. Then we also create a random

indexed (RI) version for use with the convolution opera-
tor.1 We follow (Jones and Mewhort, 2007) and assign
each context word a random vector ~ecj “ trkuk where
rk are drawn from the normal distribution N p0, 1

D q and
| ~ecj | “ D “ 4096. The RI representation of a target word
RIp ~wiq “ ~wiR is constructed by multiplying the word
vector ~wi, obtained as before, by the |C| ˆ D matrix R
where each column represents the vectors ~ecj .

2.3. Composition and Segmentation
Operators To combine distributional vectors into a
single-vector sentence representation, we use a represen-

1Mitchell and Lapata (Mitchell and Lapata, 2010) omitted RI
vectors, reducing convolution performance.

tative set of methods from (Mitchell and Lapata, 2010). In
particular we use vector addition, elementwise (Hadamard)
product, and periodic circular convolution (Plate, 1991;
Jones and Mewhort, 2007), which are defined as follows
for two word vectors ~wk, ~wl:

Sum ~wk ` ~wl “ t ~wki ` ~wliui
Prod ~wk d ~wl “ t ~wki ¨ ~wliui

Conv ~wk g ~wl “

!

řn
j“0p ~wkqj%n ¨ p ~wlqpi´jq%n

)

i

We also use pConv, a variation on Conv where one of the
operand vectors is permutated to force the operation to be
non-commutative and thus encode word order. We build the
sentence vectors iteratively from left to right.
The standard baseline for the sentence data is lexical over-
lap (Lex). Here we calculate Lex as the cosine between the
vectors encoding bag-of-lemmatised-words representations
of sentences with stopwords removed, which improves the
baseline performance.

Segmentation To consider the effect that the average sen-
tence length of the dataset has on the operators, we can arti-
ficially reduce the sentence length by reducing the number
of operations required to produce the full sentence vector.
To do this we segment the sentence into n-grams and com-
bine their distributional vectors using the above composi-
tional operators, effectively treating the n-gram as a single
word. This approach has precedent in Baroni and Zam-
parelli (2010), who assume that n-gram vectors are more
accurate than composed vectors, given a sufficiently large
number of examples in the corpus; we also tested our dis-
tributional bigram vectors on ML2010 (Table 1).
Using n-grams with n “ 1...4 having corpus frequency
greater than 50, we segment each sentence into the longest
possible non-overlapping sequences. To accomplish this
we employ the Viterbi segmentation algorithm (Russell and
Norvig, 2003). This algorithm chooses segments according
to a fitness function, which we define for an n-gram ng as:

Ftpngq “ e
|ng|

maxN`1`
lnpfng`1q

100 e´1 (3)

where |ng| is the length of ng in words,maxN is the length
of the longest n-grams available to the algorithm, and fng
is the frequency of the n-gram in the corpus from which we
gathered its distributional vector. The function weights n-
grams on a scale of r0.2, 1s, giving preference first to longer
and then to more frequent segments.2

2We assign the default value of 0.2 to single words with no
distributional vector, i.e. unseen words or stopwords.
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Figure 1: Spearman and MSE analysis of sentence datasets
(tTest) ordered by sentence length.

MSRpar SMT
Comb MaxN ρ MaxN ρ

Prod 2 0.21 4 0.31
Sum 1 0.23 4 0.38
pConv 2 0.10 3 0.25
Conv 3 0.16 4 0.29
Lex 1 0.38 1 0.46

Table 2: Sentence similarity results.

3. Experiments and Results
Table 1(a) shows that our distributional vectors outper-
formed the vectors of Mitchell and Lapata (2010) on
WS353, and performed equally well on MEN, indicating
they are of sufficient quality to use in experiments with
longer phrases. RI produced a statistically insignificant re-
duction in performance on word similarity test.
Table 1(b) shows our results on phrase similarity, which are
somewhat lower than those of Mitchell and Lapata (2010),
except for the convolution results which are higher due to
the use of RI-encoded vectors. Together the results in Ta-
bles 1(a) and 1(b) indicate that better performance of the
word vectors does not translate directly to compositional
tasks. Overall, Prod and Sum perform slightly better than
Conv and pConv. Interestingly, bigram, which refers to
using the distributional vectors for bigrams directly, has the
highest correlation of all our methods for noun-noun and
adjective-noun phrases. Correlation is lower on verb-object
phrases, because verb-object bigrams (e.g. ask man) are
rare.
Table 2 shows our results on the two sentence similarity
datasets. For each composition method, the MaxN column
shows the maximum size n-gram available to the segmen-
tation algorithm; i.e. MaxN = 1 corresponds to word-by-
word composition. While all of the methods underperform
Lex by a wide margin, the best method is Sum, followed by
Prod. The overall results are higher on SMT than MSRpar.
In general, the use of n-grams was beneficial, especially
for the SMT dataset where 4-grams performed the highest
overall.
To further examine the effect of sentence length, we cal-
culate sentence length in words for each pair in the SMT
and MSRpar datasets, and then order the datasets by in-
creasing average pair length. We create the first subset by
taking the top 100 shortest pairs, subsequently adding 50
more pairs at a time. At each iteration we test for correla-
tion (higher is better) and MSE (lower is better). Figures 1
(a-b) show that in general Sum is overall the most stable
composition method and often follows the trends of Lex,
probably because it retains the full vectors of all the words
in the sentence. Prod, Conv and pConv are grouped to-
gether. This is further supported by MSE analysis in Fig-
ure 1 (c), which shows that normalised Sum similarity val-
ues are overall closer to the gold standard than Lex on SMT
data, although for MSRpar data (not pictured) the general
trend was the same but Lex was consistently better.
Although product-based measures appear to occasionally
outperform Lex, this is a byproduct of the use of correla-
tion measures. In fact, with tTest weighting, these mea-
sures tend to produce zero similarity for between 30-60%
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of the pairs, increasing with sentence length. This makes
it difficult to correctly judge at which point Lex starts out-
performing compositional methods, although Figure 1(a-b)
together indicate that the crossover point is certainly at a
length under ten words. While on MSRpar data Lex shows
lower MSE than Sum, on SMT data (pictured) the MSE
shows a reversal of performance demonstrated by correla-
tion, i.e. for Sum both the correlation and error decrease,
when we expect them to be inversely proportional. that of-
ten, Sum is able to account for difficult pairs that lead to
the peaked behaviour in Lex correlation scores. The seg-
mentation experiments in Table 2 support the graph data
with methods generally preferring more operations (shorter
n-grams) on MSRpar data and fewer operations (longer n-
grams) on SMT data.

4. Conclusion
This is the first paper to systematically examine the exten-
sion of simple compositional operators to longer sentences.
While the product-based measures are adequate for com-
parison of short phrases they degrade as the number of op-
erations increases. The Sum operator is more consistent, al-
though this is not visible from correlation evaluation which
is flawed due to the treatment of items tied at zero. We have
also introduced a method for segmenting a sentence into
frequent high-quality n-grams that can provide a baseline
for more complex compositional frameworks. It reduces
the number of operations and encodes some of the useful
high-frequency words that are otherwise discarded.
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