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Abstract
We investigate formalisms for capturing the relation between semantic graphs and English strings. Semantic graph corpora have spurred
recent interest in graph transduction formalisms, but it is not yet clear whether such formalisms are a good fit for natural language
data—in particular, for describing how semantic reentrancies correspond to English pronouns, zero pronouns, reflexives, passives,
nominalizations, etc. We introduce a data set that focuses on these problems, we build grammars to capture the graph/string relation in
this data, and we evaluate those grammars for conciseness and accuracy.
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1. Introduction
String transduction via finite-state devices has proven valu-
able in numerous applications and tree transducers have
been successfully applied to machine translation (Knight
and Graehl, 2005). As we move to deeper natural language
understanding (NLU) and generation (NLG), we encounter
semantic graphs. In these graphs, a single entity often plays
multiple semantic roles, so the node representing that entity
has multiple parents (graph reentrancy). Several corpora
containing this type of data have become available (Oepen
et al., 2002; King et al., 2003; Basile et al., 2012; Banarescu
et al., 2013).
Semantic graphs have spurred interest in graph transduc-
tion formalisms that capture the mapping between semantic
graphs and natural-language strings (Moore, 1989; Pollard
and Sag, 1994; Kroeger, 2004; Bohnet and Wanner, 2001;
Jones et al., 2012). If these formalisms have nice computa-
tional properties—invertibility, trainability, efficient trans-
duction, etc.—then we may reap the same rewards found in
the worlds of string and tree transduction.
However, a formalism must also be a good fit for the data
in the sense that a human expert must be able to concisely
devise a grammar for this data. In this paper, we start with
a set of reentrant semantic graphs paired with English sen-
tences. We ask whether different computationally-attractive
formalisms can concisely capture this set of graph/string
pairs. Our data is drawn from a microworld, but its
graph/string mapping is challenging, as semantic reentran-
cies are expressed in complex ways by English pronouns,
zero pronouns, reflexives, nominalizations, passives, etc.
Our approach is to build grammars to capture the
graph/string mapping, apply those grammars in both direc-
tions, and measure their accuracy and conciseness in terms
of the number of rules required by expert grammar engi-
neers. We only consider computationally attractive for-
malisms and investigate their ability to elegantly capture
the studied data set. Approaches such as (Pollard and Sag,
1994) or (Kroeger, 2004) that do not offer efficient trans-
duction in terms of worst case time complexity, are not dis-
cussed here. In addition, we release our data set with the
hope that others can improve on these results by identify-
ing formalisms that better fit the data, while still admitting
efficient inference. As good formal models are identified,

and as larger semantic corpora become available, we will
be in a good position to design automatic rule extraction
algorithms for fueling NLU and NLG systems.

2. Data
Our data consists of 10,000 semantic graphs over the pred-
icates WANT and BELIEVE, entities BOY and GIRL, and
relations ARG0 and ARG1. Each graph comes with up to
10 English realizations.
Sample graphs are shown in Figure 1. A graph may contain
any number of predicate instances, but at most one entity of
each gender. Each predicate instance may have zero, one,
or two arguments, and a single entity may play multiple
roles in multiple predicates.
The examples in Figure 1 demonstrate various English
mechanisms, including passives (“is believed”) and con-
trol structures (“wants the girl to believe”). The data also
includes nominalizations (“her desire for him”), reflexives
(“wants herself”), long-distance dependencies (“she wants
to want to . . . want herself” rather than “*she wants to want
to . . . want her”), and other phenomena.
We produce our data by writing two programs, one that
systematically enumerates all semantic graphs in this do-
main (starting from the smallest), and another that gen-
erates English from them. Thus, we can create as much
data as we would like. The English generation pro-
gram is arbitrary, i.e., not written in a declarative rule
formalism. We make our data publicly available at
http://amr.isi.edu/download/boygirl.tgz

3. Formalisms
We seek to capture this data concisely in an efficiently-
processable formalism. In particular, the formalism should
be invertible, and it should support efficient forward and
backward application (graph-to-string and string-to-graph),
efficient k-best generation, and efficient EM weight train-
ing.
We devise and test three solutions:

1. Our first solution uses a single synchronous
hyperedge-replacement grammar (SHRG) (Jones
et al., 2012). A SHRG captures a graph/string relation
and may be used to map in either direction.
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Figure 1: Sample semantic graphs and English realizations.

2. Our second solution is a cascade of two devices: a
bottom-up DAG-to-tree transducer (D2T) (Kamimura
and Slutzki, 1982), followed by a top-down tree-to-
string transducer (LNTs) (Comon et al., 1997). The
latter’s job is to take the yield of trees produced by the
D2T.

3. Our third solution is also a cascade, separating differ-
ent linguistic processes into different machines. First,
a D2T tree-ifies the graph. Then two extended tree-to-
tree transducers (xLNT) (Maletti et al., 2008) respec-
tively introduce verbs and pronouns. Finally, an LNTs
converts the produced trees into strings.

Because we have software that implements generic opera-
tions on these types of automata (May and Knight, 2006;
Chiang et al., 2013; Quernheim and Knight, 2012), we
can readily test any manually-engineered solution on our
10,000 data cases, in both graph-to-string and string-to-
graph directions.
Our research seeks to determine how easy it is to explain
the data with various solutions, i.e., to find out how well
they fit the natural language data. It is not concerned with
their purely theoretical properties, which are well-described
elsewhere.

3.1. Synchronous hyperedge-replacement grammar
Hyperedge Replacement Grammars (HRG, ?)) describe
languages of graphs (for instance, to capture all graphs in
figure 1) similar to how context free string grammars (CFG)
describe string languages. The bottom part of figure 2 illus-
trates how HRG constructs graphs. We begin with the start

symbol S and apply rule R1 to replace it with an initial reen-
trant graph that contains further nonterminal edges (EF and
SF). After this, nonterminal edges are replaced recursively
by splicing in graph fragments in a manner reminiscient to
tree-adjoining grammar (TAG) (Joshi and Schabes, 1997).
A graph fragment is inserted in place of a nonterminal edge
by fusing certain nodes of the fragment with the nodes con-
nected by the edge.
Therefore, two semantic nodes that point to the same entity
(e.g. the root note of the graph and the ARG1 of that node
point to the ARG0 of the root node) may be initially close
together, but then get pushed apart in the derivation. This
mechanism allows us to remember referents that need to be
referred back to later in the derivation. In HRG, nontermi-
nal edges can be hyperedges, which are edges that connect
an arbitrary number of nodes. Hyperedges can keep track
of multiple reentrant nodes at the same time, so that graph
fragments fused in later in the derivation can access them.
To translated between english strings and semantic graphs
we use synchronous HRG (SHRG, Jones et al. (2012)),
which pairs every HRG rule with a context free string gram-
mar (CFG) rule by synchronizing non-terminals. The first
rule in figure 2 introduces a graph that can be glossed “EF
believes some SF about herself” and pairs it with the string
“EF believes SF”. The SF nonterminal is replaced by rule
R2, which itself introduces another non-terminal edge (la-
beled Sinf). R3 continues the derivation, introducing a sec-
ond WANT predicate in the semantics and a zero pronoun
(0) in the English string. This zero pronoun and the corre-
sponding graph edge (ARG0) realizes the reference to the
EF entity we kept track of during the derivation.
SHRG also permits horizontal construction of graphs,
which lets us incrementally produce highly reentrant graph
nodes. Most other grammar and automata formalisms
(including context-free grammars) permit only vertical
construction, creating or consuming all of a node’s edges
at once.

The biggest weakness in using SHRG in this way is that we
still use CFG for the language of English strings, especially
since we require our grammars to be reversible. It is not
sufficient to write an over-generating grammar that can be
used for language understanding, since the same grammar
has to be used for generation as well. With plain CFG there
is no easy way to make sure pronominal forms are com-
patible with the verb and pronoun gender agrees over long
distances. The features of all entities that interact over long
distances need to be encoded in the nonterminal alphabet,
quickly leading to combinatorial explosion of the grammar.
For instance, the grammar used in figure 2 contains a non-
terminal symbol SF to indicate that any entity edge labeled
with SF points to has female gender. Similarly the nonter-
minal Sinf indicates a subphrase with a main verb in infini-
tive form (required by the control construction), that points
back to a female entity.

3.2. DAG-to-tree transducer
The D2T transducer operates bottom-up on an input graph.
After consuming a semantic node by rule, it outputs an En-
glish tree fragment along with state information. English
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Figure 2: A partial SHRG derivation that simultaneously builds a string (top) and graph (bottom).

tree fragments can be combined by subsequent rules that
match the states of those fragments.
We initially use D2T rules to split reentrant graph nodes.
In Figure 3, we split the GIRL node into three English
fragments with states qps, qps, and qpz. The rules used
in this derivation step are shown in Figure 6. Via other
derivations, different substitutions and state assignments
are pursued non-deterministically. Subsequent rules ob-
serve predicates higher in the graph, and they confirm that
the states can be used to express those predicates. Figure 7
shows rules used in subsequent steps of the derivation in
Figure 3.

ρ1 : GIRL →
( qps

NP

she

,

qps

NP

she

,

qz

NP

0

)
ρ2 : BOY →

qpo

NP

him

Figure 6: D2T rules in first derivation step

ρ3 :

WANT,arg0,arg1

qz

x1

qpo

x2

→

qinf

S

x1 V

to want

x2
ρ4 :

WANT,arg0,arg1

qps

x1

qinf

x2

→

qpres

S

x1 V

wants

x2

ρ5 :

BELIEVE,arg0,arg1

qps

x1

qpres

x2

→

q

S

x1 V

believes

x2

Figure 7: D2T rules in subsequent derivation steps

The D2T transducer allows us to elegantly model the map-
ping between graph reentrancies and agreement of pronom-
inal genre over arbitrarily long distances. In the graph-
string pairs shown in Figures 4 and 5, the GIRL node has
two reentrancies realized by the pronouns “she” and “her”.
In the first pair, these reentrancies are separated by a sin-
gle instance of the predicate WANT and in the second pair,
by two such instances. To generate the associated En-
glish strings, we split, in both derivations, the GIRL node
into two English fragments with states qps, qpo and leaves
“she”,“her”. This means that in both cases we use the same
D2T rule, shown in Figure 4. The same rule can again be
used to process all graph-string pairs where the node GIRL

has two reentrancies realized by the pronouns “she” and
“her” regardless of the number of nodes that separate these
reentrancies. On the other hand, D2T rules can only be
reused when reentrancies are realized by the same pronom-
inal forms. Large numbers of reentrancies realized by di-
verse surface forms are hard to capture using this device.
This weakness is due to the fact that when D2T consumes
a node in the input DAG, all reentrancies have to be pro-
cessed in one step. As an illustration, we replace the first
WANT predicate in Figure 3 with the predicate BELIEVE.
The resulting graph-string pair is displayed in Figure 8. In
the corresponding derivation, rule ρ1, which we used in Fig-
ure 3, cannot be used anymore to split the GIRL node be-
cause the third reentrancy into this node is now realized by
a different pronoun. Hence, a new rule (ρ6 in Figure 8) has
to be written to process our new graph-string pair. Such
new rules have to be created each time a reentrancy is re-
alized by a different surface form. For large numbers of
reentrancies this quickly leads to an explosion in the num-
ber of rules.

3.3. Cascade of tree transducers

Complex linguistic processes are often most elegantly
modeled with a sequence of simple devices (Pereira et al.,
1994; Knight and Graehl, 1998; Knight and Al-Onaizan,
1998). The model effectively makes several passes over
the structure, with each pass implementing a targeted
transformation. Here, we first convert the graph into a tree
using a D2T transducer. We specify abstract entity labels
instead of pronominal and verbal forms in the leaves of
our D2T rules. Then we employ an xLNT transducer to
introduce verbal forms such as finite verbs and infinitives.
A second xLNT models the relation between entity nodes
and pronouns. Figure 9 illustrates the input graph in
Figure 3 processed using our cascade of devices. The
rules of the D2T transducer in the cascade are shown in
Figure 10.

The cascade of transducers allows us to capture our data set
in a more concise way than a single SHRG grammar or D2T
device. Its main adavantage is that it breaks down the com-
plex graph to string mapping given in our data into simple
tasks. Using rules that specify abstract labels instead of sur-
face forms in the initial D2T allows us to keep this device
small. In particular, we avoid the combinatorial explosion
of rules necessary to capture reentrancies realized by differ-
ent surface forms. Similarly, the fact that we model verbal
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BELIEVE

WANT

WANT

GIRL BOY

⇒ρ1,2

BELIEVE

qps

NP

she

WANT

qps

NP

she

WANT

qpz

NP

0

qpo

NP

him

⇒ρ3,4

BELIEVE

qps

NP

she

qpres

S

NP

she

V

wants

S

NP

0

V

to want

NP

him

⇒ρ5

S

NP

she

V

believes

S

NP

she

V

wants

S

NP

0

V

to want

NP

him

Figure 3: A sample D2T derivation.

BELIEVE

WANT

GIRL BOY

⇒ρ1,2

BELIEVE

qps

NP

she

WANT

qps

NP

he

qpo

NP

her

⇒ρ3,4,5

S

NP

she

V

believes

S

NP

he

V

wants

NP

her

ρ1 : GIRL →
( qps

NP

she

,

qpo

NP

her

)

Figure 4: Pronominal agreement over short distance
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BELIEVE

qps

NP
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WANT
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WANT
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NP

0

qpo
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S
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S
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Figure 5: Pronominal agreement over longer distance

BELIEVE

BELIEVE

WANT

GIRL BOY

⇒ρ6,2

BELIEVE

qps

NP

she

BELIEVE

qps

NP

she

WANT

qps

NP

she

qpo

NP

him

⇒ρ3,4,5

S

NP

she

V

believes

S

NP

she

V

believes

S

NP

she

V

wants

NP

him

ρ6 : GIRL →
( qps

NP

she

,

qps

NP

she

,

qps

NP

she

)

Figure 8: Reentrancies with various surface forms

BELIEVE

WANT

WANT

GIRL BOY

⇒D2T

S

NP

Xfem

GIRL

V

X B

S

NP

Xfem

GIRL

V

X W

S

NP

Xfem

GIRL

V

X W

NP

Xmasc

BOY

⇒xLNT

S

SUBJ

NP

Xfem

GIRL

V

believes

S

SUBJ

NP

Xfem

GIRL

V

wants

RELINF

SUBJ

NP

Xfem

GIRL

V

to want

NP

Xmasc

BOY

⇒xLNT

S

NP

she

V

believes

S

NP

she

V

wants

S

NP

0

V

to want

NP

him

⇒xLNT She believes she wants to want him

Figure 9: Semantic graph processed using D2T followed by a cascade of XTOPs.

tenses and pronominal forms using two xLNT allows us to
keep these devices small.

4. Empirical Evaluation
In our empirical evaluation, we measure how accurately
and concisely each discussed formalism allows us to model
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ρ1 : GIRL →
(

qe

NP

Xfem

GIRL

,

qe

NP

Xfem

GIRL

,

qe

NP

Xfem

GIRL

)
ρ2 : BOY →

qe

NP

Xmasc

BOY

ρ3 :

WANT,arg0,arg1

qe

x1

qe

x2

→

q

S

x1 V

X W

x2
ρ4 :

BELIEVE,arg0,arg1

qe

x1

q

x2

→

q

S

x1 V

X B

x2

ρ5 :

WANT,arg0,arg1

qe

x1

qe

x2

→

q

S

x1 V

X W

x2

Figure 10: Rules of initial D2T in cascade

our data. For generation of strings from graphs (natural
language generation), we measure coverage as well as ac-
curacy of the produced strings. To this aim, we apply
each grammar or device to generate a string for each of the
10,000 input graphs. Coverage indicates whether any out-
put was generated at all. Accuracy is measured against our
10 English references using BLEU (Papineni et al., 2002).
For generation of graphs from strings (natural language un-
derstanding), we apply each device backwards and gener-
ate a graph from each of the 98,818 strings in the data set.
Again, we measure coverage as well as accuracy. For ac-
curacy, we use Smatch (Cai and Knight, 2013). For both
tasks, we measure conciseness by counting the number of
rules in each solution, and the number of bytes.

Figure 11 shows the results. The strings obtained in the
generation task achieve full coverage and reasonable good
accuracy. The cascading approach requires the fewest num-
ber of rules. This is mainly due to the capacity of cascades
to cut down complex tasks into simpler ones. The DAG-to-
tree transducer requires the largest number of rules. This
is mainly due to its inability to deal with long co-reference
chains. In between, the amount of SHRG rules is due to the
necessity to encode agreement information in non-terminal
edges. Note that SHRG is somewhat less accurate than the
other approaches because it permits more flexibility in gen-
erating co-reference chains. The graphs obtained in the un-
derstanding task achieve low coverage, meaning that none
of the devices is able to fully process the 10,000 first ref-
erence strings. For all solutions, attempting to increase
coverage leads to a large increase in the number of rules.
However, for the generated graphs accuracy is reasonably
good. As a conclusion, we can say that although our data
set confirms the observations in Section 3, none of the in-
vestigated formalisms elegantly captures the full complex-
ity of our data set, especially for the understanding task.
Our data is publicly available, and we hope other computa-
tionally attractive formalisms can be shown to capture the
relation between English strings and reentrant graphs more
concisely and accurately.

5. Conclusion
We created a corpus of highly reentrant semantic graphs
associated to English strings. We presented several ap-
proaches to capture the graph/string relation found in this
data set. The large number of rules required by these for-
malisms to model this mapping shows that there is a lot
of room for improvement. We release our data set in the
hope that others will download it and devise more elegant
formalisms to capture the relation it contains.
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