
Semantic approaches to software component retrieval with English queries

Huijing Deng, Grzegorz Chrupała

Management Information Systems, Tilburg Center for Cognition and Communication
ETH Zürich, Tilburg University

huijingdeng@ethz.ch, g.chrupala@uvt.nl

Abstract
Enabling code reuse is an important goal in software engineering, and it depends crucially on effective code search interfaces. We
propose to ground word meanings in source code and use such language-code mappings in order to enable a search engine for
programming library code where users can pose queries in English. We exploit the fact that there are large programming language
libraries which are documented both via formally specified function or method signatures as well as descriptions written in natural
language. Automatically learned associations between words in descriptions and items in signatures allows us to use queries formulated
in English to retrieve methods which are not documented via natural language descriptions, only based on their signatures. We show
that the rankings returned by our model substantially outperforms a strong term-matching baseline.

Keywords: natural language code search; software component retrieval; semantic grounding

1. Introduction
Enabling code reuse is of paramount importance in modern
software engineering. Effective code search interfaces can
make a major contribution towards this goal. Here we pro-
pose to answer natural language queries in an Application
Programming Interface (API) search system via a simple
form of grounding the meanings of words in programming
language constructs.
We exploit the fact that there are large programming lan-
guage libraries which are documented both via formally
specified function or method signatures as well as descrip-
tions written in a natural language such as English. This al-
lows us to learn to associate words with elements of method
signatures which they frequently co-occur with. These as-
sociations enable the use of queries formulated in English
to retrieve methods which have no corresponding descrip-
tions, only based on their signatures.
In this paper we focus on the Java Standard Library, but
we believe that our approach is applicable to other simi-
lar API collections. Java methods are documented via a
format known as Javadoc. A simplified example of docu-
mentation in this format for the method charAt is shown
in Figure 1. The method signature contains the method
name (charAt), qualifier (public), return type (char),
as well as parameter type (int) and names (index). The
method description consists of one or more sentences writ-
ten in English. The first sentence typically describes what
the method does. It is followed by any additional detailed
information.
We collected such Javadoc documentation for the Java
Standard Library. As our baseline we use the simple term-
matching model which assumes that the method description
and signature are written in same language. We then devel-
oped two models which do not make this assumption but
rather learn to connect words in the method Javadoc de-
scription with terms in the corresponding signature. These
are the Polylingual Latent Dirichlet Allocation (PLDA)
model (Mimno et al. 2009) and IBM model 1 (Brown et al.
1993).

Class java.lang.String
Signature public char charAt(int index)
Description Returns the char value at the specified index.

An index ranges from 0 to length() - 1. The first
char value of the sequence is at index 0, the next at
index 1, and so on, as for array indexing.

Figure 1: Javadoc documentation for method charAt in
the class java.lang.String

Initially developed for machine translation, IBM model 1
also proved effective in cross-lingual document retrieval
(Berger and Lafferty 1999). The PLDA model attempts
to find topics shared across languages. These two mod-
els provide two different ways of discovering cross-lingual
associations from parallel corpora.
We test the models on the task of API search via English-
language queries. We aim to enable a user to use a query
such as return the character at a specified index in a string,
and to receive a ranked list of methods which implement
the desired functionality.
We simulate such queries by taking the first sentence of the
description of a held-out portion of the Javadocs. The first
sentence typically states succinctly, in simple English, what
the method does, and thus is similar in form to a user query.
For each such query we rank method signatures from the
whole collection according to how semantically related
they are to the natural language query.
We show that the ranking based on the translation model be-
tween words and signature terms substantially outperforms
a strong term-matching baseline and achieves Mean Recip-
rocal Rank scores of nearly 50% and accuracy@10 of al-
most 80%.

2. Models
The task is to retrieve methods using queries formulated in
natural language. We rank methods via a language model-

3248

ing approach (Song and Croft 1999), according to the prob-
ability of the method d given query q:

p(d|q) = p(q|d)p(d)
p(q)

.

By assuming a uniform prior p(d) and ignoring the normal-
ization constant we can use the likelihood term p(q|d) to
rank methods.1 With a unigram language model for gener-
ating q from d we get:

p(q|d) =
∏
w∈q

p(w|d). (1)

Term-matching baseline As a baseline for p(w|d) we
use a term-matching approach which relies on the fact that
many words have the same form as signature terms.
With this model we set p(w|d) to the maximum likelihood
estimate (MLE) with Jelinek-Mercer (Zhai and Lafferty
2001) smoothing:

p(w|d) = (1− λ)f(w|d) + λf(w|D),

where f(w|d) is the relative frequency of w in method sig-
nature d and f(w|D) is its relative frequency in the whole
method collection.

IBM model 1 For this model we use the parallel corpus
of method signatures and the corresponding descriptions to
extract word–signature-term associations: we build a trans-
lation table which gives the probability of word w given
signature term u: p(w|u). IBM model 1 assumes that all
alignments between two strings are equiprobable, and boot-
straps translation probability estimates using Expectation
Maximization (Brown et al. 1993).
When using the translation model, we marginalize over the
terms u in the signature:

p(w|d) = (1− λ)

[∑
u∈d

p(w|u)f(u|d)

]
+ λf(w|D), (2)

where p(w|u) is given by the translation table and f(u|d)
is the relative frequency of u in d. Similarly to the base-
line model, we apply Jelinek-Mercer smoothing to p(w|d).
By putting together equations 1 and 2, the ranking is deter-
mined by:

p(q|d) =
∏
w∈q

(1− λ)

[∑
u∈d

p(w|u)f(u|d)

]
+ λf(w|D).

Interpolated PLDA We also implemented a model based
on Polylingual LDA (Mimno et al. 2009), in which the as-
sociations between words and signature terms are mediated
by topics. After training PLDA on the parallel training data,
we can infer the distribution over topics p(t|d) for a method
signature d. We also use the word distributions of the topics
p(w|t). By putting the two together and marginalizing over
the topics we get:

p(q|d) =
∏
w∈q

[∑
t∈T

p(w|t)p(t|d)

]
. (3)

1Of course given suitable data to estimate its parameters, a
more informative prior could be used.

A topic collapses a number of words: for document re-
trieval, it may not be as precise as a word-level represen-
tation. Wei and Croft (2006) show clear improvements for
retrieval when linearly interpolating a topic model and a
term-matching model. We thus interpolate PLDA with our
baseline model:

p(q|d) = (1− α)× pPLDA(q|d) + α× pBASELINE(q|d). (4)

3. Experiments
We collect the documentation of six packages from the
Java standard library (Standard Edition 6 API Specifica-
tion): io, lang, math, net, text, util. We
extract signatures and their corresponding descriptions for
7183 methods. We split this data set into training set (60%),
validation set (20%), and test set (20%). The models are
trained only on the description-signature pairs in the train-
ing set. The validation set is used to determine the optimal
parameters in the models. Finally we test all the models
with their optimal parameters on test set.
To simulate queries, we take the first sentence of descrip-
tions in the test (or validation) set (see Figure 1). We dis-
card queries which contain less than three words.
When testing the models, for each query in the test set we
use the model to rank the union of the method signatures
in the training and test set. This way of ranking a large
number of methods makes the evaluation more realistic and
the task much more challenging.
We preprocess all the data by removing punctuation and
HTML tags from the whole corpus and by splitting com-
pound camel-cased terms, and lowercasing all terms: e.g.
we turn markSupported into mark and supported.
For method signatures, we include the package and class
they belong to, as well as the superclass. We also tested
different vocabulary reduction settings by filtering out most
frequent and infrequence words from the preprocessed
signature and description separately. For term-matching
model and IBM model, non-filtered data achieved the best
MRR scores. But for PLDA model, we found out that
the optimal condition was to train on data where we filter
out the twenty most frequent words while always preserv-
ing the first two words of the description (which usually
correspond to the method name). After the preprocessing
steps the signature for charAt from Figure 1 would look
like this: char at lang public object string
char index int.
Since each query has exactly one relevant signature, we use
mean reciprocal rank (MRR) as our evaluation metric:

MRR =
1

N

N∑
i=1

1

rank(i)
.

where N is the number of queries, rank(i) is the rank of
the correct method signature given the ith query within the
list of candidate signatures ranked according to the score
produced by the model.

3.1. Results
Figure 2 plots the validation performance of Baseline and
IBM model 1 as a function of smoothing parameter λ.

3249

k 300 500 800 1000 1500
MRR 0.278 0.291 0.262 0.280 0.217

Table 1: PLDA on validation set with varying number of
topics k

α 0.0 0.1 0.3 0.5 0.7 0.9
MRR 0.291 0.375 0.373 0.372 0.370 0.366

Table 2: Interpolated PLDA on validation set with vary-
ing α

There are two versions of IBM model 1: after one iteration
of EM and after 15 iterations of EM. We tested iterations
ranging from 1 to 30; we only show the case of 15 itera-
tions, since past 15 iterations, MRR scores did not change
appreciably.

The term-matching model is quite a strong baseline in this
evaluation: the MRR with the optimal value of λ on the
validation set is 34.4%, i.e. the harmonic mean of the rank
of the correct method is around 3 (out of more than 5000).
In the Java Standard Library, methods and their arguments
typically have informative, English-based names and thus
tend to match words in the query. This may not always
be the case for other libraries and in such cases we would
expect the term-matching model to perform less well.

We tuned the number of topics for the pure PLDA model: as
shown in Table 1 the best k was 500 with MRR at 29.1%.
Table 2 shows the validation set performance of Interpo-
lated PLDA with k = 500 as a function of α. With the best
setting Interpolated PLDA gives a moderate gain over the
baseline, reaching 37.5%.

In contrast, IBM model 1 substantially outperms the base-
line and Interpolated PLDA, and brings the MRR to 52%.
The model can deal effectively with queries where the base-
line fails badly. Figure 3 shows two example queries where
the rank of the correct method was improved dramatically
by the translation model compared to the baseline. In both
cases there are few code-terms corresponding to words in
the query, and the ones that are shared are not informative
(such as object).

Table 3 shows the retrieval performance of the models on
the test set. Besides MRR scores, it also shows the accu-
racy@1 and accuracy@10, which indicate the proportion of
queries that have the correct answer at position 1, or within
the top 10 results. For IBM model 1 returns the correct an-
swer within the top 10 results for almost 80% of the queries.

Model MRR Acc@1 Acc@10
Baseline (λ = 0.7) 0.332 0.223 0.530
Interp. PLDA (α = 0.1) 0.352 0.242 0.562
IBM model 1 (λ = 0.3) 0.493 0.339 0.793

Table 3: Results on test data

0 0.2 0.4 0.6 0.8

0

0.1

0.2

0.3

0.4

0.5

λ

M
R

R

Baseline
IBM 1 (n=1)

IBM 1 (n=15)

Figure 2: Results on validation data

Query returns the trigonometric tangent of an angle
Signature public static double tan(double a)
Signature terms tan lang public object strict math double

public a double
Rank change 1998 → 2

Query compares the specified object with this map for
equality as per the definition in the map interface

Signature public boolean equals(Object o)
Signature terms equals util public dictionary hashtable

boolean public o object
Rank change 1718 → 1

Figure 3: Example queries where baseline fails

4. Related work
Our work builds on several strands of research from some-
what disconnected areas. Firstly, it can be seen as imple-
menting a simple form of grounding for natural language.
There are too many approaches to this problem to discuss
here, but the most related work in this domain is perhaps
on translating natural into formal languages, e.g. (Matuszek
et al. 2010, Branavan et al. 2010, Liang et al. 2011). These
works are concerned with full-fledged mappings between
sentences and a formally specified semantic interpretation.
We are more interersted in learning distributional meaning
representations of words in terms of elements of executable
source code. Our use of a word-alignment model to asso-
ciate words with meanings is also reminiscent of the work
of Fazly et al. (2010) which models cross-situational word
learning by infants.
Secondly, we apply our word representation to API re-
trieval. Casting information retrieval as a translation prob-
lem in order to account for systematic differences in lan-
guage between queries and documents dates back to Berger
and Lafferty (1999). Different versions of this basic ap-
proach have been since explored, e.g. in Lafferty and Zhai
(2001), Momtazi and Klakow (2011). Our contribution
here is to apply this idea to the problem of API search via
natural language queries.
API search and retrieval have been of interest within the

3250

software engineering community, e.g. Stylos and Myers
(2006), Bajracharya et al. (2006), McMillan et al. (2011).
These works build prototypes of API retrieval systems us-
ing basic techniques from NLP and IR, analogous to what
we implemented in our baseline, i.e. relying on code terms
matching query terms. Other approaches rely on code-
specific query languages (Mandelin et al. 2005). None of
these works specifically address natural language queries or
exploit language-code translation.

5. Conclusion
Numerous advantages make component-based construction
an dominant trend in software development: higher relia-
bility, higher efficiency, lower cost, reduced skills require-
ments. An effective API search interface is the key to com-
ponent reuse, and being able to specify requirements in a
natural form is an important feature.
Our research demonstrates that a user-friendly natural lan-
guage API search interface can be built by exploiting natu-
rally occurring language–code parallel data to ground word
meanings. The level of performance we have seen is al-
ready useful for a real-world application: 80% of queries
receive the correct answer withing top 10 results.
Together with this paper we release the data and code devel-
oped for this work. The public repository can be accessed
at https://bitbucket.org/gchrupala/codeine. We hope these
resources will stimulate further research into applying NLP
techniques to API retrieval.
Many questions remain to be explored. Firstly we would
like to evaluate our approach on real user queries, such as
those found on online programming QA forums. Secondly,
it would be interesting to see how our method generalizes
to other programming languages. We foresee challenges
with the lack of static typing in e.g. Python or Javascript,
where function signatures convey less information than in
Java. In addition to standard library APIs, software devel-
opers increasingly rely on unofficial, third-party APIs. In
many cases these APIs are not documented as well as offi-
cial ones, and they could serve as a testbed for our natural-
language based search approach. In the current work we
have used the bag-of-words approximation to natural lan-
guage documents and method signatures. More precise API
search may be enabled by more structured representations.

Acknowledgments
As part of a Huijing Deng’s master thesis, this work was
supported by the chair of Spoken Language Systems, Saar-
land University. The chair of Management Information
Systems, Swiss Federal Institute of Technology Zurich also
co-funds the work.

References
Bajracharya, S., Ngo, T., Linstead, E., Dou, Y., Rigor, P.,

Baldi, P., and Lopes, C. (2006). Sourcerer: a search
engine for open source code supporting structure-based
search. In Companion to the 21st ACM SIGPLAN sym-
posium on Object-oriented programming systems, lan-
guages, and applications, pages 681–682. ACM.

Berger, A. L. and Lafferty, J. D. (1999). Information Re-
trieval as Statistical Translation. In SIGIR, pages 222–
229.

Branavan, S., Zettlemoyer, L. S., and Barzilay, R. (2010).
Reading between the lines: Learning to map high-level
instructions to commands. In Proceedings of the 48th
Annual Meeting of the Association for Computational
Linguistics, pages 1268–1277. Association for Compu-
tational Linguistics.

Brown, P. F., Pietra, S. D., Pietra, V. J. D., Mercer, R. L.,
and Mercer, R. L. (1993). The mathematics of statistical
machine translation: Parameter estimation. Computa-
tional Linguistics, pages 263–311.

Fazly, A., Alishahi, A., and Stevenson, S. (2010). A prob-
abilistic computational model of cross-situational word
learning. Cognitive Science, 34(6):1017–1063.

Lafferty, J. and Zhai, C. (2001). Document language mod-
els, query models, and risk minimization for information
retrieval. In Proceedings of the 24th annual international
ACM SIGIR conference on Research and development in
information retrieval, pages 111–119. ACM.

Liang, P., Jordan, M. I., and Klein, D. (2011). Learn-
ing dependency-based compositional semantics. In Pro-
ceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies-Volume 1, pages 590–599. Association for
Computational Linguistics.

Mandelin, D., Xu, L., Bodı́k, R., and Kimelman, D. (2005).
Jungloid mining: helping to navigate the API jungle. In
ACM SIGPLAN Notices, volume 40, pages 48–61. ACM.

Matuszek, C., Fox, D., and Koscher, K. (2010). Follow-
ing directions using statistical machine translation. In
Proceedings of the 5th ACM/IEEE international confer-
ence on Human-robot interaction, pages 251–258. IEEE
Press.

McMillan, C., Grechanik, M., Poshyvanyk, D., Xie, Q., and
Fu, C. (2011). Portfolio: finding relevant functions and
their usage. In Software Engineering (ICSE), 2011 33rd
International Conference on, pages 111–120. IEEE.

Mimno, D., Wallach, H. M., Naradowsky, J., Smith, D. A.,
and McCallum, A. (2009). Polylingual topic models. In
Proceedings of the 2009 Conference on Empirical Meth-
ods in Natural Language Processing: Volume 2-Volume
2, pages 880–889. Association for Computational Lin-
guistics.

Momtazi, S. and Klakow, D. (2011). Trained trigger lan-
guage model for sentence retrieval in QA: bridging the
vocabulary gap. In Proceedings of the 20th ACM inter-
national conference on Information and knowledge man-
agement, pages 2005–2008. ACM.

Song, F. and Croft, W. B. (1999). A general language model
for information retrieval. In Proceedings of the eighth
international conference on Information and knowledge
management, pages 316–321. ACM.

3251

https://bitbucket.org/gchrupala/codeine

Stylos, J. and Myers, B. A. (2006). Mica: A web-search
tool for finding API components and examples. In Vi-
sual Languages and Human-Centric Computing, 2006.
VL/HCC 2006. IEEE Symposium on, pages 195–202.
IEEE.

Wei, X. and Croft, W. B. (2006). Lda-based document mod-
els for ad-hoc retrieval. In Proceedings of the 29th an-
nual international ACM SIGIR conference on Research
and development in information retrieval, pages 178–
185. ACM.

Zhai, C. and Lafferty, J. (2001). A study of smoothing
methods for language models applied to ad hoc informa-
tion retrieval. In Proceedings of the 24th annual interna-
tional ACM SIGIR conference on Research and develop-
ment in information retrieval, pages 334–342. ACM.

3252

	Introduction
	Models
	Experiments
	Results

	Related work
	Conclusion

