
 i

LREC 2012 Workshop on
Language Resource Merging

Workshop Programme
22 May 2012

2.00pm – 2.15pm – Welcome and Introduction by Núria Bel

2.15pm – 3.00pm – Invited talk
Iryna Gurevych, How to UBY – a Large-Scale Unified Lexical-Semantic Resource

3.00pm – 5.30pm – Oral Session

3.00pm – 3.30pm
Laura Rimell, Thierry Poibeau and Anna Korhonen, Merging Lexicons for Higher Precision
Subcategorization Frame Acquisition

3.30pm – 4.00pm
Muntsa Padró, Núria Bel and Silvia Necşulescu, Towards the Fully Automatic Merging of Lexical
Resources: A Step Forward

4.00pm – 4.30pm – Coffee break

4.30pm – 5.00pm
Benoît Sagot and Laurence Danlos, Merging Syntactic Lexica: The Case for French Verbs

5.00pm – 5.30pm
Cristina Bosco, Simonetta Montemagni and Maria Simi, Harmonization and Merging of two Italian
Dependency Treebanks

5.30pm – 5.45pm – Short Break

5.45pm – 6.15pm – Poster Session

Riccardo Del Gratta, Francesca Frontini, Monica Monachini, Valeria Quochi, Francesco
Rubino, Matteo Abrate and Angelica Lo Duca, L-Leme: An Automatic Lexical Merger
Based on the LMF Standard

Anelia Belogay, Diman Karagiozov, Cristina Vertan, Svetla Koeva, Adam Przepiórkowski,
Maciej Ogrodniczuk, Dan Cristea, Eugen Ignat and Polivios Raxis, Merging Heterogeneous
Resources and Tools in a Digital Library

Thierry Declerck, Stefania Racioppa and Karlheinz Mörth, Automatized Merging of Italian
Lexical Resources

Radu Simionescu and Dan Cristea, Towards an Universal Automatic Corpus Format
Interpreter Solution

 ii

Editors

Núria Bel Universitat Pompeu Fabra, Barcelona, Spain
Maria Gavrilidou ILSP/Athena R.C., Athens, Greece
Monica Monachini CNR-ILC, Pisa, Italy
Valeria Quochi CNR-ILC, Pisa, Italy
Laura Rimell University of Cambridge, UK

Workshop Organizers/Organizing Committee

Núria Bel Universitat Pompeu Fabra, Barcelona, Spain
Maria Gavrilidou ILSP/Athena R.C., Athens, Greece
Monica Monachini CNR-ILC, Pisa, Italy
Valeria Quochi CNR-ILC, Pisa, Italy
Laura Rimell University of Cambridge, UK

Workshop Programme Committee

Victoria Arranz ELDA, Paris, France
Paul Buitelaaar National University of Ireland, Galway, Ireland
Nicoletta Calzolari CNR-ILC, Pisa, Italy
Olivier Hamon ELDA, Paris, France
Aleš Horák Masaryk University, Brno, Czech Republic
Nancy Ide Vassar College, Mass. USA
Bernardo Magnini FBK, Trento, Italy
Paola Monachesi Utrecht University, Utrecht, The Netherlands
Jan Odijk Utrecht University, Utrecht, The Netherlands
Muntsa Padró UPF-IULA, Barcelona, Spain
Karel Pala Masaryk University, Brno, Czech Republic
Pavel Pecina Charles University, Prague, Czech Republic.
Thierry Poibeau University of Cambridge, UK and CNRS, Paris,

France
Benoît Sagot INRIA, Paris, France
Kiril Simov Bulgarian Academy of Sciences, Sofia, Bulgaria
Claudia Soria CNR-ILC, Pisa, Italy
Maurizio Tesconi CNR-IIT, Pisa
Antonio Toral DCU, Dublin, Ireland

 iii

Table of contents

How to UBY – a Large-Scale Unified Lexical-Semantic Resource
Iryna Gurevych ... 1

Merging Lexicons for Higher Precision Subcategorization Frame Acquisition
Laura Rimell, Thierry Poibeau and Anna Korhonen .. 2

Towards the Fully Automatic Merging of Lexical Resources: a Step Forward
Muntsa Padró, Núria Bel and Silvia Necşulescu .. 8

Merging Syntactic Lexica: the Case for French Verbs
Benoît Sagot and Laurence Danlos .. 15

Harmonization and Merging of two Italian Dependency Treebanks
Cristina Bosco, Simonetta Montemagni and Maria Simi ... 23

L-LEME: an Automatic Lexical Merger based on the LMF standard
Riccardo Del Gratta, Francesca Frontini, Monica Monachini, Valeria Quochi,
Francesco Rubino, Matteo Abrate and Angelica Lo Duca ... 31

Merging Heterogeneous Resources and Tools in a Digital Library
Anelia Belogay, Diman Karagiozov, Cristina Vertan, Svetla Koeva, Adam Przepiórkowski,
Maciej Ogrodniczuk, Dan Cristea, Eugen Ignat and Polivios Raxis.. 41

Automatized Merging of Italian Lexical Resources
Thierry Declerck, Stefania Racioppa and Karlheinz Mörth ... 45

Towards an Universal Automatic Corpus Format Interpreter solution
Radu Simionescu and Dan Cristea ... 49

 iv

Author Index

Abrate, Matteo 31
Bel, Núria 8
Belogay, Anelia 41
Bosco, Cristina 23
Cristea, Dan 41, 49
Danlos, Laurence 15
Declerck, Thierry 45
Del Gratta, Riccardo 31
Frontini, Francesca 31
Gurevych, Iryna 1
Karagiozov, Diman 41
Koeva, Svetla 41
Korhonen, Anna 2
Ignat, Eugen 41
Lo Duca, Angelica 31
Monachini, Monica 31
Montemagni, Simonetta 23
Mörth, Karlheinz 45
Necşulescu, Silvia 8
Ogrodniczuk, Maciej 41
Padró, Muntsa 8
Poibeau, Thierry 2
Przepiórkowski, Adam 41
Quochi, Valeria 31
Racioppa, Stefania 45
Raxis, Polivios 41
Rimell, Laura 2
Rubino, Francesco 31
Sagot, Benoît 15
Simi, Maria 23
Simionescu, Radu....................... 49
Vertan, Cristina 41

 v

Introduction

The availability of adequate language resources has been a well-known bottleneck for most high-
level language technology applications, e.g. Machine Translation, parsing, and Information
Extraction, for at least 15 years, and the impact of the bottleneck is becoming all the more apparent
with the availability of higher computational power and massive storage, since modern language
technologies are capable of using far more resources than the community produces. The present
landscape is characterized by the existence of numerous scattered resources, many of which have
differing levels of coverage, types of information and granularity. Taken singularly, existing
resources do not have sufficient coverage, quality or richness for robust large-scale applications,
and yet they contain valuable information (Monachini et al. 2004 and 2006; Soria et al. 2006;
Molinero, Sagot and Nicolas 2009; Necşulescu et al. 2011). Differing technology or application
requirements, ignorance of the existence of certain resources, and difficulties in accessing and using
them, has led to the proliferation of multiple, unconnected resources that, if merged, could
constitute a much richer repository of information augmenting either coverage or granularity, or
both, and consequently multiplying the number of potential language technology applications.
Merging, combining and/or compiling larger resources from existing ones thus appear to be a
promising direction to take.
The re-use and merging of existing resources is not altogether unknown. For example, WordNet
(Fellbaum, 1998) has been successfully reused in a variety of applications. But this is the exception
rather than the rule; in fact, merging, and enhancing existing resources is uncommon, probably
because it is by no means a trivial task given the profound differences in formats, formalisms,
metadata, and linguistic assumptions.
The language resource landscape is on the brink of a large change, however. With the proliferation
of accessible metadata catalogues, and resource repositories (such as the new META-SHARE
infrastructure), a potentially large number of existing resources will be more easily located,
accessed and downloaded. Also, with the advent of distributed platforms for the automatic
production of language resources, such as PANACEA, new language resources and linguistic
information capable of being integrated into those resources will be produced more easily and at a
lower cost. Thus, it is likely that researchers and application developers will seek out resources
already available before developing new, costly ones, and will require methods for
merging/combining various resources and adapting them to their specific needs.
Up to the present day, most resource merging has been done manually, with only a small number of
attempts reported in the literature towards (semi-)automatic merging of resources (Crouch & King
2005; Pustejovsky et al. 2005; Molinero, Sagot and Nicolas 2009; Necsulescu et al. 2011, Gurevych
et al. 2012, Eckle-Kohler and Gurevych 2012). In order to take a further step towards the scenario
depicted above, in which resource merging and enhancing is a reliable and accessible first step for
researchers and application developers, experience and best practices must be shared and discussed,
as this will help the whole community avoid any waste of time and resources.

AIMS OF THE WORKSHOP
This half-day workshop is meant to be part of a series of meetings constituting an ongoing forum
for sharing and evaluating the results of different methods and systems for the automatic production
of language resources (the first one was the LREC 2010 Workshop on Methods for the Automatic
Production of Language Resources and their Evaluation Methods). The main focus of this workshop
is on (semi-)automatic means of merging language resources, such as lexicons, corpora and
grammars. Merging makes it possible to re-use, adapt, and enhance existing resources, alongside
new, automatically created ones, with the goal of reducing the manual intervention required in
language resource production, and thus ultimately production costs.

 vi

REFERENCES

Dick Crouch and Tracy H. King. 2005. Unifying lexical resources. Proceedings of Interdisciplinary

Workshop on the Identification and Representation of Verb Features and Verb Classes.
Saarbruecken, Germany.

Judith Eckle-Kohler and Iryna Gurevych. 2012. Subcat-LMF: Fleshing out a standardized format

for subcategorization frame interoperability. Proceedings of the 13th Conference of the European
Chapter of the Association for Computational Linguistics (EACL 2012), April 2012.

Christiane Fellbaum. 1998. WordNet: An Electronic Lexical Database. MIT Press.

Iryna Gurevych, Judith Eckle-Kohler, Silvana Hartmann, Michael Matuschek, Christian M. Meyer

and Christian Wirth. 2012. Uby - A Large-Scale Unified Lexical-Semantic Resource. Proceedings
of the 13th Conference of the European Chapter of the Association for Computational Linguistics
(EACL 2012), April 2012.

Monica Monachini, Nicoletta Calzolari, Khalid Choukri, Jochen Friedrich, Giulio Maltese, Michele

Mammini, Jan Odijk & Marisa Ulivieri. 2006. Unified Lexicon and Unified Morphosyntactic
Specifications for Written and Spoken Italian. In Calzolari et al. (eds.), Proceedings of the
LREC2006: 5th International Conference on Language Resources and Evaluation, pp. 1852-
1857, Genoa, Italy.

Miguel A. Molinero, Benoît Sagot and Nicolas Lionel. 2009. Building a morphological and

syntactic lexicon by merging various linguistic resources. In Proceedings of 17th Nordic
Conference on Computational Linguistics (NODALIDA-09), Odense, Danemark

Silvia Necsulescu, Núria Bel, Muntsa Padró, Montserrat Marimon, Eva Revilla. 2011. Towards the

Automatic Merging of Language Resources. First international Workshop on Lexical Resources.
Woler 2011. Ljubljana, Slovenia: 1-5 August 2011.

Pustejovsky, J., M. Palmer and A. Meyers. Towards a Comprehensive Annotation of Linguistic

Information. Workshop on Frontiers in Corpus Annotation II. Pie in the Sky, ACL, Ann Arbor,
MI. 2005.

Claudia Soria, Maurizio Tesconi, Nicoletta Calzolari, Andrea Marchetti, Monica Monachini. 2006.

Moving to dynamic computational lexicons with LeXFlow. In Proceedings of the LREC2006: 5th
International Conference on Language Resources and Evaluation, Genoa, Italy (pp. 7–12).

How to UBY - a Large-Scale Unified Lexical-Semantic Resource

Ir yna Gurevych

UKP-TUDA, Darmstadt Universität
TU Darmstadt - FB 20 Hochschulstraße 10 64289 Darmstadt

gurevych@ukp.informatik.tu-darmstadt.de

Abstract
The talk will present UBY, a large-scale resource integration project based on the Lexical Markup Framework (LMF, ISO 24613:2008).
Currently, nine lexicons in two languages (English and German) have been integrated: WordNet, GermaNet, FrameNet, VerbNet,
Wikipedia (DE/EN), Wiktionary (DE/EN), and OmegaWiki. All resources have been mapped to the LMF-based model and imported
into an SQL-DB. The UBY-API, a common Java software library, provides access to all data in the database. The nine lexicons are
densely interlinked using monolingual and cross-lingual sense alignments. These sense alignments yield enriched sense representations
and increased coverage. A sense alignment framework has been developed for automatically aligning any pair of resources mono- or
cross-lingually. As an example, the talk will report on the automatic alignment of WordNet and Wiktionary. Further information on UBY
and UBY-API is available at: http://www.ukp.tu-darmstadt.de/data/lexical-resources/uby/.

1

Merging Lexicons for Higher Precision Subcategorization
Frame Acquisition

Laura Rimell∗, Thierry Poibeau†, Anna Korhonen∗

∗ Dept of Theoretical and Applied Linguistics & Computer Laboratory, University of Cambridge, UK
† LaTTiCe, UMR8094, CNRS & ENS, France

laura.rimell@cl.cam.ac.uk, anna.korhonen@cl.cam.ac.uk, thierry.poibeau@ens.fr

Abstract
We present a new method for increasing the precision of an automatically acquired subcategorization lexicon, by merging two resources
produced using different parsers. Although both lexicons on their own have about the same accuracy, using only sentences on which
the two parsers agree results in a lexicon with higher precision, without too great loss of recall. This “intersective” resource merger is
appropriate when both resources are automatically produced, hence noisy, or when precision is of primary importance, and may also be
a useful approach for new domains where sophisticated filtering and smoothing methods are unavailable.

Keywords: verb subcategorization frames, subcategorization lexicon, parser ensemble, language resource merging

1. Introduction
Verb subcategorization frame (SCF) lexicons contain infor-
mation about the subcategorization preferences of verbs,
that is, the tendency of verbs to select the types of syn-
tactic phrases with which they co-occur. For example,
the verb believe can take a noun phrase complement, a
clausal complement, or both together, while the verb see
can take a noun phrase or a clausal complement, but not
both together (Figure 1). SCF lexicons can serve as use-
ful resources for applications requiring information about
predicate-argument structure, including parsing (Carroll
and Fang, 2004), semantic role labeling (Bharati et al.,
2005), verb clustering (Schulte im Walde, 2006), informa-
tion extraction (Surdeanu et al., 2003), and machine trans-
lation (Han et al., 2000).
Manually developed resources containing subcategoriza-
tion information (Boguraev et al., 1987; Grishman et al.,
1994) typically have high precision but suffer from a lack of
coverage, making automatic acquisition desirable. The au-
tomatic acquisition of SCF information requires extraction
of co-occurrence information from large amounts of un-
structured text. A typical approach involves using a parser
to discover the grammatical relations (GRs, i.e. dependen-
cies) headed by each verb instance, then deciding which
GR patterns constitute instances of various SCFs, either by
heuristically matching a set of pre-defined patterns, or by
accepting all patterns found within the data with a min-
imum frequency. The resulting set of SCF instances are
amalgamated into an SCF lexicon, containing a probabil-
ity distribution over SCFs for each verb lemma (Briscoe
and Carroll, 1997; Korhonen, 2002; Preiss et al., 2007;
Messiant et al., 2008; Lapesa and Lenci, 2011). Auto-
matically acquired resources typically have higher cover-
age than manually developed ones, but suffer from a lack
of precision.
A number of filtering and smoothing techniques have been
proposed in order to improve the precision of automatically
acquired SCF lexicons. Filtering SCFs which are attested
below a relative frequency threshold for any given verb,
where the threshold is applied uniformly across the whole

SCF Example
NP Mary believed [NPSusan].
CCOMP Mary believed [CCOMPthat the book had

been returned].
NP-CCOMP Mary believed [NPSusan] [CCOMPthat the

book had been returned].
NP Mary saw [NPSusan].
CCOMP Mary saw [CCOMPthat the book had been

returned].
NP-CCOMP *Mary saw [NPSusan] [CCOMPthat the book

had been returned].

Figure 1: Sample subcategorization frames taken by two
verbs. The asterisk represents an ungrammatical sentence.

lexicon, has been shown to be effective (Korhonen, 2002;
Messiant et al., 2008). However, this technique relies on
empirical tuning of the threshold, necessitating a gold stan-
dard in the appropriate textual domain, and it is insensitive
to the fact that some SCFs are inherently rare. The most suc-
cessful methods of increasing accuracy in SCF lexicons rely
on language- and domain-specific dictionaries to provide
back-off distributions for smoothing (Korhonen, 2002).
This paper presents a different approach to acquiring a
higher precision SCF resource, namely the merging of two
automatically acquired resources by retaining only the in-
formation that the two resources agree on. Previous work
on language resource merging has generally focused on in-
creasing coverage by adding information from one resource
to another, e.g. (Crouch and King, 2005; Molinero et al.,
2009), which focus on merging multiple levels of informa-
tion from disparate resources. More closely related to our
work, (Necsulescu et al., 2011; Bel et al., 2011; Padró et
al., 2011) merge two manually built SCF lexicons, unifying
SCFs when possible but with the goal of retaining informa-
tion from both lexicons. Treating language resource merger
as (roughly) a union operation is appropriate for manually
developed resources, or when coverage is a priority. How-
ever, when working with automatically acquired resources

2

it may be worthwhile to adopt the approach of merger by
intersection.
We focus here on the fact that the tagger and parser are one
source of noise in automatic SCF acquisition, and combine
two lexicons built with different parsers. This approach is
similar in spirit to parser ensembles, which have been used
successfully to improve parsing accuracy (Sagae and Lavie,
2006; Sagae and Tsujii, 2007). We build two SCF lexi-
cons using the framework of (Korhonen, 2002; Preiss et
al., 2007), which was designed to classify the output of the
RASP parser (Briscoe et al., 2006), and which we extend
to classify the output of the unlexicalized Stanford parser
(Klein and Manning, 2003). We then build a combined
lexicon that includes only SCFs that are agreed on by both
parsers. Using this simple combination approach, we ob-
tain a lexicon with higher precision than the lexicon built
with either parser alone.

2. Previous Work
Manually developed resources containing subcategoriza-
tion information include ANLT (Boguraev et al., 1987) and
COMLEX (Grishman et al., 1994). Automatically aquired
SCF resources for English include (Briscoe and Carroll,
1997; Korhonen, 2002; Korhonen et al., 2006a; Preiss et
al., 2007), and for other languages such resources as (Mes-
siant et al., 2008) for French, and (Lapesa and Lenci, 2011)
for Italian. The state of the art system for SCF acquisition
in English is that of (Preiss et al., 2007), which we adopt
and extend here. It uses manually defined rules to identify
SCFs based on the output of the RASP parser.
The only previous work we are aware of on combining SCF
lexicons is (Necsulescu et al., 2011; Bel et al., 2011; Padró
et al., 2011). However, they combine manually developed
lexicons. To our knowledge there is no previous work on
combining automatically acquired SCF lexicons.
Parser ensembles have previously been used to improve
parsing accuracy (Sagae and Lavie, 2006; Sagae and Tsu-
jii, 2007), as well as for applications such as extraction of
protein-protein interactions (Miyao et al., 2009).

3. System Description
We adapted the SCF acquisition system of (Preiss et al.,
2007). First, corpus data is parsed to obtain GRs for each
verb instance. We use the RASP parser and the unlex-
icalized Stanford parser. Second, a rule-based classifier
matches the GRs for each verb instance with a correspond-
ing SCF. The classifier of (Preiss et al., 2007) is based on
the GR scheme of (Briscoe et al., 2006), used by the RASP
parser. Since the Stanford parser produces output in the
Stanford Dependencies (SD) scheme (de Marneffe et al.,
2006), we developed a new version of the classifier for the
Stanford output. We also made some minor modifications
to the RASP classifier. At this stage we added a parser com-
bination step, creating a new set of classified verb instances
by retaining only instances for which the two classifiers
agreed on the SCF. A lexicon builder then extracts rela-
tive frequencies from the classified data and builds lexical
entries, and the resulting lexicons are filtered.

3.1. Parsing
SCF acquisition requires an unlexicalized parser, i.e. a
parser that does not already have a notion of SCF proba-
bilities conditioned on particular verb lemmas, so as not to
bias the outcome towards the parser’s existing knowledge.
RASP is a modular statistical parsing system which in-
cludes a tokenizer, tagger, lemmatizer, and a wide-coverage
unification-based tag-sequence parser, and has been used
in a number of previous SCF acquisition experiments.
The Stanford system includes a tokenizer, tagger, lemma-
tizer, and an unlexicalized1 stochastic context-free gram-
mar parser. We are unaware of any previous SCF acquisition
using the Stanford parser.

3.2. Classifying Verb Instances
The classifier attempts to match the set of GRs produced
for each verb instance against its inventory of SCFs, using a
set of rules which were manually developed by examining
parser output on development sentences. The classifier is
implemented in Lisp and examines the graph of GRs headed
by the verb, finding the SCF which matches the greatest
number of GRs. For example, if the verb has a direct ob-
ject (NP) and an indirect object (PP), then the classifier will
find SCF NP-PP, not NP. (Note that we do not include sub-
jects in the SCF name, since they are obligatory in English.)
For the RASP parser, we used a re-implementation in Lisp
of the rule set in (Preiss et al., 2007). We made some minor
modifications to the rules based on examination of devel-
opment data.
Despite commonalities between the GR scheme of (Briscoe
et al., 2006) and the SD scheme, the realization of a partic-
ular SCF can nevertheless exhibit a number of differences
across schemes. Rather than converting the SD output to
(Briscoe et al., 2006) format, a complex many-to-many
mapping that would likely lose information, we chose to de-
velop a new version of the classifier, based on examination
of development data parsed by the Stanford parser. Figure 2
shows an example of parser output in the two schemes.

3.3. Merging Classifier Output
For the combined lexicon, we merged the classifier output
on a sentence-by-sentence basis. A sentence was consid-
ered to exemplify an SCF for a verb only if both classifiers,
RASP and Stanford, agreed on that SCF based on the parser
output. Note that we did not merge the results of the lexicon
building step (Section 3.4.), which would mean accepting
an SCF on a verb-by-verb basis, if the two lexicons agreed
that the verb takes that SCF. We chose not to use this strat-
egy since we believed it would allow more errors of both
parsers to pass through the pipeline.2

1Though the Stanford parser is unlexicalized, the rules pro-
vided with the parser to generate GRs from a constituent parse are
mildly lexicalized; for example, they can distinguish some raising
verbs. This affects only a small number of SCFs. We made use of
the information when it was available.

2We also did not combine parsers by voting on individual GRs,
to generate a new parse with higher accuracy than the individual
parser output; this would have been difficult due to the differences
between the GR schemes.

3

SCF: EXTRAP-TO-NP-S
It matters to them that she left.
RASP
ncsubj(matter it)
iobj(matter to)
ccomp(that matter leave)
ncsubj(leave she)
Stanford
nsubj(matter it)
prep(matter to)
ccomp(matter leave)
nsubj(leave she)

Figure 2: Example sentence with RASP and SD GRs (inci-
dental formatting has been normalized). The classifier rules
identify this SCF only when the word it is in subject position
and the preposition is to.

In some cases, differences in the two GR schemes allowed
the parsers to take different views on the data. For exam-
ple, RASP cannot distinguish the SCFs ADVP (He meant
well) and PARTICLE (She gave up), since it analyzes both
well and up as particle-type non-clausal modifiers. How-
ever, Stanford distinguishes the two as adverbial modifier
and particle, respectively. In such cases we used the more
fine-grained analysis in the resulting lexicon.

3.4. Lexicon Building and Filtering
The lexicon builder amalgamates the SCFs hypothesized by
the classifier for each verb lemma. SCFs left underspecified
by the classifier are also treated here. As the gold standard
SCF inventory is very fine-grained, there are a number of
distinctions which cannot be made based on parser output.
For example, the gold standard distinguishes between tran-
sitive frame NP with a direct object interpretation (She saw
a fool) and NP-PRED-RS with a raising interpretation (She
seemed a fool), but parsers in general are unable to make
this distinction. We used two different strategies at lexicon
building time: weighting the underspecified SCFs by their
frequency in general language, or choosing the single SCF
which is most frequent in general language. For example,
we either assign most of the weight to SCF NP with a small
amount to NP-PRED-RS, or we assign all the weight to NP.
The goal of the parser combination method is to increase
the precision of the acquired lexicon, which is also the goal
of the various filtering methods for removing noise from
SCF lexicons. In order to investigate the role of filtering
in the context of parser combination, we filtered all the ac-
quired lexicons using uniform relative frequency thresholds
of 0.01 and 0.02.

4. Experiments
4.1. Gold Standard
We used the gold standard of (Korhonen et al., 2006b), con-
sisting of SCFs and relative frequencies for 183 general-
language verbs, based on approximately 250 manually an-
notated sentences per verb. The verbs were selected ran-
domly, subject to the restriction that they take multiple
SCFs. The gold standard includes 116 SCFs. Because of the

Filtering Method RASP Stanford Comb.

Unfiltered
P 9.6 10.0 15.7
R 95.8 95.4 90.3
F 17.5 18.2 26.7

Uniform 0.01
P 42.7 38.6 50.8
R 59.0 59.8 56.7
F 49.6 46.9 53.6

Uniform 0.02
P 52.6 43.9 56.7
R 48.8 47.2 46.6
F 50.6 45.5 51.1

Table 1: Type precision, recall, and F-measure for 183
verbs. Underspecified SCFs weighted by frequency in gen-
eral language.

Zipfian nature of SCF distributions – a few SCFs are taken
by most verbs, while a large number are taken by few verbs
– only 36 of these SCFs are taken by more than ten verbs in
the gold standard.

4.2. Corpus Data
The input corpus consisted of up to 10,000 sentences for
each of the 183 verbs, from the British National Cor-
pus (BNC) (Leech, 1993), the North American News Text
Corpus (NANT) (Graff, 1995), the Guardian corpus, the
Reuters corpus (Rose et al., 2002), and TREC-4 and TREC-
5 data. Data was taken preferentially from the BNC, using
the other corpora when the BNC had insufficient examples.

4.3. Evaluation Measures
We used type precision, recall, and F-measure for lexicon
evaluation, as well as the number of SCFs present in the
gold standard but missing from the unfiltered lexicon (i.e.
not acquired, rather than filtered out). We also measured
the distributional similarity between the acquired lexicons
and the gold standard using various measures.

5. Results and Discussion
Tables 1 and 2 show the overall results for each parser
alone as well as the combination, using the two different
methods of resolving underspecified SCFs. We note first
that the single-parser systems show similar accuracy across
the different filtering thresholds. In Table 1, both systems
achieve an F-score of about 18 for the unfiltered lexicon,
and between 45 and 50 for the uniform frequency thresh-
olds of 0.01 and 0.02. In Table 2, the accuracy is slightly
higher overall, with both systems achieveing F-scores of
about 21-22 for the unfiltered lexicon, and between 51-57
for the uniform frequency thresholds. The RASP-based sys-
tem achieves higher accuracy than the Stanford-based sys-
tem across the board, due to higher precision. We attribute
this difference to the fact that the RASP classifier rules have
been through several generations of development, while the
Stanford rule set was first developed for this paper and has
had the benefit of less fine-tuning, rather than to any differ-
ence in suitability of the two parsers for the task.
The merged lexicon shows a notable increase in precision at
each filtering threshold compared to the single-parser lex-
icons, with, in most cases, a corresponding increase in F-
score. In Table 1, the unfiltered lexicon achieves an F-score

4

Filtering Method RASP Stanford Comb.

Unfiltered
P 12.1 12.9 22.8
R 83.6 86.8 82.4
F 21.2 22.5 35.7

Uniform 0.01
P 48.6 42.8 59.9
R 62.5 62.7 58.9
F 54.7 50.9 59.4

Uniform 0.02
P 61.5 51.4 68.3
R 52.8 51.3 48.6
F 56.8 51.3 56.8

Table 2: Type precision, recall, and F-measure for 183
verbs. Underspecified SCFs by taking the single most fre-
quent SCF from the set.

of 26.7, the lexicon with a uniform frequency threshold
of 0.01 an F-score of 53.6, and with a uniform frequency
threshold of 0.02 an F-score of 51.1. In Table 2, the unfil-
tered lexicon achieves an F-score of 35.7, the lexicon with a
uniform frequency threshold of 0.01 an F-score of 59.4, and
with a uniform frequency threshold of 0.02 an F-score of
56.8. Depending on the settings, the increase in precision
over the higher of the single-parser lexicons ranges from
about four points (Table 1, bottom row) to over 11 points
(Table 2, middle row). This increase is achieved without
developing any new classifier rules.
An interesting effect of merging can be observed in the un-
filtered case. The unfiltered lexicons all have an extreme
bias towards recall over precision. Because of noise in the
parser and classifier output, most SCFs are hypothesized for
each verb. However, the merged lexicon shows higher pre-
cision even in the unfiltered case: effectively, the merger
acts as a kind of filter.
The combined lexicon does show somewhat lower recall
than the single-parser lexicons. This is probably due to the
fact that the intersection of the two classifier outputs re-
sulted in a much smaller number of sentences in the input
to the lexicon builder. Recall that the original dataset con-
tained up to 10,000 sentences per verb. Not all of these sen-
tences were classified in each pipeline, either due to parser
errors or to the GRs failing to match the rules for any SCF.
On average, the RASP classifier classified 6,500 sentences
per verb, the Stanford classifier 5,594, and the combined
classifier only 1,922. It should be noted that classifying
more sentences does not necessarily mean better accuracy,
since the classifications are noisy; in some cases it is prefer-
ential not to match on any SCF. In fact, the Stanford-based
lexicon was based on fewer sentences than the RASP-based
lexicon without loss of recall. However, the input corpus
for the combined lexicon was effectively much smaller than
the input corpus for the other two lexicons, which probably
contributed to the loss of recall.
We found that the best results for the individual parsers
were obtained with the higher threshold (0.02), and for the
combination with the lower threshold (0.01). Again, this is
probably due to the smaller effective number of sentences
classified; rare SCFs were more likely to fall below the
threshold. As the threshold value increases, the precision
and F-score for the single-parser lexicons approach that of

RASP Stanford Comb.
Number missing 0 1 7

Table 3: Missing SCFs in unfiltered lexicon.

the combined lexicon, because increasing the threshold al-
ways has the effect of increasing precision at the expense of
recall. Using a parser combination achieves the same effect
without the need to tune the threshold.
The next measure we look at is the number of SCFs that
were present in the gold standard but missing from the un-
filtered lexicons, i.e. never identified at all by the SCF aqui-
sition system (rather than filtered out). For this measure
we use the weighting method of treating underspecified
SCFs (as in Table 1); otherwise the assignment of proba-
bility mass to the most frequent SCF in the underspecified
cases means that many more SCFs are missed. The results
are shown in Table 3. The merged lexicon clearly suffers
on this measure, as there were seven SCFs that it did not
identify at all; however, these SCFs are all rare, so they are
presumably not the most important ones for downstream
applications. For example, the merged lexicon does not
identify the frame PP-WHAT-TO-INF, e.g. They deduced
from Kim what to do, or TO-INF-SUBJ, e.g. To see them
hurts, both of which are rare in general language accord-
ing to the ANLT dictionary. Sometimes SCFs were missed
because each parser/classifier identified the SCF, but never
both on the same sentence, and in other cases neither indi-
vidual parser/classifier identified a true positive.
The one missing SCF for the unfiltered Stanford lexicon was
POSS-ING, e.g. She dismissed their writing novels. The
Stanford tagger consistently tags the gerund as NN rather
than VVG, which makes the SCF impossible to identify.
On the other hand, the merged lexicon shows a clear in-
crease in the number of SCFs it can identify accurately. Ta-
ble 4 shows the SCFs identified with at least 50% accuracy
(F-score) in the unfiltered lexicon; the combined system
was able to do this for 17 SCFs, compared to 8 and 7 for
the RASP- and Stanford-based systems, respectively. This
includes the very important PP frame, e.g. They apologized
to him, which is very frequent in general language and re-
lies for its identification on accurate argument-adjunct dis-
crimination. Several frames with wh-elements were also
identified with greater than 50% accuracy in the combined
lexicon but not the single-parser lexicons, such as WH-TO-
INF, e.g. He asked whether to clean the house.
We next compare the acquired lexicons to the gold stan-
dard using various measures of distributional similarity:
Kullback-Leibler divergence (KL), Jensen-Shannon diver-
gence (JS), cross entropy (CE), skew divergence (SD), and
rank correlation (RC). These measures all compare the SCF
probability distributions learned by the SCF acquisition sys-
tem for each verb lemma. Such measures are a useful com-
plement to the type precision, recall, and F-score evalua-
tion, because unlike the type-based measures, the distribu-
tional similarity measures compare the frequencies learned
by the SCF acquisition system. We use several measures
since they exhibit different sensitivity to noise in the data;
see (Korhonen and Krymolowski, 2002) for a discussion of

5

RASP Stanford Comb.
INTRANSITIVE • • •
TRANSITIVE • • •
NP-PP • • •
PARTICLE • • •
PARTICLE-NP • • •
PARTICLE-NP-PP • • •
PARTICLE-PP • •
WH-TO-INF • • •
ADVP •
EXTRAP-TO-NP-S •
HOW-S •
HOW-TO-INF •
PP •
PP-HOW-TO-INF •
WH-S •
WHAT-S •
FIN-CLAUSE-SUBJ •

Table 4: SCFs identified with F-score of at least 50 in unfil-
tered lexicon.

Measure RASP Stanf Comb.
KL distance 0.376 0.376 0.337
JS divergence 0.072 0.083 0.059
cross entropy 1.683 1.680 1.619
skew divergence 0.345 0.358 0.297
rank correlation 0.627 0.599 0.666

Table 5: Distributional similarity measures comparing un-
filtered lexicons to the gold standard, on SCFs common to
both gold and acquired lexicon. Lower value means greater
correlation: KL, JS, CE, SD. Higher value means greater
correlation: RC.

the application of the various distributional similarity mea-
sures to SCF acquisition.
Table 5 shows the results of the distributional similarity
comparisons on the unfiltered acquired lexicons. In each
case the merged lexicon shows greater similarity to the gold
standard than either of the single-parser lexicons.
Finally, an indication of how the parser combination acts as
a kind of filter is given in Table 6, which shows the number
of SCFs proposed for each verb lemma. The single-parser
classifiers posit a higher number of SCFs: some genuine
higher frequency SCFs, followed by a long noisy tail of false
positives. The parser combination proposes only half the
number of SCFs per verb lemma in the unfiltered lexicon.

6. Conclusion
We have combined the SCF classifier output for two parsers
to produce a higher precision verb subcategorization lexi-

RASP Stanford Comb.
SCFs proposed 94.5 90.2 54.7

Table 6: Average number of SCFs proposed per verb in the
unfiltered lexicons. Average over 183 verbs in gold stan-
dard.

con than those resulting from the single-parser classifiers.
This higher precision is achieved without the need for dic-
tionaries or other external resources. Although there is a
significant initial investment in defining the parser-specific
SCF classifier rules for a particular unlexicalized parser to
form part of the merged system, the resulting SCF acqui-
sition system can subsequently be used across a variety of
domains without additional effort. The improved precision
is particularly interesting in the case of the unfiltered SCF
lexicons, since the merger effectively acts as a kind of fil-
ter on incorrect SCFs. The unfiltered, merged lexicon is
not accurate enough for downstream applications, but the
filtered, merged lexicon also exhibits higher precision than
the filtered single-parser lexicons. The interaction between
parser combination and various filtering methods should be
further investigated.
Future work should attempt to overcome the fact that the
number of sentences successfully classified decreased dra-
matically with the parser combination, resulting in loss of
recall. Using a larger input corpus would be a natural first
step. Another natural extension which we leave for future
work is to use a more nuanced version of the “intersec-
tive” merger; for example, increasing the likelihood of an
SCF when the parsers/classifiers agree, but still retaining the
sentences where they do not agree. It may also be possi-
ble to identify and leverage the particular strengths of each
parser to aid in SCF identification.

Acknowledgements
This work was funded by the EU FP7 project ‘PANACEA’
and the Royal Society (UK). Thierry Poibeau is supported
by the laboratoire d’excellence (labex) Empirical Founda-
tion of Linguistics.

7. References
Núria Bel, Muntsa Padró, and Silvia Necsulescu. 2011.

A method towards the fully automatic merging of lexi-
cal resources. In Proceedings of the Workshop on Lan-
guage Resources, Technology and Services in the Shar-
ing Paradigm, IJCNLP-11, Chiang Mai, Thailand.

Akshar Bharati, Sriram Venkatapathy, and Prashanth
Reddy. 2005. Inferring semantic roles using sub-
categorization frames and maximum entropy model. In
Proceedings of CoNLL, pages 165–168, Ann Arbor.

B. Boguraev, J. Carroll, E.J. Briscoe, D. Carter, and
C. Grover. 1987. The derivation of a grammatically-
indexed lexicon from the Longman Dictionary of Con-
temporary English. In Proceedings of the 25th Annual
Meeting of ACL, pages 193–200, Stanford, CA.

E.J. Briscoe and J. Carroll. 1997. Automatic extraction of
subcategorization from corpora. In Proceedings of the
5th ACL Conference on Applied Natural Language Pro-
cessing, pages 356–363, Washington, DC.

E.J. Briscoe, J. Carroll, and R. Watson. 2006. The second
release of the RASP system. In Proceedings of the COL-
ING/ACL 2006 Interactive Presentation Sessions.

J. Carroll and A. Fang. 2004. The automatic acquisition of
verb subcategorisations and their impact on the perfor-
mance of an HPSG parser. In Proceedings of the 1st In-

6

ternational Joint Conference on Natural Language Pro-
cessing (IJCNLP), pages 107–114, Sanya City, China.

D. Crouch and T.H. King. 2005. Unifying lexical re-
sources. In Proceedings of the Interdisciplinary Work-
shop on the Identification and Representation of Verb
Features and Verb Classes, Saarbruecken, Germany.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed de-
pendency parses from phrase structure parses. In Pro-
ceedings of LREC.

D. Graff, 1995. North American News Text Corpus. Lin-
guistic Data Consortium.

R. Grishman, C. Macleod, and A. Meyers. 1994. COM-
LEX syntax: Building a computational lexicon. In Pro-
ceedings of COLING, Kyoto.

C. Han, Benoit Lavoie, Martha Palmer, Owen Rambow,
Richard Kittredge, Tanya Korelsky, and Myunghee Kim.
2000. Handling structural divergences and recovering
dropped arguments in a Korean/English machine trans-
lation system. In In Proceedings of the AMTA.

Dan Klein and Christopher D. Manning. 2003. Accurate
unlexicalized parsing. In Proceedings of ACL, pages
423–430.

A. Korhonen and Y. Krymolowski. 2002. On the robust-
ness of entropy-based similarity measures in evaluation
of subcategorization acquisition systems. In Proceed-
ings of the Sixth CoNLL, pages 91–97, Taipei, Taiwan.

Anna Korhonen, Yuval Krymolowski, and Ted Briscoe.
2006a. A large subcategorization lexicon for natural
language processing applications. In In Proceedings of
LREC.

Anna Korhonen, Yuval Krymolowski, and Ted Briscoe.
2006b. A large subcategorization lexicon for natural lan-
guage processing applications. In Proceedings of LREC.

Anna Korhonen. 2002. Subcategorization Acquisition.
Ph.D. thesis, University of Cambridge.

Gabriella Lapesa and Alessandro Lenci. 2011. Model-
ing subcategorization through co-ocurrence. Presented
at Explorations in Syntactic Government and Subcatego-
rization, Cambridge, UK, September 2011.

G. Leech. 1993. 100 million words of English. English
Today, 9(1):9–15.

Cédric Messiant, Anna Korhonen, and Thierry Poibeau.
2008. LexSchem: A large subcategorization lexicon for
French verbs. In Proceedings of the Language Resources
and Evaluation Conference (LREC), Marrakech.

Yusuke Miyao, Kenji Sagae, Rune Saetre, Takuya Mat-
suzaki, and Jun’ichi Tsujii. 2009. Evaluating contribu-
tions of natural language parsers to protein-protein inter-
action extraction. Bioinformatics, 25:394–400.

Miguel A. Molinero, Benoı̂t Sagot, and Lionel Nicolas.
2009. A morphological and syntactic wide-coverage lex-
icon for Spanish: The Leffe. In Proceedings of RANLP,
Borovets, Bulgaria.

Silvia Necsulescu, Núria Bel, Muntsa Padró, Montserrat
Marimon, and Eva Revilla. 2011. Towards the automatic
merging of language resources. In Proceedings of the
International Workshop on Lexical Resources (WoLeR),
Ljubljana, Slovenia.

Muntsa Padró, Núria Bel, and Silvia Necsulescu. 2011.
Towards the automatic merging of lexical resources: Au-
tomatic mapping. In Proceedings of RANLP, Hissar,
Bulgaria.

Judita Preiss, Ted Briscoe, and Anna Korhonen. 2007.
A system for large-scale acquisition of verbal, nominal
and adjectival subcategorization frames from corpora. In
Proceedings of ACL.

T.G. Rose, M. Stevenson, and M. Whitehead. 2002. The
Reuters Corpus volume 1 – from yesterday’s news to
tomorrow’s language resources. In Proceedings of the
Third International Conference on Language Resources
and Evaluation, pages 29–31.

Kenji Sagae and Alon Lavie. 2006. Parser combination by
reparsing. In Proceedings of NAACL HLT: Short Papers,
pages 129–132.

Kenji Sagae and Jun’ichi Tsujii. 2007. Dependency pars-
ing and domain adaptation with LR models and parser
ensembles. In Proceedings of the CoNLL Shared Task,
pages 1044–1050.

Sabine Schulte im Walde. 2006. Experiments on the auto-
matic induction of German semantic verb classes. Com-
putational Linguistics, 32(2):159–194.

M. Surdeanu, S. Harabagiu, J. Williams, and P. Aarseth.
2003. Using predicate-argument structures for informa-
tion extraction. In Proceedings of ACL, Sapporo.

7

Towards the Fully Automatic Merging of Lexical Resources: a Step Forward

Muntsa Padró, Núria Bel and Silvia Necşulescu
Universitat Pompeu Fabra

Roc Boronat, 138, ES-08018-Barcelona
E-mail: muntsa.padro@upf.edu, nuria.bel@upf.edu, silvia.necsulescu@upf.edu

Abstract

This article reports on the results of the research done towards the fully automatically merging of lexical resources. Our main goal is to
show the generality of the proposed approach, which have been previously applied to merge Spanish Subcategorization Frames lexica.
In this work we extend and apply the same technique to perform the merging of morphosyntactic lexica encoded in LMF. The
experiments showed that the technique is general enough to obtain good results in these two different tasks which is an important step
towards performing the merging of lexical resources fully automatically.

Keywords: automatic merging of lexical resources, lmf, feature structures, graph unification

1. Introduction
The automatic production, updating, tuning and
maintenance of Language Resources for Natural
Language Processing is currently being considered as one
of the most promising areas of advancement for the full
deployment of Language Technologies. The reason is that
these resources that describe, in one way or another, the
characteristics of a particular language are necessary for
Language Technologies to work for that particular
language.

Although the re-use of existing resources such as
WordNet (Fellbaum, 1998) in different applications has
been a well known and successful case, it is not very
frequent. The different technology or application
requirements, or even the ignorance about the existence of
other resources, has provoked the proliferation of
different, unrelated resources that, if merged, could
constitute a richer repository of information augmenting
the number of potential uses. This is especially important
for under-resourced languages, which normally suffer
from the lack of broad coverage resources.

Several attempts of resource merging have been
addressed and reported in the literature. Hughes et al.
(1995) report on merging corpora with more than one
annotation scheme. Ide and Bunt (2010) also report on the
use of a common layer based on a graph representation for
the merging of different annotated corpora. Teufel (1995)
and Chan and Wu (1999) were concerned with the
merging of several source lexica for part-of-speech
tagging. The merging of more complex lexica has been
addressed by Crouch and King (2005) who produced a
Unified Lexicon with lexical entries for verbs based on
their syntactic subcategorization in combination with
their meaning, as described by WordNet (Fellbaum, 1998),
Cyc (Lenat, 1995) and VerbNet (Kipper et al., 2000).

Despite the undeniable achievements of the research just

mentioned, most of it reports the need for a significant
amount of human intervention to extract the information
of existing resources and to map it into a format in which
both lexica can be compared. The cost of this manual
effort might explain the lack of more merging attempts.
Therefore, any cost reduction would have a high impact in
the actual re-use of resources.

In this context, a proposal such as the Lexical Markup
Framework, LMF (Francopoulo et al. 2008) is also an
attempt to standardize the format of computational lexica
as a way to reduce the complexities of merging lexica.
However, LMF (ISO-24613:2008) “does not specify the
structures, data constraints, and vocabularies to be used in
the design of specific electronic lexical resources”.
Therefore, the merging of two LMF lexica is certainly
easier, but only if both also share the structure and
vocabularies, if not, mapping has still to be done by hand.
Our aim is to work towards the full automatization of the
whole merging process. This constituted the main
challenge of the research reported in Bel et al. (2011),
where a method to perform the merging of two different
lexical resources fully automatically was proposed. They
applied the proposed method to the particular case of
merging two very different subcategorization frame (SCF)
lexica for Spanish obtaining encouraging results.

The aim of the research we present here was to assess to
what extent the actual merging of information contained
in different LMF lexica can be done automatically,
following the mentioned method, in two cases: when the
lexica to be merged share structure and labels, and when
they do not. Besides, our second goal was to prove the
generality of the approach, i.e. if it could be applied to
different types of lexical resources.

Therefore, for this work we applied the method presented
in Bel et al. (2011) to merge different Spanish
morphosyntactic dictionaries. A first experiment tackled
the merging of a number of dictionaries of the same

8

family: Apertium monolingual lexica developed
independently for different bilingual MT modules. A
second experiment merged the results of the first
experiments with the Spanish morphosyntactic FreeLing
lexicon. All the lexica were already in the LMF format,
although Apertium and FreeLing have different structure
and tagset. In addition, note that these morphosyntactic
lexica contain very different information than SCF lexica
of the first experiments, and that what we present here can
be considered a further proof of the good performance and
generality of the proposed automatic merging method.

The current results have shown that the availability of the
lexica to be merged in a common format such as LMF
indeed alleviates the problem of merging. In our
experiment with different Apertium lexica it was possible
to merge three different monolingual morphosyntactic
lexica with the method proposed as to achieve a larger
resource. We have also obtained good results in the
merging of different tag set based lexica.

2. Methodology
Basically, the merging of lexica has two well defined
steps (Crouch and King, 2005):

1. Mapping step: because information about the same

phenomenon can be expressed differently, the
information in the existing resources has to be
extracted and mapped into a common format.

2. Combination Step: once the information in both lexica
is encoded in the same way, this information from
both lexica is mechanically compared and combined
to create the new resource.

Thus, our goal is to carry out the two steps of the merging
process in a fully automatic way. This is to perform both
mapping and combination steps without any human
supervision.

In this section, we will first describe the lexica we wanted
to merge, after we will discuss the problems of the
combination step, which is simpler and motivates the
mapping, which we will explain later.

2.1. The lexica
We have worked with Apertium lexica. Apertium
(Armentano-Oller et al., 2007) is an open source
rule-based MT system. In this framework, bilingual MT
systems are developed independently (and by different
people), and this also holds for the lexica for the same
language that belong to different bilingual systems. These
lexica that share format and tags can differ in the number
of entries and the particular encoding of particular entries.
For our experiments we merged three Spanish
monolingual lexica coming from the Catalan-Spanish
with 39,072 entries, English-Spanish with 30,490 entries
and French-Spanish with 21,408 entries. In table 1 we
further describe details of these lexica. Thus, we found
numerous cases of common entries, missing entries in

some of them, and also some phenomena related to
homography (i.e. the same lemma with different
morphological paradigm) as it is the case of contador that
in one lexicon appears as the machine (‘meter’), only

masculine forms, and in other as the person with both
feminine and masculine forms.

FreeLing morphosyntactic lexicon is used for
morphological analysis and PoS disambiguation modules
of the FreeLing NLP suite (Padró et al., 2010). It uses an
adapted version of the EAGLES tag set (Leech and
Wilson, 1999). The lexica, originally in the format shown
in 1 as source, were converted into LMF in the framework
of the METANET4U1 project (the converted lexica are
available in META-SHARE repository) but without
changing the tag set labels. Although semantically very
close (they both are describing morphosytactic data),
main differences between the Apertium and FreeLing tag
sets are in the way the information is encoded. For
instance adjectives in FreeLing encode ‘grade’ and

1 An EU PSP-CIP funded project whose aim is to make available
and accessible updated and standardized language resources.
The META-SHARE repository will be used for the distribution
of such resources. www.meta-share.eu

Apertium source:
tenebrosísimo:tenebroso<adj><sup><m><sg>

Apertium LMF:
<LexicalEntry id="id20588-s">
<feat att="partOfSpeech" val="adj"/>
<Lemma>

<feat att="writtenForm" val="tenebroso"/>
</Lemma>
<WordForm>

<feat att="writtenForm" val="tenebrosísimo"/>
<feat att="type" val="sup"/>
<feat att="gender" val="m"/>
<feat att="number" val="sg"/>

</WordForm>

FreeLing source:
tenebroso tenebroso AQ0MS0

FreeLing LMF:
<LexicalEntry>
<feat att="partOfSpeech" val="adjectiveQualifier"/>
<Lemma>

<feat att="writtenForm" val="tenebroso"/>
</Lemma>
<WordForm>

<feat att="writtenForm" val="tenebroso"/>
<feat att="grade" val="-"/>
<feat att="grammaticalGender"
val="masculine"/>
<feat att="grammaticalNumber"
val="singular"/>
<feat att="function" val="-"/>

</WordForm>

Figure 1. Source and LMF versions for the adjective
“tenebroso” (‘gloomy’) in Apertium and FreeLing lexica

9

‘function’, while in Apertium the grade was converted
into a “type”. The spelling of the name of attributes and
values also vary in the source and in the converted files.
Note that the conversion into LMF was done
independently for each lexicon and followed the
information supplied by the available documentation
where the semantics of the tags was explained. The order
of the features is maintained as well as the number of
features.

2.2. Combination of lexica using graph
unification

Necsulescu et al. (2011) and Bel et al. (2011) proposed to
perform the combination step using graph unification
(Kay, 1979). This single operation which is based on set
union of compatible feature values, makes it possible to
validate the common information, exclude the
inconsistent one and to add, if desired, the unique
information that each lexicon contained for building a
richer resource. For graph unification in our experiments,
we used the NLTK unification mechanism (Bird, 2006).

In order to use graph unification, the LMF lexica had to be
represented as feature structures (graphs, see figure 2 for a
sample). Because LMF lexica already identified attributes
and values in a structured way, this step was
straightforward. Note that in converting LMF into feature
structures, a lexical entry contains all its <WordForm> as
present in the original lexicon together with the part of
speech., while the lemma information is encoded as a
special feature outside the feature structure in order to

guide the unification process. This process is carried out
by the system along the following steps:
1) For each lemma that is common to both lexica, it
gathers all lexical entries with that lemma in both lexica
(cases of homography are taken into account).
2) For the set of entries got in (1), it tries to unify every
entry in one lexicon with all the entries in the other
lexicon. This step implies checking unification for all
feature structures included in the entries.
3) When having a successful unification, create an entry
in the resulting lexicon. Unification operation will deliver
as feature structures in the resulting entry those that
resulting from the common information and also those
present in one entry but not in the other.
4) When a lexical entry does not unify with anyone of the
other lexicon, it creates an entry in the resulting lexicon as
well, because it is considered to contain unique
information.
5) For those lemmas that only are in one of the lexica, it
creates a lexical entry in the resulting lexicon.

In order to be able to inspect the results, information about
the operation that originated the entries in the resulting
lexicon is registered in a log file.

2.3. Semantic Preserving Mapping
The proposal to avoid manual intervention when
converting two lexica into a common format with a blind,
semantic preserving method (Bel et al., 2011) departs
from the idea of Chan and Wu (1999) of comparing
information contained in common entries of different
lexica and looking for significant equivalences in terms of
consistent repetition. The basic requirement for this
automatic mapping is to have a number of common
entries encoded in the two lexica to be compared. Chan
and Wu (1999) were working only with single
part-of-speech tags, but the lexica we address here handle
more complex and structured information, which has to
be identified as units by the algorithm. In order to avoid
the necessity of defining the significant pieces of
information to be mapped by hand, Bel et al. (2011)
proposed a method to first automatically identify such
pieces (“minimal units”) in each lexicon and secondly, to
automatically learn the correspondence of such pieces
between the two lexica. Their results showed that it is
possible to assess that a piece of the code in lexicon A
corresponds to a piece of code in lexicon B since a
significant number of different lexical entries hold the
same correspondence. Then, when a correspondence is
found, the relevant piece in A is substituted by the piece in
B, performing the conversion into the target format to
allow for comparison and, eventually, merging as
explained in section 2.2. Note that the task is defined in
terms of automatically learning correspondences among
both, labels and structure since both may differ across
lexica. For example, in FreeLing the verb tense and mood
are encoded in two different attributes (e.g.
mood=subjunctive, tense=present), while Apertium
encodes both tense and mood in a sole attribute (e.g.

WordForm =

writtenForm= accesorio
gender=m
number=sg

partOfSpeech = adj

WordForm =

writtenForm= accesorios
gender=m
number=pl

partOfSpeech = adj

WordForm =

writtenForm= accesoria
gender=f
number=sg

partOfSpeech = adj

WordForm =

writtenForm= accesorias
gender=f
number=pl

partOfSpeech = adj

<LexicalEntry lemma="accesorio">

</LexicalEntry>

Figure 2. An Apertium LMF entry represented as a feature
structure for graph unification.

10

tense=prs).

The algorithm used in this work to learn the mapping
between two lexica is basically the same used by Bel et al.
(2011) although two changes were introduced in order to
gain in generality. The main difference is due to the fact
that in the first experiments with SCF lexica no attribute
had an open list of values (for instance, the value of the
attribute for ‘writtenForm’ does not have a closed number
of possible values). We have made the algorithm more
general, able to deal with a larger number of possible
resource types by adding a different treatment for open
and closed feature value types. The identification and
special treatment of open values is made fully
automatically and affect the step of finding units and
learning the correspondence between lexica.

The identification of the open values is now the algorithm
first step. By counting the different values in the lexicon,
the system decides a feature value to be open when a
relative large number of values are encountered. Open
values are substituted with a variable in order to find the
repetitions that are learnt as a pattern.

The other difference is that, because of the LMF source,
we can work from the beginning with a feature structure
version of the lexica, while in Bel et al. (2011) they
worked with the source formats. Therefore, our algorithm
splits each feature structure into feature-value pairs and
looks for the elements that always occur together in order
to identify the “minimal units” of information. This step is
necessary in order to gain in generality when learning
correspondences. Note that the probability of finding
significant correspondences of larger units is lower. For
instance, the system must learn that in FreeLing, tense and
mood features always occur together, and that they both
correspond to the information that is a value of the feature
tense in Apertium.

In order to learn such mapping, for each possible pair of

minimal units that are a potential mapping rule, the

system measures the similarity in terms of the lemmas
that contain a member of the pair in the corresponding
lexica. That is, the list of lemmas that contain each
minimal unit is represented as a binary vector and the
Jaccard distance measure is used to compute similarity
between vectors2 (as Chan and Wu, 1999). The system
chooses as correspondences those that maximize
similarity, i.e., those with a larger number of lemmas that
contain the minimal units to be mapped. In case that there
is more than one correspondence, all are considered
possible mappings.

Once the corresponding units have been identified, a new
feature structure is created substituting units in lexicon A
with the corresponding units of lexicon B. This operation
results in a lexicon A encoded with the tagset of lexicon B.
Now, both lexica can be compared and merged as
explained in section 2.2. Note that the mapping should
preserve the semantic of the feature value pair.
Furthermore, this procedure also identifies the differences
between the two lexica when no mapping for a particular
minimal unit is found. This information can be later used
for creating patches that systematically carry out
corrective actions: direct transformation, deletion of
feature structures, etc.

3. Experiments and Results
Our experiments were the following. We first merged the
three Apertium lexica, and we evaluated the success of the
combination step. For these three lexica, no mapping was
required because they all use the same tagset. Once this
merged lexicon was created, it was mapped and merged
with the FreeLing lexicon. The results of the merging are

2 If the minimal unit is a sibling of an open valued feature, the
elements in the vector are the values of this feature instead of the
lemmas. E.g. “gender=m”, is a sibling of “writtenForm”, so the
vector used will contain the values of “writtenForm”.

Table 1: Original and unified lexicon sizes

Lexicon
Lexical
Entries

Av. Word
Forms per entry

Lexical Entries per PoS

 Nouns Verbs Adjectives Adverbs
Proper
nouns

Apertium

Apertium ca-es 39,072 7.35 16,054 4,074 5,883 4,369 8,293

Apertium en-es 30,490 6.41 11,296 2,702 4,135 1,675 10,084

Apertium fr-es 21,408 6.78 7,575 2,122 2,283 729 8,274

Aperium unified (all) 60,444 6.14 19,824 5,127 7,312 5,340 21,917

FreeLing

FreeLing 76,318 8.76 49,519 7,658 18,473 169 0

Apertium and Freeling

Apertium and FreeLing
unified (mapping to FreeLing)

112,621 7.03 54,830 8,970 20,162 5,406 21,917

11

presented in table 1.
From the results of merging all Apertium lexica, it is
noticeable that the resulting Apertium lexicon has two
times the entries (in average) of the source lexica, and that
the part of speech that supplied more entries was proper
noun. One can explain this if takes into account the
independent development of the lexica and that each one
probably took different reference test corpora. For the
other parts of speech, there is a general increase of
number of entries.

As for the merging with FreeLing lexicon experiment, in
order to validate the results, both conversion senses were
tested giving similar results. We will only comment on the
Apertium into FreeLing as we have only closely inspected
that experiment. From the data in table 1, we can see that
again proper nouns but also adverbs are the main source
of new entries. Because FreeLing did not include proper
nouns, all the Apertium ones are added. Adverbs are also
a major source of new elements, which can be explained
because FreeLing handles derivate adverbs (adjective
with the –mente suffix) differently to Apertium.

In what follows, we present separatedly the results of the
two different steps, mapping and merging, for the
Apertium into FreeLing lexica experiment. Also, concrete
examples of the different cases are discussed.

In the mapping experiment from Apertium into FreeLing
127 and 152 minimal units were automatically identified
respectively. The found mapping correspondences
between them are shown in table 2.

possible mappings #units
0 19
1 99
2 8
3 1
Total 127

Table 2: Number of units that receive a concrete number of
correspondences (mappings)

Note that mapping correspondences are learnt only if
enough examples are seen. A threshold mechanism over
the similarity measures controls the selection of the
mapping rules to be applied. The most common cases
were learnt satisfactorily, and the mapping of units with
the lowest frequency had different results. For instance,
the mapping of Apertium “type=sup” for superlative
adjectives was not found to be correlated with the
FreeLing “grade=superlative”, mainly due to the little
number of examples in FreeLing. On the other hand,
Apertium lexicon contained only two examples of “future
of subjunctive” but in FreeLing lexicon all verbs do have
these forms and the system correctly learnt the mapping.
There were also incorrect mappings, which, however,
affected only few cases which could be traced back after
the inspection of the inferred mapping rules.

Finally, there were some cases where no correspondence
was found and a manual inspection of these cases
confirmed that, indeed, they should not have a mapping.
For example, there were some PoS tags in Apertium that
had no correspondence in FreeLing: proper noun and
acronym. The merging mechanism was the responsible of
adding the entries with these tags to the resulting lexica.

As we said before, the lexical entries in the resulting
lexicon may have three different origins: from unification
of an entry in lexicon A and in lexicon B; from entries that
did not unify although having the same lemma, and from
entries whose lemma was not in one of the lexica. In the
following tables a summary of the results of the different
unification results are given.

PoS # LE PoS # LE

adjectiveQualifier 5,206 interjection 13

adpositionPreposition 24 nounCommon 14,147

adverbGeneral 112 pronoun 4

conjunctionCoordinated 4 pronounExclamative 8

conjunctionSubordinated 8 pronounIndefinite 12

determinantExclamative 4 pronounRelative 9

determinantIndefinite 12

Table 3: Number of entries with the same information in lexicon
A and in lexicon B per categories

PoS # LE PoS # LE

adjectiveQualifier 561 determinantIndefinite 4

adpositionPreposition 0 interjection 2

adverbGeneral 11 nounCommon 792

conjunctionCoordinated 1 pronounDemonstrative 3

conjunctionSubordinated 1 pronounExclamative 2

determinantIndefinite 4 pronounIndefinite 1

determinantExclamative 0 pronounPersonal 4

verbAuxiliary 1 pronounPossesive 7

verbMain 3,929 pronounRelative 1

Table 4: Entries that gained information with the unification per
categories

PoS #LE PoS #LE

adjectiveOrdinal 4 num 11

adjectiveQualifier 1,138 preadv 11

adpositionPreposition 1 pronoun 2

adverbGeneral 41 pronounDemonstrative 2

adverbNegative 1 pronounExclamative 2

cnjsub 1 pronounIndefinite 33

conjunctionCoordinated 5 pronounPersonal 13

conjunctionSubordinated 13 pronounPossessive 3

determinantArticle 1 pronounRelative 3

determinantDemonstrative 5 np 5

determinantExclamative 1 punctuation 1

determinantIndefinite 28 vbmod 2

determinantPossessive 2 verbAuxiliary 1

interjection 51 verbMain 8

nounCommon 1,978 predet 1

Table 5: Lexical Entries in both lexica that did not unify

As explained before, for the cases in table 5 where,
although having the same lemma, the entries did not unify

12

the system creates a new entry. This step might cause
some undesirable results. This is the case of no, encoded
as negative adverb in FreeLing with a special tag, where
in Apertium it is encoded as a normal adverb. The system
creates a new entry, and therefore a duplication. These
cases can be traced back when inspecting the log
information. The most numerous cases, common nouns
and adjectives, mostly correspond to the case of nouns
that can also be adjectives, for instance accesorio
(‘incidental’ when adjective and ‘accessory’ when noun).
In that case unification fails because of the different PoS
value. The system creates a new entry in the resulting
lexica, in that case correctly.

4. Dicussion
From the results presented above, we can see that using
graph unification as merging technique is a successful
approach. This method combines compatible information
and detects incompatible one, allowing us to keep track of
possible merging errors.

Furthermore, the results showed that the technique
proposed by Bel et al. (2011) to automatically learn a
mapping between lexica that originally encoded
information in different ways, have a very good
performance in this task. The algorithm correctly learned
mapping rules between most of the elements, including
those that imply a change in the structure or those that
have very few examples in one of the lexica.

In this work we have focused in the use of LMF lexica to
test the merging technique, which eases the conversion to
feature structures. Though the use of other formats or the
conversion to such formats to LMF is an interesting line to
be studied in the future, in our opinion the use of LMF is
very interesting for different reasons: first of all, because
it is a standard format and secondly because it allows the
encoding of very complex structures and the possible
relations among them. If such structures are encoded in
LMF, it is still possible to convert them to feature
structures and to perform the automatic mapping and
merging, but if these structures are encoded in other
formats, discovering them automatically and converting
them to a common format with a blind process is much
more difficult.

As with respect with previous work, one difference
between the application of this technique to SCFs lexica
and to morphological lexica is that in the first case, the
feature structures obtained after applying the automatic
mapping were often incomplete in the sense that some
parts of the SCF were partially translated to feature
structures and some information was lost. This was
overcome in most of the cases at unification step, where
the missing information was obtained by subsumption
from the target lexicon. Nevertheless, this is not the case
in the experiments presented here. In this case, most of the
feature structures obtained after applying the mapping are
complete and keep all information encoded in the original

lexicon. This is partly due to the fact that morphological
dictionaries are probably more systematic than SCF
lexica, where the SCFs assigned to each verb often have
an important variability among lexica. Nevertheless, the
improvement observed in the task of merging
morphological lexica is also associated to the fact of
working with LMF lexica, which allows us to perform a
more systematic conversion to feature structures and
eases the step of comparing elements of the two lexica.
Thus, we can conclude that working with LMF lexica
leads to a better performance of our algorithm.

The evaluation we presented here is only qualitative. A
proper quantitative intrinsic evaluation will be done by
manual inspection as no gold-standard is available. It is
also pending to evaluate more accurately the obtained
results in an extrinsic evaluation, that is, by assessing the
consequences of the errors in another task for comparison.

Summarizing, we have presented an adaptation of the
merging mechanism proposed by Bel et al. (2011) to work
with LMF lexica that performs fully automatically all
steps involved in the merging of two lexica. Furthermore,
we have generalized this model to deal with open valued
features. This issue was not tackled in the previous work,
but is crucial to apply the method to different kind of
lexica where this kind of features will be found. The
obtained results showed the feasibility of the approach
and confirm that this technique can be successfully
applied to different kind of lexica.

5. Conclusions and Further Work
In this work we have applied the method for automatically
merging lexical resources proposed by Bel et al. (2011) to
the case of merging morphological dictionaries. These
dictionaries were encoded in LMF format, so first of all
we adapted the method to work with this standard format
and generalized it to deal with open valued features.

The presented experiments showed, on the one hand, that
using this method to automatically map two lexica into a
common format and then merge them using graph
unification mechanism performed satisfactorily in the
task tackled in this work. This allows us to make an
important step forward to demonstrate the generality of
this approach, since it lead to satisfactory results in two
very different scenarios: the merging of SCF lexica and
the merging of morphological dictionaries.

On the other hand, we have also shown that using LMF as
the source encoding format eases the merging process and
probably contributes to a better performance of the
system.

For that reason, one interesting future line is to study the
feasibility of using an approach similar to the mapping
technique presented here to convert lexica in any format
into LMF. This will help lexicon developers to have their
lexica in a standard format.

13

Another line to be studied in the future is the development
of patch rules to refine the obtained results. These patch
rules would be the only part of the method dependent on
the concrete lexica to be merged and will be developed
after systematically detecting possible errors. Besides, we
also expect that in order to maximize the usability of the
resulting lexica, some scripts can tune the richer and
larger lexicon achieved by automatic merging to the
requirements of a particular application.

Finally, we are also interested in testing the method for
merging other LMF lexica with more or different
information (e.g. containing sense information) and
especially to apply the proposed technique to the merging
of lexica with different levels of information, for example
combining the morphological dictionaries with SCF
information to obtain a richer, multi-level lexicon.

6. Acknowledgements
This work was funded by the EU 7FP project 248064
PANACEA and has greatly benefited of the results of the
work done by Marta Villegas in METANET4U project.

7. References
Carme Armentano-Oller, Antonio M. Corbí-Bellot, Mikel

L. Forcada, Mireia Ginestí-Rosell, Marco A. Montava,
Sergio Ortiz-Rojas, Juan Antonio Pérez-Ortiz, Gema
Ramírez-Sánchez, Felipe Sánchez-Martínez. 2007.
Apertium, una plataforma de código abierto para el
desarrollo de sistemas de traducción automática. In
Proceedings of FLOSS (Free/Libre/Open Source
Systems) International Conference, p. 5-20. Jerez de la
Frontera, Spain.

Núria Bel, Muntsa Padró and Silvia Necsulescu. 2011. A
Method Towards the Fully Automatic Merging of
Lexical Resources. In Proceedings of Workshop on
Language Resources, Technology and Services in the
Sharing Paradigm, at IJCNLP 2011. Chiang Mai,
Thailand.

Steven Bird. 2006. NLTK: the natural language toolkit. In
Proceedings of the COLING/ACL on Interactive
presentation sessions. Association for Computational
Linguistics, Morristown, NJ, USA.

Daniel K. Chan and Dekai Wu. 1999. Automatically
Merging Lexicons that have Incompatible
Part-of-Speech Categories. In Proceedings of Joint
SIGDAT Conference on Empirical Methods in Natural
Language Processing and Very Large Corpora
(EMNLP/VLC-99). Maryland.

Dick Crouch and Tracy H. King. 2005. Unifying lexical
resources. In Proceedings of Interdisciplinary
Workshop on the Identification and Representation of
Verb Features and Verb Classes. Saarbruecken;
Germany.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. MIT Press.

Gil Francopoulo, Núria Bel, Monte George, Nicoletta
Calzolari, Mandy Pet, and Claudia Soria. 2008.

Multilingual resources for NLP in the lexical markup
framework (LMF). Journal of Language Resources
and Evaluation, 43 (1).

John Hughes, Clive Souter, and E. Atwell. 1995.
Automatic Extraction of Tagset Mappings from
Parallel-Annotated Corpora. Computation and
Language.

Nancy Ide and Harry Bunt. 2010. Anatomy of Annotation
Schemes: Mapping to GrAF. In Proceedings of the
Fourth Linguistic Annotation Workshop, ACL 2010.

Martin Kay. 1979. Functional Grammar. In Proceedings
of the Berkeley Linguistics Society, pp 142-158.

Karin Kipper, Hoa Trang Dang, and Martha Palmer. 2000.
Class-based construction of a verb lexicon. In
Proceedings of AAAI/IAAI.

Geoffrey Leech and Andrew Wilson. 1999.
Recommendations for the Morphosyntactic Annotation
of Corpora. EAGLES Report EAG-TCWG-MAC/R.

Doug Lenat. 1995. Cyc: a large-scale investment in
knowledge infrastructure. In CACM 38, n.11.

Silvia Necsulescu, Núria Bel, Muntsa Padró, Montserrat
Marimon and Eva Revilla: Towards the Automatic
Merging of Language Resources. In Proceedings of
WoLeR 2011. Ljubljana, Slovenia.

Lluís Padró, Miquel Collado and Samuel Reese and
Marina Lloberes and Irene Castellón. FreeLing 2.1:
Five Years of Open-Source Language Processing Tools.
Proceedings of 7th Language Resources and
Evaluation Conference (LREC 2010), ELRA. La
Valletta, Malta. May, 2010.

Simone Teufel. 1995. A Support Tool for Tagset Mapping.
In Proceedings of EACL-Sigdat 95.

14

Merging syntactic lexica: the case for French verbs

Benoı̂t Sagot, Laurence Danlos

Alpage, INRIA Paris-Rocquencourt & Université Paris Diderot, 175 rue du Chevaleret, 75013 Paris, France
benoit.sagot@inria.fr, laurence.danlos@linguist.jussieu.fr

Abstract
Syntactic lexicons, which associate each lexical entry with information such as valency, are crucial for several natural language processing
tasks, such as parsing. However, because they contain a rich and complex information, they are very costly to develop. In this paper,
we show how syntactic lexical resources can be merged, in order to take benefit from their respective strong points, and despite the
disparities in the way they represent syntactic lexical information. We illustrate our methodology with the example of French verbs. We
describe four large-coverage syntactic lexicons for this language, among which the Lefff , and show how we were able, using our merging
algorithm, to extend and improve the Lefff .

1. Introduction

Syntactic lexicons are crucial for several natural language
processing tasks, such as parsing, be it symbolic (Riezler
et al., 2002; Thomasset and Éric de La Clergerie, 2005) or
even statistical (Collins, 1997; Versley and Rehbein, 2009).
Syntactic lexicons are rich and complex resources, and their
development is a costly task. Although a lot of work has
been published on the automatic acquisition of syntactic
lexica, the resources that have a coverage and an accu-
racy large enough for being used as linguistic descriptions,
e.g., in symbolic parsers, have been developed manually or
semi-automatically, sometimes for several decades.
In this paper, we focus our study on French verbs. There
exist today four large-coverage syntactic lexical resources
for French, that provide information about the valency
of lexical entries, i.e., subcategorization frames and other
syntactic information relevant for describing the syntac-
tic behaviour of predicative lexical units. These resources
are Lexicon-Grammar tables (Gross, 1975; Boons et al.,
1976b; Boons et al., 1976a; Guillet and Leclère, 1992),
the verb valency lexicon Dicovalence (van den Eynde and
Mertens, 2006), the verbal syntactico-semantic lexicon
LVF (Dubois and Dubois-Charlier, 1997), and the Lefff
(Sagot et al., 2006; Sagot, 2010). All these resources use
both syntactic and semantic criteria for defining either one
or several entries for the same verb lemma. Therefore, these
lexicons can be considered as an inventory of lexemes (as
opposed to verb lemmas) associated with syntactic infor-
mation.
The objective of this paper is to show how these diverse
resources can be leveraged for improving one of them, the
Lefff , by developing and applying merging techniques for
valency lexicons. In this paper, we limit ourselves to verbal
entries, for at least two reasons. First, they are best covered
in terms of syntactic information than other categories. For
example, LVF and Dicovalence only cover verbs. Second,
verb valency is crucial in the first NLP application of syn-
tactic lexicons, namely parsing systems.
Merging syntactic lexicons is not a straightforward task. In-
deed, there is no real consensus on the way syntactic infor-
mation should be modeled and formalized. There are dis-
crepancies among resources, which differ in various ways:

• coverage: for example, Dicovalence has focused on
reasonably frequent entries of fairly frequent verbal
lemmas, wheras LVF has tried to have as large a cov-
erage as possible;

• level of granularity of the set of entries for a given
lemma (i.e., level of granularity used for distinguish-
ing lexemes from one another): for example, LVF can
distinguish two entries which differ only at a very fine-
grained semantic level, whereas other resources will
contain only one corresponding entry (see examples
below);

• nature and level of granularity of the syntactic prop-
erties they describe: for example, Lexicon-Grammar
tables include a large amount of non-standard syntac-
tic information (e.g., symetric verbs), but does not re-
ally cover reflexive and reciprocal realizations using
the pronoun se, whereas Dicovalence only describes
pronominal realizations of syntactic functions which
include the reciprocal and reflexive se realizations,

• level of formalization: Dicovalence and the Lefff are
immediately usable in NLP tools, contrarily to LVF or
Lexicon-Grammar tables;

• definition of what is considered syntactic argument as
opposed to an adjunct: Dicovalence considers as ar-
guments complements that other resources sometimes
consider as adjuncts.

The methodology we have developed for merging syntactic
lexicons has been developed in the last years (Sagot and
Danlos, 2008; Sagot and Fort, 2009; Sagot and Danlos,
2009; Molinero et al., 2009). Other teams have worked
on this task, such as Crouch and King (2005) for English
and Necşulescu et al. (2011) for Spanish. They address
in different ways the issue of mapping lexical entries for
a given lemma from various input lexicons to the one an-
other, although these entries might have been defined at
least in part using semantic criteria. In the work by Crouch
and King (2005), the authors rely on the fact that, in (some
of) their input lexicons (VerbNet and Cyc), lexical entries,
which correspond to lexemes, are associated with Word-
Net synsets. This allows them to put together lexical en-

15

tries that are associated with identical or related senses, al-
though they resort to non-trivial techniques for dealing with
various types of discrepancies and inconsistencies. On the
other hand, Necşulescu et al. (2011) simply want to merge
subcategorization lexicons, i.e., lexicons that list all pos-
sible subcategorization frames for a given verb lemma (as
opposed to lexeme). With their strategy, they avoid the need
for correctly mapping to the one another lexical entries that
are defined based on syntactico-semantic criteria. However,
the resulting lexicon is then only a subcategorization lexi-
con, and not a full-featured syntactic lexicon associating
syntactic information with each lexeme.
In our case, our input resources for French verbs do not
contain WordNet synset information. Nevertheless, we do
want to take advantage of sense distinctions between en-
tries, and to produce a merged lexicon at the lexeme level,
that preserves these sense distinctions to the appropriate ex-
tent. Our methdology can be sketched as follows. First, we
chose a model for representing syntactic information, and
convert all input resources in this model, after a careful lin-
guistic analysis. In this paper, this common model is Alex-
ina, the lexical framework on which the Lefff is based. This
is because Alexina lexicons, as mentioned above, are im-
mediately usable in NLP tools. Moreover, and contrarily to
our other input lexicons, the Lefff strongly relies on the no-
tion of syntactic function, which is the basis for many pars-
ing systems. In a second step, we try and create groupings,
i.e., sets of lexical entries possibly extracted from more than
one input resources and that will be merged in one entry in
the output lexicon. Finally, we perform the actual merging.
Such a methodology is useful for various reasons. Of
course, it helps developing a resource that has a higher cov-
erage and accuracy than all input resources, although some
information might be lost during the conversion process.
Second, it allows for an efficient manual work on the out-
put resource, if such a work is considered; for example,
pieces of information that originate in only one of the input
resources are more dubious than others. Finally, as a conse-
quence, it allows for detecting errors in the input lexicons,
as will shall see below.
After a brief description of our four input syntactic lexicons
in Section 2. illustrated with a running example, we de-
scribe in more details our merging methodology and algo-
rithm (Section 3.). Then, we describe a set of experiments
conducted in the last years that are based on this methodol-
ogy (Section 4.). Finally, we draw several conclusions and
indicate the next steps for this work.1

2. Input resources
We shall not provide a detailed description of our input
resources. Such descriptions can be found in the various
publications related to each resource (see citations below).
Rather, we shall illustrate these resources on a running ex-
ample, the lemma vérifier ’check’, ’verify’. In the reminder
of this paper, we refer to the entry with id n for the lemma

1If the paper is accepted, we will report on results we have ob-
tained while trying to evaluate various syntactic lexicons by com-
paring the results of one of the best performing symbolic parsers
for French when it uses one of these lexicons or another. These
results are not included in this submision for space reasons.

v in the resource i as vin. For example, the (only) entry in
the Lefff for the lemma vérifier is vérifierLefff

1 . For simpli-
fication purposes, we use vin both for the lexical entry in its
original form and after its conversion in Alexina.

2.1. The Lefff and the Alexina lexical formalism
The Lefff (Lexique des formes fléchies du français — Lex-
icon of French inflected form) is a large-coverage syntactic
lexicon for French (Sagot, 2010).2 The current version of
the Lefff (which is not the last one, as explained below)
contains 10,214 entries for 7,813 distinct lemmas. Contrar-
ily to the three other lexicons we have used, which were
developped manually, the Lefff was developed in a semi-
automatic way: automatic tools were used together with
manual work (Sagot et al., 2006; Sagot, 2010).
The Lefff relies on the Alexina framework for the acquisi-
tion and modeling of morphological and syntactic lexicons.
To represent lexical information, an Alexina lexicon relies
on a two-level architecture:

• the intensional lexicon associates (among others) an
inflection table and a canonical sub-categorization
frame with each entry and lists all possible redistri-
butions from this frame;

• the compilation of the intensional lexicon into an ex-
tensional lexicon builds different entries for each in-
flected form of the lemma and every possible redistri-
bution.

The version of the Lefff that was available before the ex-
periments described below (version 3.0b) contains only one
entry for the lemma vérifier. Here is a simplified version of
this entry:

vérifierLefff
1 Lemma;v;<Suj:cln|sn,

Obj:(cla|qcompl|scompl|sinf|sn)>;
%ppp employé comme adj,%actif,%passif,
%se moyen impersonnel,%passif impersonnel

It describes a transitive verb whose arguments have the syn-
tactic functions Suj and Obj listed between angle brack-
ets, and which allows for the functional redistributions past
participle used as an adjective, active (the default distribu-
tion), impersonal middle-voice “se” construction, imper-
sonal passive, and passive.
The different syntactic functions are defined in the Lefff by
criteria close to that used in Dicovalence, i.e., they rely
for a large part on cliticization and other pronominal fea-
tures. The Lefff uses the following syntactic functions: Suj
(subject), Obj (direct object), Objà (indirect object canon-
ically introduced by preposition “à”), Objde (indirect ob-
ject canonically introduced by preposition “de”), Loc (loca-
tive), Dloc (delocative), Att (attribute), Obl or Obl2 (other
oblique arguments).
Each syntactic function can be realized by three types of re-
alizations: clitic pronouns, direct phrases (nominal phrase
(sn), adjectival phrase (sa), infinitive phrase (sinf), comple-
tive (scompl), indirect interrogative (qcompl)) and prepo-
sitional phrases (direct phrases preceded by a preposition,

2The Lefff is freely available under the LGPL-LR license. See
http://gforge.inria.fr/projects/alexina/

16

such as de-sn, à-sinf or pour-sa). Finally, a function whose
realization is not optional has its realizations list between
angle brackets.3

The way morphological and syntactic information is en-
coded it the Lefff is such that the Lefff be directly used in
NLP tools. For example, we are aware of several parsers us-
ing the Lefff , and based on various formalisms: LTAG, in-
cluding LTAGs generated from meta-grammars developed
in various meta-grammar formalisms (Thomasset and Éric
de La Clergerie, 2005), LFG (Boullier and Sagot, 2005),
and less well-known formalisms such as Interaction Gram-
mars or Pre-Group Grammars.

2.2. Lexicon-Grammar tables
In the Lexicon-Grammar (Gross, 1975; Boons et al., 1976b;
Boons et al., 1976a; Guillet and Leclère, 1992), the 14,000
entries for verb lexical entries are structured in the form
of 61 classes, each class being described in a different ta-
ble.4 Each class (table) is defined by a defining property,
which is valid for all lexical entries belonging to the class
(i.e., the defining property described a sub-categorization
that is valid for all entries in the class, although other
sub-categorizations might be also valid for a given entry).
Lexicon-Grammar tables include two entries for the lemma
vérifier, which both belong to class 6. Let us illustrate the
notion of defining property and the content of the corre-
sponding Lexicon-Grammar table using these entries.
The defining property for class 6 is N0V QuP , which
means that all entries in this class are transitive and may
have a finite or infinitive clause as the realization of the
second argument in addition to the default noun phrase real-
ization. Note that the notion of syntactic function is absent
from the Lexicon-Grammar model. In table 6, 40 additional
properties are “coded”, i.e., each entry specifies whether it
has each property or not, in the form of a matrix with one
entry per row and one property per column. Among these
40 properties (the set of properties differs from one table to
another), we can cite for example N1 =: QuPind (if the
second argument is a finite clause, its verbal head is at the
indicative mood) or N1 =: Nhum (its second argument can
be human).
The two Lexicon-Grammar entries the lemma vérifier are
associated (among others) with the following properties
(including the defining property for class 6):

vérifierLG
6 504 Aux =: avoir

N0 V
N1 =: Qu Pind
N1 =: Qu P = Ppv
N1 =: N-hum
[passif par]
Ex: Max a vérifié que la porte était fermée

’Max checked that the door was closed’

vérifierLG
6 505 (unknown, the lexical entry is not yet coded)

Ex: Les faits vérifient cette hypothèse
’The facts validate this hypothesis’

The second entry is not yet coded: the only thing we know

3Other information are encoded in the Lefff , such as control,
mood for finite clause argument realizations, and others.

4Lexicon-Grammar tables are freely available under the
LGPL-LR license. See http://ladl.univ-mlv.fr/.

about this entry is that it satisfies the defining property. As
for the first one, the properties we have indicated here show
respectively that its periphrastic inflected froms are built
using the auxiliary avoir, that the second argument (N1) is
not mandatory, that it can be realized (among others) as a
finite clause whose verbal head is at the indicative mood, as
a pre-verbal particle (a clitic pronoun) or as a non-human
noun phrase, and finally that it can be passivized (the
subject becoming a non-mandatory argument introduced
by the preposition par).

2.3. Dicovalence

Dicovalence (van den Eynde and Mertens, 2006) is a verb
valency lexicon for French that is a follow up to the PRO-
TON lexicon.5 It was developed in the Pronominal Ap-
proach framework (Blanche-Benveniste et al., 1984). In
order to identify the valency of a predicate (i.e., its depen-
dants and their properties), the Pronominal Approach uses
the relation that exists between so-called lexicalized depen-
dants (realized as syntagms) and pronouns that “intention-
ally cover” these possible lexicalizations. Pronouns (and
“paranouns”, cf. below), contrarily to syntagms, syntactic
functions or thematic roles, have two important advantages:
(1) they are purely linguistic units, and do not have any of
the properties (e.g., semantic properties) that make gram-
maticality judgements about sentences with lexicalized de-
pendants difficult to motivate; (2) there are only a limited
amount of such units: their inventory is finite. Note that
the pronouns used in Dicovalence are more numerous than
what is usually called a pronoun. Indeed they also include
what Dicovalence calls “paranouns”, that differ from pro-
nouns because they can be modified (as rien ’nothing’ in
rien d’intéressant ’nothing interesting’) and because they
can not be taken up by a syntagm (cf. *il ne trouve rien, les
preuves ’He finds nothing, the evidences’, vs. il les trouve,
les preuves ’He finds them, the evidences’).
In Dicovalence, pronouns are grouped in paradigms, which
correspond only approximately to syntactic functions (e.g.,
P0 corresponds to the subject, P1 to the direct object, and
so on). But Dicovalence contains more paradigms than the
usual inventories contain syntactic functions. For example,
it licenses a quantity paradigm (PQ), a manner paradigm
(PM) and others.
The version of Dicovalence used in the experiments de-
scribed below6 consists in a list of 8,214 entries for 3,729
unique verbal lemmas. These lemmas and entries are ex-
plicitely chosen because they are reasonably frequent.
Table 1 shows both (simplified) entries given for the lemma
vérifier in Dicovalence. These two entries exactly corre-
spond to the two entries found in the Lexicon-Grammar:
The example in entry 85770 means ’I will check this piece
of information before I publish it’, and the example in entry
85780 ’The experiment validated his hypothesis’.

5Dicovalence is freely available under the LGPL-LR license.
See http://bach.arts.kuleuven.be/dicovalence/

6It is the version labeled 061117, which is not the last version.
Experiments about the last version of Dicovalence are planned.

17

vérifierDV
85770 vérifierDV

85780

VAL$ vérifier: P0 (P1) VAL$ vérifier: P0 P1
VTYPE$ predicator simple VTYPE$ predicator simple
EG$ je vérifierais cette information avant de la publier EG$ l’expérience a vérifié son hypothèse
P0$ qui, je, nous, elle, il, ils, on, celui-ci, ceux-ci P0$ que, elle, il, ils, ça, celui-ci, ceux-ci
P1$ 0, que, la, le, les, en Q, ça, ceci, celui-ci, ceux-ci, P1$ que, la, le, les, en Q, ça

le(qpind), ça(qpind), le(qpsubj), ça(qpsubj), le(sipind), RP$ passif être, se passif
ça(sipind), le(indq), ça(indq)

RP$ passif être, se passif

Table 1: Entries for vérifier in Dicovalence.

2.4. The Lexique des Verbes Français

The LVF (Lexique des Verbes Français) is a dictionary of
French verbs developed by Dubois and Dubois-Charlier
(Dubois and Dubois-Charlier, 1997) that has the form of
a thesaurus of syntactico-semantic classes, i.e., semantic
classes defined using syntactic criteria. It is a very large
coverage resource, that gathers syntactic and semantic in-
formation. The different classes, that contain 25,610 en-
tries, are defined by both syntactic and semantic features
and form a three-level hierarchy. At the lowest level of
the hierarchy, sub-sub-classes are either homogeneous in
terms of syntactic behaviour, or are divided once more in
sets of entries with entries that all have the same syntactic
behaviour. However, these syntactic behaviours are coded
in a compact but abstruse way, that we shall illustrate on
our running example.
In LVF, vérifier has three distinct entries. Two of them
are in the sub-sub-class P3b of transitive verbs “of the type
‘target one’s thinking activity towards something’”. It be-
longs to the sub-class P3 for verbs expressing the ‘mani-
festation of a thinking activity towards somebody or some-
thing’, which is a sub-class of the larger class P of psycho-
logic verbs. The last entry belongs to class D of verbs like
donner ’give’, sub-class D3 containing verbs with a figu-
rative meaning “giving something to somebody” or “ob-
taining something from somebody”, sub-sub-class D3c of
verbs meaning “granting validity to something or value to
somebody”. These entries contain, among other things, the
following information:

vérifierLVF
1 P3b T1400 P3000

vérifierLVF
2 P3b T1300 P3000

vérifierLVF
3 D3c T3300

The third column contains the syntactic codes. For exam-
ple, code T1400 indicates a transitive construction with a
human subject and a non-human (nominal) or clausal di-
rect object. Code P3000 a pronominal construction with a
non-human subject. T3300 stands for a transitive construc-
tion with non-human nominal subject and object, whereas
T3100 stands for a transitive construction with a non-
human nominal subject and a human object. On the one
hand, these examples show, although not very clearly, a
general fact: syntactic descriptions in LVF are less fine-
grained than those found in other resources, except for se-
mantic properties of the arguments, in particular preposi-
tional ones. On the other hand, one can see that the in-
ventory of lexical entries is more fine-grained than in other
resources: the first two entries introduce a distinction that is

not present in Dicovalence or in Lexicon-Grammar tables,
which puts them together in only one entry (vérifierDV

85770

and vérifierLG6 504). The third entry directly matches entries
vérifierDV

85780 and vérifierLG6 505).

3. Merging algorithm
As sketched in the Introduction, our merging algorithm is a
three-step process (Sagot and Danlos, 2008):

• converting all input resources into the common model,
which, as explained above, is Alexina; all converted
resources must use the same inventory of syntactic
functions, realizations and redistributions — in our
case, that of the Lefff ; the main challenge at this stage
is to be able to extract as much information as possi-
ble from the input resources and encode them in the
form of an Alexina lexicon, despite all discrepancies
between resources, as seen in the previous section;

• creating clusters of entries from various resources
such that the entries in each should be merged into
one entry; this step is very challenging, as its aim is
to address the discrepancies in the granularity of lex-
ical entries from one lexicon to another; for example,
it is reasonable to consider that entries vérifierDV

85770,
vérifierLG6 504 and both vérifierLVF

1 and vérifierLVF
2 for

a unique grouping

• merging of these clusters into output lexical entries.

3.1. Converting input lexicon in the Lefff format
The way the lexical information is structured in the Lefff is
not very different from what can be found in Dicovalence.
This makes the conversion process for Dicovalence reason-
ably straightforward. It is based on the following princi-
ples, which are obviously approximations:

• each Dicovalence paradigm is mapped into a
Lefff syntactic function;7

• each pronoun (or paranoun) in the Dicovalence
paradigm is mapped into a Lefff realization: for ex-
ample, if the pronoun te belongs to paradigm P1, a
realization cla (accusative clitic) is added to the syn-
tactic function Obj (we lose here the fact that the direct
object can be human);

• each Dicovalence reformulation is converted into a
Lefff redistribution.

7We insist on the fact that this is an approximation.

18

Converting Lexicon-Grammar tables into the Alexina for-
mat is much more complex a task. Although the extrac-
tion of an NLP-oriented lexicon from Lexicon-Grammar ta-
bles has raised interest for some time (Hathout and Namer,
1998; Gardent et al., 2005), the only attempt that was suc-
cessful in producing and using in a parser an NLP-lexicon
from all lexicon-grammar tables is the work by Tolone and
colleagues (Tolone and Sagot, 2011). The final output of
this conversion process is an Alexina lexicon that is con-
sistent with the Lefff in terms of syntactic function, realiza-
tion and redistribution inventories, and in terms of linguistic
modeling. It is what we shall call the “full” Alexina version
of Lexicon-Grammar tables.
Because this conversion process is complex, and before its
results were available, we have also directly extracted a
“light” Alexina version of Lexicon-Grammar tables, in
the context of the work about pronominal constructions de-
scribed in Section 4.1. (Sagot and Danlos, 2009). For each
entry we have retained for this work, we only extracted its
functional sub-categorization frame, i.e., the list of syntac-
tic functions without their possible realizations, as well as
some redistributions (active, passive and se-middle).
Building an Alexina version of LVF was simply achieved
by parsing valency data (codes such as T3100) and generat-
ing on-the-fly the corresponding Alexina entries. The only
pieces of information that required a few heuristics are syn-
tactic functions, which are not all explicitely recoverable
from LVF codes, but that can be inferred using LVF in-
formation of argument introducters (e.g., prepositions) and
semantic types.
In the remained of this paper, Ei

n is the lexical entry n in the
lexicon i after it is converted in the Alexina format. Thus,
i can be Dicovalence, LVF or Lefff , as well as LG for the
“full” Alexina variant of Lexicon-Grammar tables, and LG-
light for the “light” version.

3.2. Grouping entries from various lexicons
For a given lemma, each resource might contain more than
one entry. Therefore, it is necessary to determine the num-
ber of entries in the output merged lexicon, each of them
being obtained by merging together one or several entries
from each input lexicon, according to an algorithm detailed
below. This means that the first step before merging is to
build sets of entries for each lemma, each set corresponding
to one output entry. We shall call such sets groupings.
Building such groupings is a challenging task. Indeed, what
we need here is to identify cross-resource correspondances
between entries, that are not necessarily one-to-one. More-
over, we can only rely on the information that is available
in the input resources, i.e., mainly syntactic information,
whereas distinctions between entries are often, at least in
part, semantic. On the other hand, we have seen, while de-
scribing our input resources, and in particular the example
of the entries for vérifier, that these resources have various
granularities. In the case of vérifier, we can see that LVF
entries are more fine-grained than Lexicon-Grammar and
Dicovalence entries, which in turn are more fine-grained
than the unique entry in the Lefff . It turns out that this or-
dering of the resources is the same for most verbal lemmas.
Therefore, we have chosen to base our grouping algorithm

on an inclusion relation, which formalizes this intuition.
We first define this inclusion relation at the entry level as
follows. For a given lemma, an entry E1 is included in
or more specific than an entry E2 if and only if the set of
clauses headed by an occurrence of entry E1 is included in
the set of clauses headed by E2. Such an inclusion is noted
E1 ⊂ E2. For example, vérifierDV

85770 ⊂ vérifierLefff
1 .

Then, we generalize this inclusion relation at the resource
level. Contrarily to the inclusion relation at the entry level,
which can be defined without any problem, assuming that
we can define an inclusion relation at the resource level
is obviously an approximation, but it is required for being
able to create these mappings. A lexicon i is considered in-
cluded in or more specific than another lexicon j if we make
the assumption that entries from lexicon i are all more spe-
cific than entries from lexicon j, i.e., each entry Ei

n is more
specific than an entry Ej

m, except if the lexicon j does not
contain any entry corresponding to Ei

n (in that case, i’s cov-
erage is higher than j’s); assuming that i is more specific
than j, this means that building groupings can be achieved
by computing inclusion relations of the form Ei

n ⊂ Ej
m.

Generalizing the example given above, we can posit that
DV ⊂ Lefff .
We compute such inclusion relations using the following
heuristics: starting from the resource-level hypothesis that
i ⊂ j, an entry Ei

n is considered included in another entry
Ej

m if it has exactly the same set of arguments with one of
the base syntactic functions (subject, direct object, indirect
object introduced by à, indirect object introduced by de)
and if the set of syntactic functions of remaining arguments
in Ej

m is included in that of Ei
n. One can see that we only

rely on the inventories of syntactic functions. Moreover, we
consider that only base synctactic functions can be used as
safe clues, and that more oblique ones are likely to be found
only in the most specific resource — but if one is found in
the least specific resource, then it has to be in the specific
one. In our case, this algorithm satisfyingly computes the
relation vérifierDV

85770 ⊂ vérifierLefff
1 , as they both entail, af-

ter conversion in the Alexina format, the syntactic functions
Suj and Obj (the Alexina version of vérifierDV

85770 is shown
below).
The groupings are then build as follows: we start from each
entry that includes no other entry (often, an entry from the
most specific lexicon) and we follow all inclusion relations
until we reach entries that are include in no other entries.
The set of all entries that are reached constitute a grouping.
Of course, a grouping might end up containing entries from
one resource only, if it is not included in any entry from an-
other lexicon. If this is because this entry corresponds to a
meaning or a valency that is not covered by other resources,
this is the expected result. However, it might be the result of
mismatches resulting from the original resources, either be-
cause of errors in an input lexicon or because there are dif-
ferences in the way a same construction is analyzed (e.g.,
a resource might consider as an indirect object in à what
another resource analyzes as a locative argument). These
problems, as well as the fact that entries might be incom-
plete (see the case of vérifierLG6 505), might also provoke er-
roneous groupings.
But this algorithm could still be improved. First, it can

19

never put two distinct entries from the same lexicon in a
same grouping. Going back to our running example, this al-
gorithm would cluster all entries for vérifier in three group-
ings, each of them containing one of the three LVF entries,
although we might wish only two. Second, restricting the
information used for creating groupings to the inventory of
syntactic functions is not always precise enough. In our
running example, a correct mapping between LVF and Di-
covalence entries for vérifier would require using the infor-
mation about the human vs. non-human features applied to
the subject. These improvements will be implemented in
the future.

3.3. Merging entries
Once the groupings are built, we merge the entries in each
grouping in a relatively straightforward way:

• the set of syntactic functions is built as the union of
the set of syntactic functions in the input entries;

• for each syntactic function, the set of realizations is
also obtained by union; for each realization we indi-
cate which sources include it (no indication is added if
it is licensed by all entries in the grouping);

• a realization is considered mandatorily realized only if
it is mandatory in all entries in the grouping,

• the set of possible redistributions is built as the union
of all possible redistributions in all entries in the
grouping.

Let us illustrate the output of the merging of a grouping
containing the entries vérifierDicovalence

85770 and vérifierLefff
1 .

The Lefff entry has been shown above. The Dicovalence
entry in its original format was also given. Once converted
in the Alexina model, it has become:

vérifierDV
85770 Lemma;v;<Suj:cln|sn,

Obj:(sn|cla|scompl|qcompl)>;
%actif,%passif,%se moyen

Applying the merging algorithm leads to the following en-
try:

vérifierLefff
1 +DV

85770 Lemma;v;<Suj:cln|sn,
Obj:(cla|qcompl|scompl|sinfLefff |sn)>;
%ppp employé comme adj,%actif,
%passif impersonnel,%passif,
%se moyen,%se moyen impersonnel

Note that the infinitive relalization of the direct object only
comes from the Lefff , and is marked as such. This al-
lows for a more efficient manual validation, if required, as
a piece of information that is only licensed by one resource
is more dubious than others. In this case, it is valid.

4. Merging experiments
4.1. Improving the coverage of the Lefff on

pronominal entries with Dicovalence and
Lexicon-Grammar tables

In order to improve the coverage of the Lefff over pronom-
inal entries and pronominal constructions (i.e., realizations
using the reflexive or the reciprocal se), we have leveraged

the syntactic information Dicovalence, and to a lesser ex-
tend, Lexicon-Grammar tables, under the “light” version
described above (Sagot and Danlos, 2009).
First, we have carefuly described such constructions, and
explored the way they were encoded in Dicovalence and in
Lexicon-Grammar tables, as well as the way they were to
be formalized in the Lefff . Then, we have extracted from
Dicovalence and converted in the Alexina formalism the
5,273 entries that are either pronominal or that include re-
alizations in se. Moreover, we have extracted 550 such en-
tries using the “light” conversion scheme. We have merged
the Lefff as well as these two additional sets of entries, us-
ing the inclusion relations DV ⊂ Lefff ⊂ LG-light. The
result of the merging, which has since then be included in
the Lefff , consists in 5,464 lexical entries.

4.2. Merging the Lefff , Dicovalence and LVF entries
for denominal and deadjectival verbs in -iser and
-ifier

In French, verbs in -iser and -ifier are particularly inter-
esting. First, most of them are denominal or deadjectival
verbs, which means they are relevant for studying the re-
lation between morphological derivation and valency. Sec-
ond, a large amount of verbal neologisms are built using
one of these two morphological derivation mechanisms,
and studying verbs in -iser and -ifier is an important step
towards the development of tools for turning a syntactic
lexicon into a dynamic lexicon that evolves in parallel with
textual corpora.
Our work (Sagot and Fort, 2009) was based on the Lefff ,
Dicovalence and on LVF, which has a very large cover-
age. We have restricted it to verbs in -iser or -ifier that
are indeed denominal or deadjectival, by manually remov-
ing other verbs ending “accidentally” in -iser or -ifier, such
as croiser ’cross’. We relied on the following inclusion re-
lations: LVF ⊂ DV ⊂ Lefff. The merging process created
2,246 entries covering 1,701 distinct lemmas (1,862 entries
for verbs in -iser covering 1,457 distinct lemmas, and 384
entries for verbs in -ifier covering 244 distinct lemmas.
Note that this work was complemented with a corpus-based
extraction step for finding missing denominal and deadjec-
tival entries in -iser and -ifier.

4.3. Merging the Lefff and Dicovalence for increasing
the granularity and the accuracy of the Lefff

In order, again, to increase the granularity and the accuracy
of the Lefff , we have conducted a work aiming at merging
the whole verbal lexicon of the Lefff and Dicovalence, and
then validate or correct and/or merge manually the result-
ing entries. We have applied the methodology described in
this paper using the inclusion relation DV ⊂ Lefff. The, we
have validated the 100 most frequent lemmas as well as all
dubious lemma, i.e., those lemma who got more entries in
the merged lexicon than originally in both input lexicons.
This validation step allowed us to remove erroneous real-
izations that were present in the Lefff , to indeed extend its
coverage, accuracy, and fine-grainedness, but also to unvail
errors in Dicovalence itself. This illustrates what we have
explained above: not only merging syntactic lexicons lead
to a improved output resource, but it also allows to improve

20

the input resources themselves.
This work extended the number of verbal entries in the Lefff
from 10,214 to 12,610, whereas the number of distinct lem-
mas was extended from 7,813 to 7,990 lemmas. The new
version of the Lefff resulting from this automatic merging
and manual validation and correction step is already freely
available in the last distribution of the Lefff , but is not yet
considered validated enough to replace the previous verbal
lexicon files, which are therefore still distributed as well. It
corresponds to the NewLefff in the parsing evaluation work
described in (Tolone et al., 2012).

5. Conclusion and next steps
In this paper, we have shown how syntactic lexical re-
sources can be merged, in order to take benefit from their
respective strong points, and despite the differences in the
way they represent syntactic lexical information. We have
described four large-coverage syntactic (including valency)
lexicons for French, among which the Lefff , and have
shown how we have used our merging algorithm for ex-
tending and improving the Lefff . In two experiments, we
have merged up to 3 resources but restricting ourselves to
two classes of entries. In the last experiments, all entries of
only two lexicons were merged. Moreover, we used one of
our input lexicons, namely Lexicon-Grammar tables, only
in a light way, as explained below.
The next step of our work will be twofold. First, we will
implement improvements that will address the limits of our
grouping algorithm, as explained above. Second, we will fi-
nally merge our four lexical resources, including Lexicon-
Grammar tables fully converted in the Alexina format (as
opposed to the “light” version). This should give birth to a
new version of the Lefff , which will then become the syn-
tactic resource with the largest coverage, and hopefully a
very high accuracy, concerning French verbs.

6. References
Claire Blanche-Benveniste, José Delofeu, Jean Stefanini,

and Karel van den Eynde. 1984. Pronom et syntaxe.
L’approche pronominale et son application au français.
SELAF, Paris.

Jean-Pierre Boons, Alain Guillet, and Christian Leclère.
1976a. La structure des phrases simples en français :
Constructions intransitives. Droz, Genève, Suisse.

Jean-Pierre Boons, Alain Guillet, and Christian Leclère.
1976b. La structure des phrases simples en français,
classes de constructions transitives. Technical report,
LADL, CNRS, Paris 7.

Pierre Boullier and Benoı̂t Sagot. 2005. Efficient and ro-
bust LFG parsing: SXLFG. In Proceedings of IWPT
2005, pages 1–10, Vancouver, Canada.

Michael Collins. 1997. Three generative, lexicalised mod-
els for statistical parsing. In Proceedings of the 35th An-
nual Meeting of the Association for Computational Lin-
guistics and Eighth Conference of the European Chapter
of the Association for Computational Linguistics, pages
16–23, Stroudsburg, PA, USA.

Dick Crouch and Tracy Holloway King. 2005. Unify-
ing Lexical Resources. In Proceedings of the Interdis-

ciplinary Workshop on the Identification and Represen-
tation of Verb Features and Verb Classes, Saarbrücken,
Germany.

Jean Dubois and Françoise Dubois-Charlier. 1997. Les
verbes français. Larousse-Bordas, Paris, France.

Claire Gardent, Bruno Guillaume, Guy Perrier, and In-
grid Falk. 2005. Maurice Gross’ Grammar Lexicon
and Natural Language Processing. In Proceedings of
the 2nd Language and Technology Conference (LTC’05),
Poznań, Pologne.

Maurice Gross. 1975. Méthodes en syntaxe : Régimes des
constructions complétives. Hermann, Paris, France.

Alain Guillet and Christian Leclère. 1992. La structure des
phrases simples en français : Les constructions transi-
tives locatives. Droz, Genève.

Nabil Hathout and Fiammetta Namer. 1998. Automatic
construction and validation of French large lexical re-
sources: Reuse of verb theoretical linguistic descriptions.
In Proceedings of the 1st Language Resources and Eval-
uation Conference (LREC’98), Granada, Spain.

Miguel Ángel Molinero, Benoı̂t Sagot, and Lionel Nicolas.
2009. A morphological and syntactic wide-coverage lex-
icon for spanish: The Leff e. In Proceedings of RANLP
2009, Borovets, Bulgaria.

Silvia Necşulescu, Núria Bel, Muntsa Padró, Montserrat
Marimon, and Eva Revilla. 2011. Towards the auto-
matic merging of language resources. In Proceedings
of WoLeR 2011, the 1st International Workshop on Lan-
guage Resources, Ljubljana, Slovenia.

Stefan Riezler, Tracy H. King, Ronald M. Kaplan, Richard
Crouch, John T. Maxwell, III, and Mark Johnson.
2002. Parsing the Wall Street Journal using a Lexical-
Functional Grammar and discriminative estimation tech-
niques. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, pages 271–
278, Stroudsburg, PA, USA.

Benoı̂t Sagot and Laurence Danlos. 2008. Méthodologie
lexicographique de constitution d’un lexique syntaxique
de référence pour le français. In Actes du colloque Lexi-
cographie et informatique: bilan et perspectives, Nancy,
France.

Benoı̂t Sagot and Laurence Danlos. 2009. Constructions
pronominales dans dicovalence et le lexique-grammaire
— intégration dans le lefff. Linguisticæ Investigationes,
32(2).

Benoı̂t Sagot and Karën Fort. 2009. Description et anal-
yse des verbes désadjectivaux et dénominaux en -ifier et
-iser. In Proceedings of the 28th Lexis and Grammar
Conference, Bergen, Norway.

Benoı̂t Sagot, Lionel Clément, Éric de La Clergerie, and
Pierre Boullier. 2006. The Lefff 2 syntactic lexicon for
French: architecture, acquisition, use. In Proceedings of
the 5th Language Resource and Evaluation Conference,
Lisbon, Portugal.

Benoı̂t Sagot. 2010. The Lefff , a freely available, accu-
rate and large-coverage lexicon for French. In Proc. of
the 7th Language Resource and Evaluation Conference,
Valetta, Malta.

François Thomasset and Éric de La Clergerie. 2005. Com-

21

ment obtenir plus des méta-grammaires. In Proceedings
of TALN’05, Dourdan, France, June.

Elsa Tolone and Benoı̂t Sagot. 2011. Using Lexicon-
Grammar tables for French verbs in a large-coverage
parser. In Zygmunt Vetulani, editor, Human Language
Technology, Forth Language and Technology Confer-
ence, LTC 2009, Poznań, Poland, November 2009, Re-
vised Selected Papers, Lecture Notes in Artificial Intelli-
gence (LNAI). Springer Verlag.

Elsa Tolone, Éric Villemonte de La Clergerie, and Benoı̂t
Sagot. 2012. Evaluating and improving syntactic lex-
ica by plugging them within a parser. In Proceedings of
the 8th Language Resources and Evaluation Conference
(LREC’12), Istanbul, Turkey. To appear.

Karel van den Eynde and Piet Mertens. 2006. Va-
lency dictionary - DICOVALENCY: user’s guide. See
http://bach.arts.kuleuven.be/dicovalence/.

Yannick Versley and Ines Rehbein. 2009. Scalable dis-
criminative parsing for German. In Proceedings of the
11th International Conference on Parsing Technologies,
pages 134–137, Stroudsburg, PA, USA.

22

Harmonization and Merging of two Italian Dependency Treebanks

Cristina Bosco∗, Simonetta Montemagni�, Maria Simi†

∗ Università di Torino, � Istituto di Linguistica Computazionale “Antonio Zampolli” (ILC–CNR) - Pisa, † Università di Pisa
bosco@di.unito.it, simonetta.montemagni@ilc.cnr.it, simi@unipi.it

Abstract
The paper describes the methodology which is currently being defined for the construction of a “Merged Italian Dependency Treebank”
(MIDT) starting from already existing resources. In particular, it reports the results of a case study carried out on two available
dependency treebanks, i.e. TUT and ISST–TANL. The issues raised during the comparison of the annotation schemes underlying the
two treebanks are discussed and investigated with a particular emphasis on the definition of a set of linguistic categories to be used as a
“bridge” between the specific schemes. As an encoding format, the CoNLL de facto standard is used.

Keywords: Syntactic Annotation, Merging of Resources, Dependency Parsing

1. Introduction
Italian is featured by the availability of four dependency
treebanks. Three of them were developed by national re-
search institutions: the Turin University Treebank (TUT)1

developed by the NLP group of the University of Turin
(Bosco et al., 2000); the treebank called ISST–TANL,
which was developed as a joint effort by the Istituto di Lin-
guistica Computazionale (ILC–CNR) and the University of
Pisa and originating from the Italian Syntactic–Semantic
Treebank or ISST (Montemagni et al., 2003); the Venice
Italian Treebank (VIT) developed by the University Ca’
Foscari of Venice (Tonelli et al., 2008). A further Italian
dependency treebank was developed in the framework of
an international project, the Copenhagen Dependency Tree-
bank (Buch-Kromann et al., 2009). Interesting to note, each
of these resources, independently developed applying dif-
ferent dependency-based annotation schemes, has a quite
limited size, ranging from around 94,000 tokens of TUT to
about 60,000 tokens of the Italian CDT section.
In spite of their limited size, some of these resources have
successfully been used for training and/or evaluation of de-
pendency parsing systems. For instance, TUT was repeat-
edly used within the parsing task of the EVALITA evalu-
ation campaign2 in 2007, 2009 and 2011, for both train-
ing and testing dependency parsing systems. A previous
version of ISST–TANL, namely ISST–CoNLL, was used
for the CoNLL-2007 Shared Task on multilingual depen-
dency parsing as far as Italian is concerned (Nivre et al.,
2007; Montemagni and Simi, 2007). ISST–TANL was used
in EVALITA 2009 and 2011 for two different tasks, syn-
tactic parsing (Bosco et al., 2009) and domain adaptation
(Dell’Orletta et al., 2012) respectively, and is currently be-
ing used in the SPLeT 2012 Shared Task on Dependency
Parsing of Legal Texts3.
Despite the encouraging results achieved with these tree-
banks in the above mentioned initiatives, we are aware that
the relatively small size of these resources makes them us-
able in a restricted variety of tasks with an impact on the

1
http://www.di.unito.it/˜tutreeb

2
http://www.evalita.it/

3
http://poesix1.ilc.cnr.it/splet shared task/

reliability of achieved results. By contrast, the availability
of a larger resource, harmonizing and merging the original
annotated resources, should result in crucial advancements
for the Italian NLP.
Preliminary steps in this direction were performed for two
of the above mentioned treebanks, namely TUT and ISST–
TANL. The first step was represented by the exploitation
of these resources in the framework of international evalua-
tion campaigns (CoNLL and EVALITA) which required as
a necessary prerequisite the conversion of the native anno-
tation formats into the CoNLL representation standard. A
further step was performed in the framework of EVALITA
2009 which included a dependency parsing track (Bosco et
al., 2009) articulated into two subtasks differing at the level
of used treebanks: TUT was used as the development set
in the Main Subtask, and ISST–TANL represented the de-
velopment set for the Pilot Subtask. The analysis of the
results of the best scoring systems, in line with the state of
the art dependency parsing technology for Italian, provided
the opportunity to start investigating the influence of the de-
sign of both treebanks by testing these parsers on a common
set of data annotated in both annotation schemes (Bosco et
al., 2010). The last and still ongoing step is represented by
the national project “Portal for the Access to the Linguistic
Resources for Italian” (PARLI), involving several academic
NLP groups. PARLI aims at monitoring and coordinating
the activities of Italian NLP for fostering the development
of new resources and tools that can operate together, and
the harmonization of existing ones. The activities carried
out within PARLI also comprise the annotation of a new
corpus including the full text of the Costituzione Italiana 4

by the Pisa and Turin University groups within which the
harmonization issue between the TUT and ISST–TANL an-
notations schemes started to be tackled.
In this paper we describe the methodology we are currently
defining for the construction of a “Merged Italian Depen-
dency Treebank” (MIDT) resulting from the harmonization
and merging of existing Italian dependency treebanks. This
methodology is being tested on the TUT and ISST–TANL
treebanks. However, in the near future we would like to ex-

4
http://parli.di.unito.it/activities en.html

23

tend this methodology to also cover the other two available
Italian dependency treebanks, i.e. VIT and Italian CDT.
The paper is organised as follows: after illustrating (Section
2.) the main tenets of our approach to merging, Sections
3. and 4. provide a comparative analysis of the TUT and
ISST–TANL annotation schemes, and of the performance
of state–of–the–art dependency parsers trained on the two
resources. Finally, Section 5. describes the construction of
the merged resource and the parsing results achieved by us-
ing it as training data.

2. Our approach to merging
Since the early 1990s, different initiatives have been de-
voted to the definition of standards for the linguistic an-
notation of corpora with a specific view to re–using and
merging existing annotated resources. A first attempt was
represented by the outcome of the EAGLES (Expert Ad-
visory Groups on Language Engineering Standards) initia-
tive, in particular of the group of ‘experts’ set to work on
the syntactic annotation of corpora who ended up with pro-
viding provisional standard guidelines (Leech et al., 1996).
Whereas this first attempt operated at the level of both
content (i.e. the linguistic categories) and encoding for-
mat, further initiatives tried to tackle these two aspects
separately. This is the case, for instance, of LAF/GrAF
(Ide and Romary, 2006; Ide and Suderman, 2007) and
SynAF (Declerck, 2008), which represent on–going ISO
TC37/SC4 standardization activities5 dealing respectively
with a generic meta–model for linguistic annotation and
with a meta–model for syntactic annotation, including de-
pendency structures. In both cases, the proposed frame-
work for representing linguistic annotations is intended to
be a pivot format capable of representing diverse annotation
types of varying complexity which does not provide spec-
ifications for annotation content categories (i.e., the labels
describing the associated linguistic phenomena), for which
standardization appeared since the beginning to be a much
trickier matter.
For what concerns the content categories, both architectures
include a data category registry containing a (possibly hier-
archical) list of data categories meant to represent a point
of reference for particular tagsets used for the syntactic an-
notation of various languages, also in the context of vari-
ous application scenarios. More recently, this issue is be-
ing handled by other standardization efforts such as ISO-
Cat (Kemps-Snijders et al., 2009). ISOCat is intended to
provide a set of data categories at various levels of granu-
larity, each accompanied by a precise definition of its lin-
guistic meaning. Labels applied in a user–defined annota-
tion scheme should be mapped to these categories in order
to ensure semantic consistency among annotations of the
same phenomenon.
The work illustrated in this paper is concerned with the har-
monization and merging of dependency–annotated corpora,
with a particular emphasis on data categories. As an en-
coding format, we use the CoNLL representation format,
which nowadays represents a de facto standard within the
parsing community. As far as linguistic categories are con-

5
http://www.tc37sc4.org/

cerned, we are not trying to create a single unified annota-
tion scheme to be used by all Italian dependency treebanks:
in line with the approaches sketched above, we believe that
this represents an impractical and unrealistic task. To put
it in other words, it is not a matter about one scheme be-
ing right and the other being wrong: we start from the as-
sumption that all schemes are linguistically well–motivated
and that there is no objective criterion for deciding which
annotation scheme provides the most empirically adequate
analysis of the texts. Rather, the challenge we are tackling
in this paper, which to our knowledge still represents an
open issue in the literature, is to find a way of translating
between different annotation schemes and merging them,
with the final aim of pooling costly treebank resources.
This is being carried out by trying to define a set of linguis-
tic categories to be used as a “bridge” between the specific
schemes. This initial effort focused on the TUT and ISST–
TANL resources, and in particular on the dependency an-
notation level, with the long term goal of involving in this
process the other available dependency–based Italian tree-
banks. MIDT, i.e. “Merged Italian Dependency Treebank”
represents the final result of the merging process being de-
scribed in this paper. In order to achieve this goal, we pro-
ceeded through the following steps:

• analysis of similarities and differences of considered
dependency annotation schemes;

• analysis of the performance of state of the art depen-
dency parsers trained on both treebanks;

• mapping of the individual annotation schemes onto a
set of shared (often underspecified) set of data cate-
gories;

• last but not least, parametrization of the annotation of
the merged resources (still ongoing).

In what follows these different steps are described in detail.

3. The TUT and ISST–TANL treebanks
The TUT and ISST–TANL resources differ under differ-
ent respects, at the level of both corpus composition and
adopted representations.
For what concerns size and composition, TUT currently in-
cludes 3,452 Italian sentences (i.e. 102,150 tokens in TUT
native, and 93,987 in CoNLL6) representative of five differ-
ent text genres (newspapers, Italian Civil Law Code, JRC-
Acquis Corpus7, Wikipedia and the Costituzione Italiana).
ISST–TANL includes instead 3,109 sentences (71,285 to-
kens in CoNLL format), which were extracted from the
“balanced” ISST partition (Montemagni et al., 2003) ex-
emplifying general language usage and consisting of arti-
cles from newspapers and periodicals, selected to cover a
high variety of topics (politics, economy, culture, science,
health, sport, leisure, etc.).
As far as the annotation scheme is concerned, TUT applies
the major principles of the dependency grammar (Hudson,

6In the following we will refer only to number of tokens in
CoNLL format.

7
http://langtech.jrc.it/JRC-Acquis.html

24

1984) using a rich set of grammatical relations, but it in-
cludes null elements to deal with non-projective structures,
long distance dependencies, equi phenomena, pro drop and
elliptical structures8. The ISST–TANL annotation scheme
originates from FAME (Lenci et al., 2008), an annotation
scheme which was developed starting from de facto stan-
dards and which was specifically conceived for complying
with the basic requirements of parsing evaluation, and –
later – for the annotation of unrestricted Italian texts.

3.1. Comparing the annotation schemes
The TUT and ISST–TANL annotation schemes are both
dependency-based and therefore fall within the same
broader family of annotation schemes. In spite of this
fact there are significant differences which make the
harmonization and merging of the two resources quite
a challenging task. To put it in other words, if on the
one hand there is a core of syntactic constructions for
which the analysis given by different annotation schemes
agree in all important respects, on the other hand there
are also important differences concerning the inventory of
dependency types and their linguistic interpretation, head
selection criteria, the projectivity constraint as well as with
respect to the analysis of specific syntactic constructions.
In what follows we summarize the main dimensions of
variation with a specific view to the merging issues.

Head selection criteria
Criteria for distinguishing the head and the dependent
within dependency relations have been widely discussed in
the linguistic literature, not only in the dependency gram-
mar tradition, but also within other frameworks where the
notion of syntactic head plays an important role. Unfortu-
nately, different criteria have been proposed, some syntactic
and some semantic, which do not lead to a single coherent
notion of dependency (Kübler et al., 2009). Head selection
thus represents an important and unavoidable dimension of
variation between the TUT and ISST–TANL schemes, es-
pecially for what concerns constructions involving gram-
matical function words with respect to which there is no
general consensus in the tradition of dependency gram-
mar as to what should be regarded as the head and what
should be regarded as the dependent. Let us focus on the
following tricky cases: namely, the determiner–noun rela-
tion within nominal groups, the preposition–noun relation
within prepositional phrases, the complementizer–verb re-
lation in subordinate clauses as well as the auxiliary–main
verb relation in complex verbal groups.
TUT always assigns heads on the basis of syntactic crite-
ria, i.e. in all constructions involving one function word
and one content word (e.g. determiner–noun, preposition–
noun, complementizer–verb) the head role is always played
by the function word. The only exception is represented by
auxiliary–main verb constructions where the head role is
played by the main verb. By contrast, in ISST–TANL head
selection follows from a combination of syntactic and se-
mantic criteria: i.e. whereas in the determiner–noun and

8CoNLL format does not include null elements, but the projec-
tivity constraint is maintained at the cost of a loss of information
with respect to native TUT (in some cases).

auxiliary–verb constructions the head role is assigned to
the semantic head (noun/verb), in preposition–noun and
complementizer–verb constructions the head role is played
by the element which is subcategorized for by the govern-
ing head, i.e. the preposition and the complementizer.
Note that this different strategy in at the level of head
selection explains the asymmetric treatment of determiner–
noun constructions with respect to preposition–noun
ones in ISST–TANL and the fact that for TUT the same
dependency type is used for both cases (see below).

Granularity and inventory of dependency types
TUT and ISST–TANL annotation schemes assume different
inventories of dependency types characterized by different
degrees of granularity in the representation of specific rela-
tions. The different degree of granularity of the annotation
schemes is testified by the size of the adopted dependency
tagsets, including 72 dependency types in the case of TUT
and 29 in the case of ISST–TANL. Interestingly however,
it is not always the case that the finer grained annotation
scheme – i.e. TUT – is the one providing more granular
distinctions: whereas this is typically the case, there are
also cases in which more granular distinction are adopted
in the ISST-TANL annotation scheme. In what follows, we
provide examples of both cases.
Consider first TUT relational distinctions which are neu-
tralized at the level of ISST–TANL annotation. A difference
in terms of granularity refers e.g. to the annotation of ap-
positive (or unrestrictive) modifiers, which in TUT are an-
notated by resorting to a specific relation (APPOSITION),
and which in ISST–TANL are not distinguished from other
kinds of modifiers (mod). Similarly, TUT partitions pred-
icative complements into two classes, i.e. subject and
object predicative complements (PREDCOMPL+SUBJ and
PREDCOMPL+OBJ respectively) depending on whether the
complement refers to the subject or the object of the head
verb, whereas in ISST–TANL the same dependency type
(pred) is used to annotate both cases.
Let us consider now the reverse case, i.e. in which ISST–
TANL adopts finer–grained distinctions with respect to
TUT: for instance, ISST–TANL envisages two different
relation types for determiner–noun and preposition–noun
constructions (det and prep respectively), whereas TUT
represents both cases in terms of the same relation type
(ARG). This latter example follows from another important
dimension of variation between the two schemes, concern-
ing head selection (see above).
Another interesting and more complex example can be
found for what concerns the partitioning of the space
of prepositional complements, be they modifiers or
subcategorized arguments. TUT distinguishes between
MODIFIER(s) on the one hand and subcategorised argu-
ments on the other hand; the latter are further distinguished
between indirect objects (INDOBJ) and all other types
of indirect complements (INDCOMPL). ISST–TANL
neutralizes such a distinction by resorting to a single
dependency type, i.e. comp (mnemonic for complement),
for all relations holding between a head and a prepositional
complement, whether a modifier or a subcategorized
argument. On the other hand, comp(lements) are further

25

subdivided into semantically oriented categories, such as
temporal, locative or indirect complements (comp temp,
comp loc and comp ind).

Same dependency type, different annotation criteria
Even when the two schemes show common dependency
types, they can diverge at the level of their interpretation,
and thus of the underlying annotation criteria. This is the
case, for instance, of the “object” relation which in the TUT
annotation scheme refers to the direct argument (either in
the nominal or clausal form) occurring at least and most
once and expressing the subcategorized object, and which
in ISST–TANL is meant to denote the relation holding be-
tween a verbal head and its non–clausal direct object (other
dependency types are used for clausal complements).
Another interesting example is represented by relative
clauses. TUT and ISST–TANL follow the same strategy in
the representation of standard relative clauses, according
to which the head of the relative clause is the verb and the
relative pronoun is governed by it as a standard argument.
The verbal head is then connected to the antecedent noun
through a specific relation, RELCL in TUT and mod rel
in ISST–TANL. However, TUT also treates so–called
reduced relative clauses, i.e. constructions where there
is no overt relative pronoun and the verb appears in the
participial form (either present or past participle), in the
same way; namely, by using the same relation type to link
the verb of the reduced relative clause to the governing
noun. In ISST–TANL, constructions without overt relative
pronouns are instead represented by resorting to a general
modifier relation (mod).

Projectivity of dependency representations
Projectivity is an important constraint in dependency gram-
mar, relating dependency structures to linear realizations.
If on the one hand most NLP systems for dependency
parsing assume projectivity, on the other hand this is
not the case on the linguistic side where non–projective
representations are resorted to for dealing with specific
linguistic constructions (e.g. long-distance dependencies)
mainly occurring in flexible word order languages (such
as Italian). Whereas ISST–TANL corpus allows for non–
projective representations, TUT assumes the projectivity
constraint.

Treatment of specific constructions
Further important differences between TUT and ISST–
TANL annotation schemes are concerned with the treat-
ment of coordination and punctuation, phenomena which
are particularly problematic to deal with in the dependency
framework.
Besides the general issue widely discussed in the litera-
ture of whether coordination can be analyzed in terms of
binary asymmetrical relations holding between a head and
a dependent, there are different ways put forward to deal
with it. In both TUT and ISST–TANL resources, coordi-
nate constructions are considered as asymmetric structures
with a main difference: while in ISST–TANL the conjunc-
tion and the subsequent conjuncts are all linked to the first
conjunct, in TUT the conjuncts starting from the second

one are linked to the immediately preceding conjunction.
Also the treatment of punctuation is quite problematic in
the framework of a dependency annotation scheme, al-
though this has not been specifically dealt with in the lin-
guistic literature. Both TUT and ISST–TANL schemes
cover punctuation with main differences holding at the
level of both dependency types and head selection crite-
ria. Whereas ISST–TANL has just one dependency type for
all punctuation tokens, TUT distinguishes different depen-
dency types depending on the involved punctuation token
and syntactic construction. For example, in TUT an explicit
notion of parenthetical is marked while in ISST–TANL it
is not. Significant differences also lie at the level of the
head assignment criteria: in TUT the head of the punctua-
tion tokens in the parenthetical structure coincides with the
governing head of the sub–tree covering the parenthetical
structure (i.e. it is external to the parenthetical structure),
whereas in ISST–TANL the paired punctuation marks of
the parenthetical structure are both connected to the head
of the delimited phrase (i.e. internally to the parenthetical).
Other important differences holding between TUT and
ISST–TANL schemes are concerned with sentence split-
ting, tokenization and morpho–syntactic annotation, all as-
pects which represent important prerequisites for the merg-
ing of dependency annotations. All these issues have been
addressed and a solution has been proposed as part of the
whole harmonization and merging process.9 In this paper,
however, we won’t further discuss these aspects and we will
focus on the merging of dependency annotations.

4. TUT and ISST–TANL as training corpora
In Bosco et al. (2010), a dependency–based analysis of
the performance of state of the art parsers participating in
EVALITA 2009 (two stochastic parsers and a rule–based
one) with respect to a shared test set was reported, with
the final aim of assessing the impact of annotation schemes
on parsing results. In particular, for each relation in the
TUT and ISST–TANL dependency annotation schemes, the
performance of the three parsers was analyzed in terms of
Precision (P), Recall (R) and related f-score. In order to
identify problematic areas of parsing, both TUT and ISST–
TANL dependency–relations were partitioned into three
classes (i.e. low-, medium- and best-scored dependency re-
lations) with respect to the associated f-score, which was
taken to reflect their parsing difficulty (for more details see
Bosco et al. (2010)). Achieved results showed that the im-
provement of parsing technology should proceed hand in
hand with the development of more suitable representations
for annotated syntactic data. In this paper we are dealing
with the latter issue: we believe that the results of this com-
parative analysis should also be taken into account in the
definition of the merging methodology.
Similar trends were observed in the performance of parsers
against TUT and ISST–TANL. First, in both cases hard to
parse relations include “semantically loaded” relations such
as comp temp, comp loc and comp ind for ISST–

9The interested reader is referred to the fol-
lowing URL for more details on the merging of
TUT and ISST–TANL morpho–syntactic annotations:
http://medialab.di.unipi.it/wiki/POS and morphology.

26

TANL and APPOSITION and INDOBJ for TUT. More-
over, relations involving punctuation appeared to be dif-
ficult to parse for statistical parsers in the case of TUT,
whereas the rule–based parser had problems dealing with
coordinate structures in ISST–TANL; it should be noted
however that ISST–TANL con/conj relations show val-
ues very close to the low threshold value also in the case
of the stochastic parsers. This contrastive analysis thus
confirmed a widely acknowledged claim, i.e. that coor-
dination and punctuation phenomena still represent par-
ticularly challenging areas for parsing (Cheung and Penn,
2009). The problems raised by the analysis of “semanti-
cally loaded” relations in the case of both treebanks suggest
that the parsers do not appear to have sufficient evidence to
deal reliably with them; in principle, the solutions to the
problem range from increasing the size of the training cor-
pus, to neutralising their distinction at this annotation level
and postponing their treatment to further processing levels.
Concerning the best scored relations, it came out that in
both cases they mainly refer to “local” relations. Interesting
to note, there is a significant overlapping between the two
sets: e.g. the TUT ARG and the ISST–TANL det/prep
together have the same coverage; the same holds for the
TUT AUX+PASSIVE/ AUX+TENSE relations with respect
to the ISST–TANL aux relation.

5. Merging TUT and ISST–TANL
In this section we summarise the work done towards merg-
ing the two annotated resources, by defining a bridge an-
notation scheme to be used as an interlingua for converting
the individual treebanks and combining them into a wider
resource. Whereas we are aware of previous efforts of com-
bining different annotation types (e.g. ISOTimeML, Prop-
Bank, and FrameNet annotations as reported in Ide and
Bunt (2010)) as well as dependency structures of differ-
ent languages (e.g. English vs Japanese as discussed in
Hayashi et al. (2010)), to our knowledge this represents
the first merging effort carried out with respect to different
dependency annotation schemes defined for the same lan-
guage: we might look at them as dependency annotation
“dialects”. In what follows, we first illustrate the criteria
which guided the definition of a bridge annotation scheme
to be used for merging the two resources (Section 5.1.); sec-
ond, in order to test the adequacy of the resulting annotation
scheme as far as dependency parsing is concerned we report
the parsing results achieved so far by exploiting the MIDT
resources as training data (Section 5.2.).

5.1. Defining a bridge annotation scheme for MIDT
The results of the comparative analysis detailed in section
3.1. are summarized in columns 2, 3 and 4 of Table 1, where
for each relation type in a given scheme the correspond-
ing relation(s) are provided as far as the other scheme is
concerned. The fourth column (headed “DIFF”) provides
additional information for what concerns the type of corre-
spondence holding between ISST–TANL and TUT depen-
dency categories: two different values are foreseen, which
can also be combined together, corresponding to whether
the correspondence involves different head selection crite-
ria (“Hsel”) and/or a different linguistic interpretation re-

sulting in a different coverage (“covg”). It can be noted
that the emerging situation is quite heterogeneous.
The only simple cases are represented by a) the root, rela-
tive clause and passive subject cases for which we observe
a 1:1 mapping, and b) the relation(s) involving auxiliaries
in complex tense constructions characterized by a 1:n map-
ping. As far as b) is concerned, in principle the TUT re-
lation distinctions might be recoved by also taking into ac-
count the lexical and morpho–syntactic features associated
with the involved auxiliary and main verbal tokens. In both
a) and b) cases, however, the identification of a bridge cate-
gory to be used for merging purposes does not appear to be
problematic at all (see below).
A slightly more complex case is represented by the
determiner–noun, preposition–noun and complementizer–
verb relations whose treatment in the two schemes is dif-
ferent both at the level of involved relations and head selec-
tion criteria. For these cases, the merging process should
also be able to deal with the “external” consequences at the
level of the overall tree structure as far as the attachment
of these constructions is concerned. For instance, depend-
ing on the scheme in a sentence like I read the book the
object of reading would be either the article (TUT) or the
noun (ISST–TANL). In these cases, besides defining a se-
mantically coherent bridge category compatible with both
TUT and ISST–TANL annotations, the conversion process
is not circumscribed to the dependency being converted
but should also deal with the restructuring of the sub–tree
whose head governs the dependency head.
Most part of remaining dependency relations involve dif-
ferent, sometimes orthogonal, sets of criteria for their as-
signment and are therefore more difficult to deal with for
merging purposes. Consider, as an example, the direct ob-
ject relation, already discussed in Section 3.1.: in ISST–
TANL the relation obj is restricted to non–clausal objects,
whereas the TUT OBJ relation also includes clausal ones.
This difference in terms of coverage follows from the fact
that whereas TUT implements a pure dependency annota-
tion where the dependency type does not vary depending
on the complement type (e.g. clausal vs nominal objects),
in ISST–TANL all clausal complements are treated under a
specific relation type, named arg. This represents a much
trickier case to deal with for merging purposes: here it is not
a matter of choosing between two different representation
strategies, but rather of converging on a possibly underspec-
ified representation type which could be automatically re-
constructed from both TUT and ISST–TANL resources. If
on the one hand in TUT it is possible to recover the ISST–
TANL notion of arg by exploiting the morpho–syntactic
features of the tokens involved in the relation, on the other
hand it is impossible to automatically recover the TUT no-
tion of OBJ starting from ISST–TANL annotation only (in
this case information about the subcategorization properties
of individual verbs would be needed).
Another problematic conversion area is concerned with the
representation of deverbal nouns (e.g. destruction) whose
annotation in TUT is carried out in terms of the underly-
ing predicate–argument structure (i.e. by marking relations
such as subject, object, etc.) whereas in ISST–TANL is
marked by resorting to generic surface (e.g. comp(lement))

27

relations. As in the subordination case, the only possi-
ble solution here is to converge on a representation type
which can be automatically reconstructed from both TUT
and ISST–TANL resources by combining morfo–syntactic
and dependency information.
It should also be noted that there are semantically–oriented
distinctions which are part of the ISST–TANL annota-
tion scheme (e.g. temporal and locative modifiers, i.e.
mod temp vs mod loc) but which do not find a coun-
terpart in the CoNLL version of the TUT treebank. In this
case the only possible solution consists in neutralizing such
a distinction at the level of the MIDT representation.
The conversion process had also to deal with cases for
which the difference was only at the level of annotation
criteria rather than of the dependency types. Consider for
instance the treatment of coordination phenomena. Both
TUT and ISST–TANL foresee two different relations, one
for linking the conjunction to one of the conjuncts (i.e. the
ISST–TANL con and the TUT COORD relations) and the
other one for connecting the conjoned elements (i.e. the
ISST–TANL conj and the TUT COORD2ND relations).
In spite of this parallelism at the tagset level, the strategy
adopted for representing coordinate structures is different
in the two resources: whereas ISST–TANL takes the first
conjunct as the head of the whole coordinate structure and
all subsequent conjoined elements and conjunctions are at-
tached to it, in TUT both the conjuction and the conjunct
are governed by the element immediately preceding it. In
this case, the conversion towards MIDT consists in restruc-
turing the internal structure of the coordinate structure.
So far, we focused on the conversion of “canonical” depen-
dency relations and of coordination: the treatment of punc-
tuation is still being defined. For each set of corresponding
ISST–TANL and TUT categories, the last column of Ta-
ble 1 contains the MIDT counterpart. The definition of the
MIDT dependency tagset was first guided by practical con-
siderations: namely, bridge categories should be automat-
ically reconstructed by exploiting morpho–syntactic and
dependency information contained in the original ISST–
TANL and TUT resources. In MIDT, we also decided to
neutralize semantically–oriented distinctions (such as the
subject of passive constructions, or the indirect object)
which turned out to be problematic (see Section 4.) to be
reliably identified in parsing in spite of their being explic-
itly encoded in both annotation schemes. Last but not least,
the linguistic soundness of resulting categories was also as-
sessed, by comparing the MIDT tagset with de facto de-
pendency annotation standards: among them it is worth
mentioning here the annotation tagsets proposed by the syn-
tactic annotation initiatives like TIGER, ISST, Sparkle and
EAGLES as reported in Declerck (2008) or the most recent
Stanford typed dependencies representation (de Marneffe
and Manning, 2008).
It should be noted that, in some cases, MIDT provides
two different options, corresponding to the TUT and
ISST–TANL styles for dealing with the same construc-
tion: this is the case of determiner–noun, preposition–
noun, complementizer–verb and auxiliary–main verb rela-
tions whose MIDT representation is parameterizable: for
the time being only one possible option has been activated.

The final MIDT tagset contains 21 dependency tags (as op-
posed to the 72 tags of TUT and the 29 of ISST–TANL),
including the different options provided for the same type
of construction. The question at this point is whether the
MIDT annotation scheme is informative enough and at the
same time fully predictable to reliably be used for differ-
ent purposes: in the following section a first preliminary
answer to this question is provided.

5.2. Using MIDT as training corpus
In this section we report the results achieved by using
MIDT resources for training a dependency parsing system.
We used DeSR (Dependency Shift Reduce), a transition–
based statistical parser (Attardi, 2006) which builds de-
pendency trees while scanning a sentence and applying at
each step a proper parsing action selected through a classi-
fier based on a set of representative features of the current
parse state. Parsing is performed bottom-up in a classical
Shift/Reduce style, except that the parsing rules are special
and allow parsing to be performed deterministically in a
single pass. It is possible to specify, through a configuration
file, the set of features to use (e.g. POS tag, lemma, mor-
phological features) and the classification algorithm (e.g.
Multi-Layer Perceptron (Attardi and Dell’Orletta, 2009),
Support Vector Machine, Maximum Entropy). In addition,
the parser can be configured to run either in left–to–right
or right–to–left word order. An effective use of DeSR is
the Reverse Revision parser (Attardi et al., 2009), a stacked
parser which first runs in one direction, and then extracts
hints from its output to feed another parser running in the
opposite direction. All these options allow creating a num-
ber of different parser variants, all based on the same ba-
sic parsing algorithm. Further improvement can then be
achieved by the technique of parser combination (Attardi et
al., 2009), using a greedy algorithm, which preserves the
linear complexity of the individual parsers and often out-
performs other more complex algorithms.
Let us start from the results achieved by this parser in the
framework of the evaluation campaign Evalita 2011 with
the original TUT and ISST–TANL datasets distributed in
the framework of the “Dependency Parsing” (Bosco and
Mazzei, 2012) and “Domain Adaptation” (Dell’Orletta et
al., 2012) tracks respectively. Table 2 reports, in the
first two rows, the values of Labeled Attachment Score
(LAS) obtained with respect to the ISST–TANL and TUT
datasets with the technique of parser combination: 82.09%
vs 89.88%. This result is in line with what reported in
Bosco et al. (2010), where a similar difference in perfor-
mance was observed with respect to the TUT and ISST–
TANL test sets: the composition of the training corpora and
the adopted annotation schemes were identified as possible
causes for such a difference in performance.
The results reported in rows 3–6 have been obtained by
training DeSR with the MIDT version of the TUT and
ISST–TANL individual resources, whereas rows 7 and 8
refer to the merged MIDT resource. In all these cases two
different LAS scores are reported, i.e. the overall score and
the one computed by excluding punctuation: this was done
to guarantee the comparability of results since, as pointed
out above, the conversion of punctuation is still under way

28

Table 1: ISST–TANL, TUT and MIDT linguistic ontologies
ID ISST–TANL TUT DIFF MIDT

1 ROOT TOP ROOT
2 arg no equivalent relation (see 5, 21) covg ARG
3 aux AUX(+PASSIVE +PROGRESSIVE +TENSE) AUX
4 clit EMPTYCOMPL SUBJ/SUBJ+IMPERS CLIT
5 comp INDCOMPL SUBJ/INDCOMPL COORD+COMPAR covg COMP
6 comp ind INDOBJ SUBJ/INDOBJ COMP
7 comp loc no equivalent relation(see 5) covg COMP
8 comp temp no equivalent relation (see 5) covg COMP
9 con COORD(+BASE +ADVERS +COMPAR +COND +CORRE-

LAT +ESPLIC +RANGE +SYMMETRIC)
covg Hsel COORD

10 concat CONTIN(+LOCUT +DENOM +PREP) CONCAT
11 conj COORD2ND(+BASE +ADVERS +COMPAR +COND +COR-

RELAT +ESPLIC) COORDANTEC+CORRELAT
covg Hsel COOR2ND

12 det ARG Hsel DET, ARG
13 dis no equivalent relation (see 9) covg COORD
14 disj no equivalent relation (see 11) covg COOR2ND
15 mod APPOSITION RMOD RMOD+RELCL+REDUC INTERJEC-

TION COORDANTEC+COMPAR
covg MOD

16 mod loc no equivalent relation (see 15) covg MOD
17 mod rel RMOD+RELCL RELCL
18 mod temp no equivalent relation (see 15) covg MOD
19 modal no equivalent relation (see 3) Hsel covg AUX
20 neg no equivalent relation (see 15) covg NEG
21 obj OBJ SUBJ/OBJ EXTRAOBJ covg OBJ
22 pred PREDCOMPL(+SUBJ +OBJ) RMODPRED(+OBJ +SUBJ) PRED
23 pred loc no equivalent relation (see 22) covg PRED
24 pred temp no equivalent relation (see 22) covg PRED
25 prep ARG Hsel PREP, ARG
26 punc CLOSE(+PARENTHETICAL +QUOTES) END INITIATOR

OPEN(+PARENTHETICAL +QUOTES) SEPARATOR
PUNC

27 sub ARG Hsel SUB, ARG
28 subj SUBJ EXTRASUBJ covg SUBJ
29 subj pass OBJ/SUBJ SUBJ

(i.e. for the time being the original treatment of punctuation
is maintained). For the MIDT resources, the DeSR results
achieved with the best single parser and with the combina-
tion of parsers are reported. It can be noticed that in both
cases an improvement is observed with respect to the na-
tive TUT and ISST–TANL resources, +0.23% and + 2.90%
respectively. The last two rows refer to the results achieved
with the merged resource used as training, which at the time
of writing is far from being completed due to the fact that
the treatment of punctuation has not been unified yet. In
spite of this fact (which in principle could generate noise in
the model), the performance achieved by training the parser
on the merged resource is still high, although lower than the
result achieved with TUT MIDT train. The parsing model
trained on the merged resource obtains the following re-
sults with respect to individual test sets: 83.43% for ISST–
TANL MIDT test and 88.03% for TUT MIDT test, which
represent slighly lower LAS scores than those obtained by
using as training the corresponding resource. In spite of
the fact that the harmonization and merging of the two re-
sources is still under way, achieved parsing results show
that the resulting MIDT resource can effectively be used
for training dependency parsers.

6. Conclusion

The outcome of the effort sketched in this paper is three–
fold. First, a methodology for harmonizing and merging
annotation schemes belonging to the same family has been
defined starting from a comparative analysis carried out a)
with respect to different dimensions of variation ranging
from head selection criteria, dependency tagset granularity
to annotation guidelines or the treatment of specific con-
structions, and b) by analysing the performance of state–
of–the–art dependency parsers using as training the origi-
nal resources. Second, Italian will have a bigger treebank,
which will be further extended if other available treebanks
will be involved in the merging process. Third, but not least
important, the set of “bridge” categories which have been
defined for merging purposes can in principle be used to
enrich the set of dependency–related data categories of the
ISOcat Data Category Registry, thus enabling other merg-
ing initiatives operating within the same dependency–based
family of annotation schemes to start from a richer and al-
ready experimented set of basic dependency–related cate-
gories. Current directions of work include: the completion
of the conversion and merging process to obtain a fully har-
monised resource; the parameterizability of conversion, in
order to allow for different annotation choices.

29

Table 2: Parsing results with native vs MIDT resources
TRAINING TEST PARSER LAS LAS no punct
ISST–TANL native train ISST–TANL native test Parser comb. 82.09% not available
TUT native train TUT native test Parser comb. 89.88% not available
ISST–TANL MIDT train ISST–TANL MIDT test Best single 84.47% 86.15%
ISST–TANL MIDT train ISST–TANL MIDT test Parser comb. 84.99% 86.78%
TUT MIDT train TUT MIDT test Best single 89.23% 90.74%
TUT MIDT train TUT MIDT test Parser comb. 90.11% 91.58%
merged MIDT train merged MIDT test Best single 86.09% 88.60%
merged MIDT train merged MIDT test Parser comb 86.66% 89.04%

7. Acknowledgements
The work reported in this paper was partly carried out in the
framework of the national PRIN project PARLI (”Portal for
the Access to the Linguistic Resources for Italian”) funded
by the Ministry of Public Instruction and University.

8. References
G. Attardi and F. Dell’Orletta. 2009. Reverse revision and

linear tree combination for dependency parsing. In Pro-
ceedings of NAACL HLT (2009).

G. Attardi, F. Dell’Orletta, M. Simi, and J. Turian. 2009.
Accurate dependency parsing with a stacked multilayer
perceptron. In Proceedings of EVALITA, Evaluation of
NLP and Speech Tools for Italian, Reggio Emilia, Italy.

G. Attardi. 2006. Experiments with a multilanguage
non–projective dependency parser. In Proceedings of
CoNLL’06, New York City, New York.

C. Bosco and A. Mazzei. 2012. The evalita 2011 pars-
ing task: the dependency track. In Working Notes of
Evalita’11, Roma, Italy.

C. Bosco, V. Lombardo, L. Lesmo, and D. Vassallo. 2000.
Building a treebank for italian: a data-driven annotation
schema. In Proceedings of LREC’00, Athens, Greece.

C. Bosco, S. Montemagni, A. Mazzei, V. Lombardo,
F. Dell’Orletta, and A. Lenci. 2009. Evalita’09 parsing
task: comparing dependency parsers and treebanks. In
Proceedings of Evalita’09, Reggio Emilia, Italy.

C. Bosco, S. Montemagni, A. Mazzei, V. Lombardo,
F. Dell’Orletta, A. Lenci, L. Lesmo, G. Attardi, M. Simi,
A. Lavelli, J. Hall, J. Nilsson, and J. Nivre. 2010. Com-
paring the influence of different treebank annotations on
dependency parsing. In Proceedings of LREC’10, Val-
letta, Malta.

M. Buch-Kromann, I. Korzen, and H. Høeg Müller. 2009.
Uncovering the ‘lost’ structure of translations with par-
allel treebanks. Special Issue of Copenhagen Studies of
Language, 38:199–224.

J.C.K. Cheung and G. Penn. 2009. Topological field pars-
ing of German. In Proceedings of ACL-IJCNLP’09.

M.C. de Marneffe and C.D. Manning. 2008. Stanford
typed dependencies manual. Technical report, Stanford
University.

T. Declerck. 2008. A framework for standardized syntac-
tic annotation. In Proceedings of LREC’08, Marrakech,
Morocco.

F. Dell’Orletta, S. Marchi, S. Montemagni, G. Venturi,
T. Agnoloni, and E. Francesconi. 2012. Domain adapta-

tion for dependency parsing at evalita 2011. In Working
Notes of Evalita’11, Roma, Italy.

Y. Hayashi, T. Declerck, and C. Narawa. 2010. Laf/graf-
grounded representation of dependency structures. In
Proceedings of LREC’10, Valletta, Malta.

R. Hudson. 1984. Word Grammar. Basil Blackwell, Ox-
ford and New York.

N. Ide and H. Bunt. 2010. Anatomy of annotation
schemes: mapping to graf. In Proceedings of the Lin-
guistic Annotation Workshop, Uppsala, Sweden.

N. Ide and L. Romary. 2006. Representing linguistic cor-
pora and their annotations. In Proceedings of LREC’06,
Genova, Italy.

N. Ide and K. Suderman. 2007. GrAF: A graph-based for-
mat for linguistic annotations. In Proceedings of the Lin-
guistic Annotation Workshop, Prague, Czech Republic.

M. Kemps-Snijders, M. Windhouwer, P. Wittenburg, and
S.E. Wright. 2009. Isocat: remodelling metadata for
language resources. IJMSO, 4(4):261–276.

S. Kübler, R.T. McDonald, and J. Nivre. 2009. Depen-
dency Parsing. Morgan & Claypool Publishers, Oxford
and New York.

G. Leech, R. Barnett, and P. Kahrel. 1996. Eagles rec-
ommendations for the syntactic annotation of corpora.
Technical report, EAG-TCWG-SASG1.8.

A. Lenci, S. Montemagni, V. Pirrelli, and C. Soria. 2008. A
syntactic meta–scheme for corpus annotation and pars-
ing evaluation. In Proceedings of LREC’00, Athens,
Greece.

S. Montemagni and M. Simi. 2007. The Italian depen-
dency annotated corpus developed for the CoNLL–2007
shared task. Technical report, ILC–CNR.

S. Montemagni, F. Barsotti, M. Battista, N. Calzolari,
O. Corazzari, A. Lenci, A. Zampolli, F. Fanciulli,
M. Massetani, R. Raffaelli, R. Basili, M. T. Pazienza,
D. Saracino, F. Zanzotto, N. Mana, F. Pianesi, and
R. Delmonte. 2003. Building the Italian Syntactic-
Semantic Treebank. In A. Abeillé, editor, Building and
Using syntactically annotated corpora. Kluwer.

J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nilsson,
S. Riedel, and D. Yuret. 2007. The CoNLL 2007 shared
task on dependency parsing. In Proceedings of EMNLP-
CoNLL’07.

S. Tonelli, R. Delmonte, and A. Bristot. 2008. Enriching
the venice italian treebank with dependency and gram-
matical relations. In Proceedings of LREC’08, Mar-
rakech, Morocco.

30

L-LEME: an Automatic Lexical Merger based on the LMF Standard

Riccardo Del Gratta⋄, Francesca Frontini⋄, Monica Monachini⋄,

Valeria Quochi⋄, Francesco Rubino⋄, Matteo Abrate∗ and Angelica Lo Duca∗

∗IIT-CNR, ⋄ILC-CNR
Consiglio Nazionale delle Ricerche

Via Moruzzi, 1 - Pisa, Italy
∗name.surname@iit.cnr.it,⋄name.surname@ilc.cnr.it

Abstract
The present paper describes LMF LExical MErger (L-LEME), an architecture to combine two lexicons in order to obtain new
resource(s). L-LEME relies on standards, thus exploiting the benefits of the ISO Lexical Markup Framework (LMF) to ensure
interoperability. L-LEME is meant to bedynamicand heavily adaptable: it allows the users to configure it to meet their specific needs.
The L-LEME architecture is composed of two main modules: theMapper , which takes in input two lexiconsA andB and a set of
user-defined rules and instructions to guide the mapping process (DirectivesD) and gives in output all matching entries. The algorithm
also calculates a cosine similarity score. TheBuilder takes in input the previous results, a set of DirectivesD1 and produces a new
LMF lexicon C. The Directives allow the user to define its own building rules and different merging scenarios. L-LEME is applied to a
specific concrete task within the PANACEA project, namely the merging of two Italian SubCategorization Frame (SCF) lexicons. The
experiment is interesting in thatA andB have different philosophies behind, beingA built by human introspection andB automatically
extracted. Ultimately, L-LEME has interesting repercussions in many language technology applications.

Keywords: LMF Standard, (semi-)automatic Lexicon Merging, Similarity Score

1. Introduction
For most Natural Language Processing (NLP) applications
the availability of suitable Language Resources represents a
major bottleneck for market coverage and quality improve-
ment. While it is true that quantity alone does not neces-
sarily imply sufficient quality, esp. for commercial bodies,
it still makes the difference. Applications such as Machine
Translation (MT), for example, require a relatively large
quantity of data in order to achieve good performances.
Yet, there are many language resources developed by dif-
ferent groups, researchers and projects that, put together,
could constitute a wealth of knowledge for such applica-
tions. Along with research and development of new and
better methods for the creation of language resources, it
is then fundamental to continue exploring how to merge,
repurpose and reuse existing resources. Merging two lexi-
cal resources, especially with (semi-)automatic methods, is
a challenging task, since different lexicons often have dif-
ferent structures, different granularity of information, and
in the worst case, they may contain even partially overlap-
ping entries. Most resource merging experiments and tasks
have been (and are being) carried out manually. A few ex-
ceptions of (semi-)automatic experiments for merging re-
sources exist (cf. section 2.): they are built ad hoc, so that
the proposed methodologies can not be readily extended to
other cases.
The present paper describes L-LEME, an architecture
which exploits the ISO LMF lexicon representation stan-
dard in order to generalize the merging process. The
strongest points of L-LEME are that (i) it relies on stan-
dards, thus ensuring interoperability and making map-
ping/merging tasks easier, and (ii) it isdynamicand heav-
ily adaptable: it foresees a human-driven phase that allows

the users to configure it to meet their specific needs. L-
LEME is applied to a specific, concrete task within the
PANACEA project1, namely the merging of two SubCat-
egorization Frame (SCF) lexicons for Italian.
The paper is organized as follows: in section 2. we briefly
report some related works. In section 4. we describe the
system architecture, while in section 3.1. we describe the
Lexical Markup Framework. Sections 6. and 7. are ded-
icated to the mapping and building processes respectively.
Finally, in section 9. we present the results obtained in the
PANACEA experiment.

2. Related Work
The problem of merging two lexicons has already been
tackled and reported in the literature in the past.
Most of the approaches described focus on particular re-
sources and different specific interpretation ofmergingand
seem to be rather ad hoc for the resources addressed, al-
though more recent works investigate possibly general and
(semi-)automatic methods.
Chan and Wu (Chan and Wu, 1999) describe a basic method
for automatically generating a set of mapping rules be-
tween lexicons that employ different incompatible Part Of
Speech (POS) categories. The strategy described is to use
the co-occurrence of tags in common lemmas as a basis for
automatically learning POS mapping rules. Once mappings
are established, a merged resource can be obtained.
(Monachini et al., 2006) focuses on merging the phono-
logical layer of the Parole-Simple-Clips (PSC) lexicon and

1PANACEA is an FP7 EU funded project for the creation of a
platform for the automatic production of language resources. See
www.panacea-lr.eu

31

the LCSTAR pronunciation lexicon. The mapping is per-
formed automatically on the original entries converted into
an LMF compliant Interchange Format via rules based on
manually set equivalence parameters. The merging is then
achieved through unification of the matching entries.
(Crouch and King, 2005) describe a more complex merg-
ing attempt. Their goal is to build a Unified Lexicon (UL)
for verb entries linking their syntactic SubCategorization
Frames. The lexical resources involved in the merging
are: WordNet2 for word senses and synonym sets, Cyc3

for ontological concepts and VerbNet4 for lexical seman-
tics and syntactic information on verb behaviour. Merging
is achieved stepwise in a semi-automatic manner.
LeXFlow (Tesconi et al., 2006) is a web application frame-
work where LMF lexicons semiautomatically interact by
reciprocally enriching themselves. It is thus intended as an
instrument for the development of dynamic multi-source
lexicons. In a way similar to the one implemented in a
document workflow (Marchetti et al., 2005), lexical entries
move across agents and are dynamically updated. In prin-
ciple, agents can be either human or software.
(Molinero et al., 2009) describe a method for building a
large morphological and syntactic lexicon5 by merging ex-
isting resources via conversion to a common format. Mor-
phological merging relies on lemmas which are common
addressing possible conflicts and exceptions by giving pri-
ority to a baseline lexicon. Syntactic merging exploits the
fully specified (syntactic) information and is achieved by
comparing and matching common syntactic frames. (Padró
et al., 2011) elaborate on the methods proposed by (Mo-
linero et al., 2009) and (Crouch and King, 2005) and aim
at a fully automatic merging process. Their work focuses
on two syntactic lexicons for Spanish and adopts a graph
unification-based approach representing entries as feature
structures. Nevertheless, human intervention is needed for
converting the native encoding into the required format.
All the reported experiments seem to rely on the assump-
tion that a protocol for lexicons merging implies three log-
ical phases: a)pre-integration, b) mapping, c) building.
Thepre-integrationphase makes the two lexicons compa-
rable. Themappingphase, instead, identifies a relation
among the entries of the two lexicons. Thebuildingphase,
finally, combines the related entries of the two lexicons in
order to form a new lexicon.

3. The Lexical Markup Framework
The Lexical Markup Framework (Francopoulo et al.,
2008) defines an abstract meta-model for the construc-
tion/description of computational lexicons. LMF provides
a common, shared representation of lexical objects that al-
lows the encoding of rich linguistic information, includ-
ing morphological, syntactic, and semantic aspects. LMF
is organized in several different packages: each package
is enriched by resources that are part of the definition of
LMF. These resources include specific data categories used

2http://wordnet.princeton.edu/
3http://cyc.com/cyc/opencyc/overview
4http://verbs.colorado.edu/ mpalmer/projects/verbnet.html
5The Leffe - Lexico de formas flexionadas del espanol.

to adorn both the core model and its extensions.
Data categories can be seen as the main building blocks for
the representation of the entries; they are the actual linguis-
tic descriptors that are used to instantiate each entry.
In this paper we focus on the LMF syntax extension where
theSyntactic Behaviour represents the basic build-
ing block and encodes one of the possible behaviours of
a Lexical Entry. A detailed description of the syn-
tactic behaviour of a lexical entry is further defined by
theSubcategorization Frame object, which is the
“heart” of the syntax module.
SubCategorization Frame is used to represent one syntactic
configuration, in terms ofSyntactic Arguments, and
does not depend on individual syntactic units; rather it may
be shared by different units. In other words SubCatego-
rization Frames are verb independent and can be linked by
Syntactic Behaviours of different verbs sharing the same
argument structure. In addition to the argument structure
represented by the SCF, the Syntactic Behaviour (SB) also
encodes other syntactic properties of the entry, notably the
auxiliary.

3.1. Lexicon Model

We can model an LMF lexicon as follows:

L = Lmorpho ⊕ Lsyn ⊕ Lsem ⊕ . . . (1)

WhereLxyz are separated, yet interconnected according to
LMF and implement the classes presented in figure 1.

Figure 1: The excerpt LMF UML model used within this
paper

The model (1) can be rewritten as follows:

L = Lmorpho ⊕ Lsyn ⊕ Lsem ⊕ . . .

= Lmorpho ∪ Lnk(Lmorpho ,Lsyn) ∪ Lsyn (2)

∪ Lnk(Lmorpho ,Lsem) ∪ Lsem ∪ . . .

32

WhereLnk(x, y) are (LMF) classes that contain pointers
or references to other classes.
In LMF-based subcategorization lexicons, the role of
linker Lnk(Lmorpho ,Lsyn) in model (2) is played by the
<SyntacticBehavior /> class that is hierarchically
a child of <LexicalEntry /> and contains an explicit
pointerto the<SubcategorizationFrame /> class.
The LMF entry (1) reports an example.

<Lexicon>
<LexicalEntry id="LE_chiedere_V">
<feat att="POS" val="V"/>
<Lemma>
<feat att="writtenform" val="chiedere"/>

</Lemma>
<SB id="SB_SYNUchiedereV3" SCF="t-attoppin3">
<feat att="aux" val="avere"/>

</SB>
</LexicalEntry>
<SCF id="t-attoppin3">
<SA id="synArg_1_Psubj_t-attoppin3">
<feat att="position" val="0"/>
<feat att="optionality" val="YES"/>
<feat att="function" val="subject"/>
<feat att="syntacticConstituent" val="NP"/>

</SA>
<SA id="synArg_4_Pobj_t-attoppin3">
<feat att="position" val="1"/>
<feat att="optionality" val="NO"/>
<feat att="function" val="object"/>
<feat att="syntacticConstituent" val="NP"/>

</SA>
<SA id="synArg_207_Pattoppin3_t-attoppin3">
<feat att="position" val="2"/>
<feat att="optionality" val="NO"/>
<feat att="function" val="objpred"/>
<feat att="syntacticConstituent" val="PP"/>
<feat att="introducer" val="in"/>

</SA>
</SCF>

</Lexicon>

Entry 1: A LMF entry for chiedere‘to ask’

4. L-LEME Architecture
In this section we describe the LMF-based L-LEME pro-
totype architecture, presented in figure 2. This prototype
takes two LMF lexicons,A andB, and a set of directives
in input and outputs one or more LMF merged lexicon(s)
according to different merging scenarios.

Figure 2: The L-LEME architecture.

The system is composed of two main modules: theMapper

and theBuilder.

Mapper TheMappercomponent takes two lexiconsA and
B and a set ofDirective FilesDf in input; theMapper
produces a report documentR which lists all entries of
lexiconA that have a potential match with entries of
lexiconB according to the given directives. The report
is meant both as output for the end-user and as input
for theBuilder component.

Builder The Builder component merges objects from the
two lexicons. It takes the report documentR, pro-
duced by theMapper, both lexicon(A andB), and
a set of directive filesDfb in input; it outputs one or
more new LMF lexiconsC and an updated reportR.

4.1. Mapper and Builder Directives

Directive FilesDf andDfb are, together with the enter-
ing lexicons, the inputs ofMapper and Builder that use
them for taking decisions in both the mapping and build-
ing phases, cf. dedicated parts in sections 6. and 7.
Directives makeMapperandBuilder very flexible. They
allow users to set the “constraints” under which entries
from different lexicons can be “merged”. The constraints
can be more or less strict on the basis of the desired out-
come.

5. The PANACEA Experiment
As mentioned in the introduction, the prototype presented
here is meant to be part of a platform for the automatic pro-
duction of language resources developed by the PANACEA
Eu project. In this specific framework, the first test experi-
ments of L-LEME consists in the merging of two lexicons
of SubCategorization Frames (SCFs) for Italian: the first
one, a subset of the PAROLE lexicon, (Ruimy et al.,
1998), is an already existing, manually built lexicon (in the
following we will refer to it as the PAROLE-SCF-IT), while
the second is a lexicon of SCFs automatically induced
from a corpus by a component integrated in the platform
(that we will call the PANACEA-SCF-IT). The two lexicons
therefore are quite different in terms of content and of
background philosophy. For example, PANACEA-SCF-IT

contains frequency information which is missing from
PAROLE-SCF-IT, while the latter contains information
about the position of arguments, which is missing from the
former.
The Mapper and Builder components of the L-LEME
architecture have been designed to meet the spe-
cific requirements that the merging of two SCF
lexicons involves in terms of all the LMF classes
that play fundamental roles in such lexicons, i.e.
<LexicalEntry />, <SyntacticBehavior />,
<SubcategorizationFrame /> and
<SyntacticArgument />. The use of LMF, in
fact, ensures the “syntactic interoperability” between
lexicons, since the basic structure is the same, cf. section
3.1. This aspect allows theMapperandBuilder to work on
the same (lexicon) structure and define the same (software)
structure, cf. section 6.1. However, LMF by itself, does
not guarantee the “semantic interoperability”, i.e. that
thevaluesused to adorn/characterize LMF classes are the

33

same in both lexicons. In the prototype described in this
paper the “semantic interoperability” has been managed by
theMapperdirectly from the directive filesDf , cf. section
6.2.

6. The Mapper
In this section we explain how two LMF-based lexicons can
be mapped, i.e. how a specific sublexiconS ⊆ A ∩ B can
be obtained.

6.1. General Mapping Strategy for
SubCategorization Frames

In this paper we study the mapping of two SubCategoriza-
tion Frames (SCFs) lexicons. SCFs belong to the syntactic
layer of the lexicon and we can simplify the notation of
model (1) since there is no reference to semantic:

L = Lm ⊕ Ls = Lm ∪ Lnk(Lm ,Ls) ∪ Ls (3)

L in model (3) consists of three distinct submodels6:

(i) Lm is the morphological layer of the lexicon and con-
tains (for the scope of the paper) lexical entries and
lemmas;

(ii) Ls is the syntactic layer of the lexicon and contains the
SubCategorization Frames along with their Syntactic
Arguments structure;

(iii) Lnk(Lm ,Ls) contains the link between lexical entries
and SubCategorization Frames.

We have defined4 data structures to implement the lexicon
in model (3):

L =

Lm The morphological layer of the lexicon;
Lm2sb The link between the morphological

part and the Syntactic Behaviour.
This is part of theLnk(Lm ,Ls);

Lsb2scf The link between the SB
and the SubCategorization Frame.
This is again part of theLnk(Lm ,Ls);

Lsa The link between the SCFs
and their Syntactic Argument structures;

(4)

6.2. Mapper Directives

For the mapping phase we have defined4 distinct directives
(Df) that can be used at different levels:

(i) to set those features thatmustbe checked to establish
equivalence between two Syntactic Arguments as in
directive (1);

<list2chk>
<list att="function">
<list att="realization">
<list att="introducer">

</list2chk>

Directive 1: Features to be checked.

6Readers can refer to LMF entry (1) for an overview of these
objects. As a recap:
Lm 7→ <LexicalEntry />;
Lm 7→ <SubcategorizationFrame />;
Lnk(Lm ,Ls) 7→ <SyntacticBehaviour SCF=".." />

(ii) to set the features attribute(s) and value(s) pairs that
mustbe skipped when two two Syntactic Arguments
are compared as in directive (2);

<!-- attribute-value pair(s) to skip -->
<list2ignor>

<ignored feat="function=subject"/>
.....
</list2ignor>

Directive 2: Features and values to be skipped.

(iii) to set correspondences between features (attributes
and values) of lexiconA and features of lexiconB as
in directive (3);

<corresp>
<attributes>

<att a="function" b="function" />
<att a="syntacticConstituent" b="realization" />
<att a="introducer" b="introducer" />

</attributes>
<values>

<val a="object" b="direct_object" />
<val a="NP" b="noun_phrase" />
<val a="PP" b="prepositional_phrase" />
<val a="aprepcomp" b="complement" />
<val a="clauscomp" b="complement" />

</values>
</corresp>

Directive 3: Correspondences between attributes and val-
ues.

(iv) a special set of directives,Dfth , has been introduced
to better specify mapping rules. For example directive
(4) tells theMapper to set equivalence between Syn-
tactic Arguments that share, at least,threshold min

features;

<!-- equivalence for SA mapper component -->
<threshold min="3" max="3"/>
<!-- extract SA with similarity -->
<similarity min="0.32" max="1"/>

Directive 4: Dfth : thresholds and similarity scores.

6.3. Reading and using mapping Directives

The directivesDf are used by theMapperin order to per-
form the following operations:

• First of all the list of relevant features (to be checked
or ignored) is created according to directives (1) and
(2);

• The feature attributes in lexiconsA andB are uni-
fied to a common value, for example “syntactic-
Constituent” inA is translated into “realization” as in
B, following the equivalences in directive (3);

• The feature values inA andB are unified to a common
value, for example “object” inA is translated into “di-
rect object” as inB, (directive 3). The same directive
tells theMapperhow to manage a potentialm : n cor-
respondence between attributes and/or values. For ex-
ample “complement” inB is mapped to a list of values
“aprepcomp, clauscomp . . . ”

34

• Feature<function />with value<subject />
is skipped in lexiconsA andB.

The first3 rules apply a sort of “semantic interoperability”;
in fact directives (2) and (3) define a mapping among the
valuesused to adorn/characterize LMF classes in both lex-
icons. In other words, theMapper is able to establish that
to eachvalue, vA, in lexiconA corresponds one or more
values, vB , in B and viceversa:

∀vA ∈ A : vA 7→ MAB ≡ [v
(1)
B , v

(2)
B , . . . v

(k)
B] (5)

∀vB ∈ B : vB 7→ MBA ≡ [v
(1)
A , v

(2)
A , . . . v

(n)
A]

whereMAB is the list of possible values with which the
specificvA is encoded in lexiconB.

6.4. Mapping Algorithm

In this section we provide a detailed outline of the mapping
algorithm. The algorithm consists of the following steps:

Reading : LexiconsA andB are read and an XML parser
is used to create a structure for each lexicon:L 7→ L,
as in (4);

Extracting the common verbs : Verbs inAm andBm are
extracted and the intersection is used to create a listLv

of common verbs;

Extracting SCFs : For each verbVi in Lv the Syntactic
BehavioursAm2sb andAm2sb are extracted and the re-
lated SCFsAsb2scf andBsb2scf are retrieved;

Comparing syntactic arguments : For each pair of SCFs,
all Syntactic Arguments inAsb2scfi andBsb2scfj are
retrieved and a functiondiff(Asa ,Bsa) is used to de-
cide if they are equivalent. This function relies on the
the mapping rule defined in equation 5: one given Syn-
tactic Argument (SA)SaA ∈ A is equivalent to a SA
SaB ∈ B if and only if for all valuesof SaA, SaB is
in the list of possible mapped values ofSaA:

SaA ≡ SaB iif (6)

∀vA ∈ SaA ∃vB ∈ SaB |vB ∈ MAB

Evaluating SCFs similarity : Given the results of
diff(scf(A), scf(B)), each SCF pair receives a sim-
ilarity score that is given by the number of positive
argument matches normalized by the total number of
distinct arguments, cf. section 6.5.

6.5. Cosine similarity

TheMappercalculates a score based on a cosine similarity
between two SCFs with same/or different number of syn-
tactic arguments. For example, in Italian, the verbchiedere
(‘to ask’) has the following valency structures:

(7) (i) Chiederequalcosa a qualcuno

‘to asksomething to someone’

(ii) ‘Chiederequalcosa a qualcuno in prestito

‘to get something from someone on loan’

The two LMF structures are reported in entries (1), for
lexiconA, and (2) forB:

<Lexicon>
<LexicalEntry id="PANACEA-SCF-IT_LE_chiedere_V">
<feat att="POS" val="V"/>
<Lemma>
<feat att="writtenform" val="chiedere"/>

</Lemma>
<SB id="SB_PANchiedere" SCFs="scf_comp-in_dobj">
<feat att="aux" val="avere"/>

</SB>
</LexicalEntry>
<SCF id="SCF_comp-in_dobj">
<SA id="synArg_dobj_scf_comp-in_dobj">
<feat att="function" val="direct_object"/>
<feat att="realization" val="noun_phrase"/>

</SA>
<SA id="synArg_comp-in_SCF_comp-in_dobj">
<feat att="function" val="complement"/>
<feat att="realization" val="prepositional_phrase"/>
<feat att="introducer" val="in"/>

</SA>
</SCF>
</Lexicon>

Entry 2: An LMF entry forchiedere‘to ask’ (lexiconB)

For each SCF, the mapping algorithm creates a vector of
syntactic arguments, along with their relevant features (no-
tice how the subject is ignored):

VSa(A) = (Saa1 →

[

func, obj

real, np

]

, (8)

Saa2 →

func, indobj

real, pp

int, a

)

VSa(B) = (Sab1 →

[

func, obj

real, np

]

, (9)

Sab2 →

func, complement

real, pp

int, in

)

VectorsVSa(A) andVSa(B) are then represented into the
combined vectorVSa(A◦B):

VSa(A◦B) = (Saa1 →

[

func, obj

real, np

]

, (10)

Saa2 →

func, indobj

real, pp

int, a

 ,

Sab2 →

func, complement

real, pp

int, in

)

Each vector is then expressed as a binary sequence, where
each position corresponds to a Syntactic Argument in the
combined vector (10), and its value states whether the SA
is present or not.

V
′

Sa(A) = (1, 1, 0)

V
′

Sa(B) = (1, 0, 1)

35

The cosine similarity measure between the two vectors is
then calculated as per usual. In the example at hand, the
similarity between the SubCategorization Frames is7 0.33.

6.6. Blind Mapping

The mapping algorithm, described above, calculates the
mappability of SubCategorization Frames on the basis of
their internal structure, i.e. independently from the verb
and without taking into account the Syntactic Behaviours
of the verbs they are related to. Therefore the mapping
algorithm generates ablind mapping between SubCatego-
rization Frames: two SCFs are “structurally” similar with
a given “cosine similarity” simply because the structure of
the related Syntactic Arguments is similar in terms of at-
tributes and values.

7. The Builder
In this section we explain how two LMF-based lexicons
can be merged, i.e. how specific (sub)lexicon(s)C can be
obtained combining lexiconsA andB.

7.1. General Building Strategy

The first task of theBuilder is to verify theblind mapping
results from theMappercomponent. This means that, be-
fore enriching entries in one lexicon with mapped infor-
mation from the other, theBuilder should also take into
consideration the connection between the SubCategoriza-
tion Frame and the Syntactic Behaviour, thus checking if
the structural equivalence of two given SubCategorization
Frames also corresponds to the equivalence at the syntactic
level (syntactic behaviours) of the verb they are related to.
In other words, one same verb from the two lexicons can
point to SubCategorization Frames that are set “as equiv-
alent” by theMapperbut that can have different Syntactic
Behaviours in the two lexicons, e.g. by taking different aux-
iliaries. For example the Italian constructions forgravare
su . . ., ‘to weigh on . . . ’, andrimbalzare su . . ., ‘to bounce
on . . . ’ has the same SCF, (i-ppsu), an intransitive one-
argument structure with prepositional phrase introduced by
su ‘on’ but they can two different SBs on the basis of the
auxiliary they take. In Italian the two verbs can have both
the auxiliaryavere, ‘to have’ andessere, ‘to be’. See exam-
ples (11):

(11) (i) Questa cosa hagravato sui risultati/questa cosa ègravata su di me

‘this thing hasweighed on results/this thing isweighed downon me’

(ii) la palla harimbalzato sul muro/la palla èrimbalzata su me

‘the ball hasbounced on the wall/the ballbounced on me’

SBA

aux : have
freq : 1234
freq aux : 23

→ SCFA
[

scf : i− ppsu
]

ARGSA
[

realiz. : PP

int. : su

]

7Notice that in our test case experiment, because of the specific
characteristics of the automatically acquired lexicon (B) that never
represents subjects in the SubCategorization Frames because they
are not acquired by the inductive module, the similarity will never
be very high. Notice also that the directives allowed us to ignore
the function=subjectin cosine similarity (cf: 6.3.); if the subject
were taken into account (supposed as always present in lexiconB,
the cosine similarity would increase to0.50

SBB

aux : be
freq : 2345
freq aux : 32

→ SCFB
[

scf : i− ppsu
]

ARGSB
[

realiz. : PP

int. : su

]

As explained in section 6.6. theMapperreports thatSCFA

is equivalent toSCFB with cosine similarity (cs) equal to
1, cs = 1. When evaluating the two mapped SubCatego-
rization Frame structures “i-ppsu” from lexiconsA andB,
theBuilder will not consider the mapping between e.g. i-
ppsu(+have) (from, say,A) and i-ppsu(+be) (fromB) as
valid since they do not share the same auxiliary and conse-
quently will not merge the information of the two entries.

7.2. Builder Directives

For the building phase we have defined2 distinct directives
(Dfb) that can be used at different levels:

(i) to define different merging scenarios, directive (5).

<!-- merging scenarios -->
<mergings>

<merging type="union" />
<operation type="union" />

</merging>
<merging type="union_intersection" />

<operation type="union intersection" />
</merging>

</mergings>

Directive 5: Merging scenarios.

(ii) to choose the format ofvaluesfor the output lexicon
C, as in directive (6).

<!-- choose A or B as selected format -->
<output_format>

<use_lexicon source="A" />
</output_format>

Directive 6: The values ofC can be selected. In this exam-
ple the output will use the format ofA

(iii) a special directiveDfbeq has been introduced to in-
clude/exclude the check of the auxiliary when two
Syntactic Behaviour are compared, as in directive (7)

(iv) to set two features as equivalent if they have the same
attribute and value, again directiveDfbeq ;

<!-- equivalence for SB builder component -->
<equivalence>
<equiv att="check_auxiliaries" val="true" />
<equiv att="features_equal_by" val="same_att_and_val"/>
</equivalence>

Directive 7: Dfbeq , parameters forBuilder

7.3. Reading and using building Directives

The version of theBuilder that has been implemented in
our experiment merges the Syntactic Behaviours of the two
lexicons. It works on both the reportR and the two lexi-
cons to recreate the data structuresLm2sb andLsb2scf (cf.
section 6., equation 4) containing information from the lex-
icons that “potentially” can be merged. TheBuilder uses
the directiveDfb to to perform the following operations:

36

• perform the check on auxiliaries as in directive (7) be-
fore merging information (i.e. features) for Syntactic
Behaviours;

• merge information according to directive (7);

• provide output lexicons according to directive (5). We
have defined three different merging scenarios

(i) intersection: C = A ∩ B, where the symbol∩
indicates the lexical entries ofA andB which
have matched according to the mapping algo-
rithm. This means that the intersection merges
only common lexical entries between lexiconsA
andB. The intersectionenriches the common
lexical entries with the information for Syntac-
tic Behaviours coming from bothA andB. All
the other lexical entries are discarded.

(ii) union: C = {(A ∩ B) ∪ A ∪ B}. With re-
spect to the intersection, theunion (represented
by the symbol∪) unites the three (standard) parts
of each union (intersection with the two comple-
ments);

(iii) L enriched: in this caseC = L+. WhereL ∈
(A,B) and the+ means the entries of lexicon
A|B are enriched with information ofmatched
entries fromB|A;

Table 1 shows that if the equivalence rule8 in directive (7) is
set tosame_att then attributes with same name but dif-
ferent value are outputted once with the value that is in the
source lexicon chosen in (6); ifsame_att_and_val is
chosen, they are repeated so that each value is maintained.

eq.
rule

Lexicon A Lexicon B Merged Fea-
tures

SA

[

freq : 1234
freqaux : 23

] [

freq : 4321
freqaux : 32

] [

freq : 1234
freqaux : 23

]

SAV

[

freq : 1234
freqaux : 23

] [

freq : 4321
freqaux : 32

]

freq : 1234
freqaux : 23
freq : 4321
freqaux : 32

Table 1: Merged features depend on equivalence rule

7.4. Building Algorithm
In this section we provide a detailed outline of the building
algorithm. The algorithm consists of the following steps:

Reading Lexicons : LexiconsA andB are read and an
XML parser is used to create a structure as in model
(4) for each lexicon:L 7→ L. This step is the same
executed by the mapping algorithm (cf. section 6.4.);

Reading Report : The reportR is read to extract from lex-
iconsA andB entries that have been mapped;

8In table 1sa stands forsame_att, while SAV stands for
same_att_and_val

Extracting Structures : The structuresLm2sb (Syntac-
tic Behaviours) andLsb2scf (link between Syntactic
Behaviours and SubCategorization Frames) are ex-
tracted from each lexicon and (eventually) updated
with information fromR, cf. section 8.3.;

Extracting the correct SBs : Directive 5 is used by the
Builder to filter out the matching results provided by
theMapper. TheMapperreports SCFs from both lex-
icons that have been mapped without taking into ac-
count whether their related Syntactic Behaviour could
be merged. Directive (5) tells theBuilder whether the
auxiliary must be used to resolve this situation so that
only Syntactic Behaviours with the same auxiliary are
finally set as “merged”;

Outputting lexicon(s) Directive 7 is used to output the
lexicon(s) according to the merging scenarios;

Updating Report R The reportR is updated with details
on the building phase, cf. section 8.2.

8. Report
The reportR is a list of common lexical entries (verbs) be-
tween lexiconsA andB. It is firstly created by theMap-
per, then displayed to the users and finally updated by the
Builder. Therefore,R is meant for both machine and hu-
man. The former is an XML document which reflects the
input parameters (the two lexicons) and the two compo-
nents involved in the process; the latter is an HTML render-
ing which is editable so that the users become an essential
part of the process, cf. section 8.3. The XML reportR is
composed by two different sections:

Directives Report (Rd) TheRd fragment of the report is
meant for the end-users and simply summarizes the
directives that have been used to provide the LMF lex-
icon(s) in output. The directives are grouped per com-
ponent:Df andDfth for theMapper, Dfb andDfbeq

for theBuilder, cf. (1);

<directives>
<mapper>
<checked source="lexicon_a" list="[function, syntacticConstituent,

introducer]"/>
<checked source="lexicon_b" list="[function, realization,

introducer]"/>
<ignored list="{function=subject}"/>
<threshold min="3" max="3"/>
<similarity min="0.5" max="1"/>

</mapper>
<builder>
<equiv att="check_auxiliaries" val="true" />
<equiv att="features_equal_by" val="same_att_and_val" />
<outputFormat source=lexicon_a" />

</builder>
</directives>

Report 1: Rd after mapping and building phases.

Matches Report (Rm) The Rm recaps the identifiers of
the matching SubCategorization Frames along with
their similarity. This section of the report contains in-
formation from the mapping and building components
(cf. sections 8.1. and 8.1.) and a serialization of the
data structuresLsb2scf andLsa for both lexicons.

37

8.1. Mapping Report

TheMappercomponents produces a report which contains
the SCF pairs that have matched with a given similarity.
The SA structure of matching SCFs is also reported.
The mapping report is rendered as an HTML page and
presented to the end users, see figure 3.

Figure 3: HTML page from reportR automatically built by
theMapper.

8.2. Building Report

The Builder components updates the reportR with infor-
mation related to the merged Syntactic Behaviours. These
SBs are enriched with their features extracted from lexicons
from A andB according to directive (5). The complete
structures of SB,Lsb2scf , are then serialized.

8.3. Updating the report R

TheBuildercomponent is able to automatically merge Syn-
tactic Behaviours from different lexicons which are linked
to SubCategorization Frames that have a similaritycs = 1.
In this case, in fact, the human intervention is no longer
needed. However, theMappercan be run to extract SCFs is
a given range of similarity, directive (4). The HTML report
presented in figure 3 is editable by the users so that they, as
experts, can “force” the similarity of two mapped SCFs to
be1.
This aspect of the L-LEME architecture plays a fundamen-
tal role in the building phase: theBuilder components fil-
ters the reportR and extracts the entries with the similar-
ity, cs = 1. From these entries theBuilder recreates the
Lsb2scf andLsa data structures before outputting the LMF
lexicon(s) with merged Syntactic Behaviours.

9. Results for the PANACEA Experiment
L-LEME has been run over the two lexicons: PAROLE-
SCF-IT and PANACEA-SCF-IT which contain3214 and31
verbs respectively. In this experiment, L-LEME has been

run twice using different values forDfth in the two differ-
ent runs:

run #1 run #2

Dfth
=

th min = 3

th max = 3

sim min = 0.33

sim max = 1

Dfth
=

th min = 3

th max = 3

sim min = 1

sim max = 1

Table 2: Different values forDfth

run #1 generates all possible matches, from similarity
confidence (cs) between0.33 (minimum threshold) to1.0.
Table 3 shows the results of this run by grouping all match-
ing pairs (834 matches) with different thresholds of simi-
larity in 7 groups.

PANACEA Experiment run #1
Matches Similarity Number Percentage

Matches:834

sim=1 120 14.4%

sim=0.82 3 ∼ 0.3%

sim=0.71 383 45.9%

sim=0.58 15 1.8%

sim=0.5 273 32.7%

sim=0.41 36 ∼ 0.5%

sim=0.33 4 4.3%

Total 834 100%

Table 3: Figures forrun #1

From figures presented in table 3 we note that∼ 65%
of matching SubCategorization Frames has a confidence
cs ≥ 0.58. In addition the73.5% of these matched SCFs
reach a confidence of0.71. This means that the lexicon
PAROLE-SCF-IT, which has been built by human introspec-
tion, has a good projection in the daily use of the language.
Figure 4 shows the maximum similarity (confidence) vs.
some SubCategorization Frames for the following Italian
verbs:accusare(‘to accuse’),amare(‘to love’), andare(‘to
go’), aprire (‘to open’), arrivare (‘to arrive’) andcercare
(‘to find’). The maximum similarity is defined as the maxi-
mum value of the similarity that a given SubCategorization
Frame can assume for a given verb.

Figure 4: Confidence vs. SubCategorization Frames for
some Italian verbs.

38

run #2 only selects pairs having confidence1.0, that is
only perfect matches that do not require human interven-
tion and it is used for the building phase. The similarity
1.0 guarantees, indeed, that the mapped SCFs are equal so
that the features of related Syntactic Behaviours can be au-
tomatically merged.
We report the distinct numbers of SCFs and SBs in both
lexicons as well as in the reportR, (table 4). A detailed
view of data extracted from the reportR in run #2 is pre-
sented in tables (5) and (6).

PANACEA Experiment: data fromA andB
Source Distinct

SCFs
Distinct
SBs

PAROLE-
SCF-IT

124 244

PANACEA-
SCF-IT

79 496

REPORT 60 201

Table 4: SCFs and SBs fromA andB

PANACEA Experiment: Report in run #2
SubCategorization Frames

Verb-dependent

Matched SCFs

Distinct Matched SCFs

Total Pair

Matches

Source Matches

120 47 LexiconA 47

LexiconB 13

Syntactic Behaviours
Total SBs Distinct Merged SBs

Total Merged

Matches

Source Matches

201 107 LexiconA 107

LexiconB 75

Table 5: Figures for ReportR in run #2

Report
SCFs LexiconA LexiconB

Extracted Matched Extracted Matched
60 47 47 13 13

SBs LexiconA LexiconB
Extracted Merged Extracted Merged

201 120 107 81 75

Table 6: ReportR, extracted vs. matched/merged entities

From table 5 we note that47 distinct SubCategorization
Frames correspond to120 verb-dependent SCFs and thus
to 120 Syntactic Behaviours.9 In reality, when checking
the matching at SB level though, only107 of these SB
pairs have matching features (namely auxiliary) and can be

9See section 3.1.

thus included in the final lexicon.

From tables 4, 5 and 6 we deduce some interesting clues:

(i) on average the∼ 29.5% of (aggregate) SubCatego-
rization Frames are automatically mapped;

(ii) in the lexicon PAROLE-SCF-IT, the mapped SCFs
cover ∼ 38% of the total, while in PANACEA-
SCF-IT, the percentage decreases to∼ 17%. This
means that more than one SCF from PAROLE-SCF-
IT map on the same SCF of PANACEA-SCF-IT, in
fact, the values of the features in PANACEA-SCF-
IT are under-specified: directive (3) shows how
the complement in PANACEA-SCF-IT is mapped
into aprepcomp, aclauscomp... in lexicon
PAROLE-SCF-IT;

(iii) on average the∼ 14.5% of (aggregate) Syntactic
Behaviours are automatically merged;

(iv) in lexicon PAROLE-SCF-IT, the merged SBs cover∼
42% (expected∼ 49.2%), while in PANACEA-SCF-
IT the percentage decreases to∼ 15% (expected∼
16.3%)

In point (iv) above, the percentages decrease because of
the auxiliary. In fact, an analysis of the reportR has
provided evidence that13 Syntactic Behaviours from lex-
icon PAROLE-SCF-IT have a different auxiliary in lexicon
PANACEA-SCF-IT so that they are not merged.

10. Conclusions
In this paper we presented L-LEME, an architecture which
exploits the LMF representation standard for lexicons in
order to generalize the merging process. We created a
prototype that has been applied to an actual case study,
which consists in merging an extracted SCF lexicon from
the PANACEA project with a subset of the PAROLE lex-
icon. The results are quite encouraging, since it was pos-
sible to obtain∼ 30% of automatic mapping among Sub-
Categorization Frames by implementing a set of directives
Df , which represents a coarse-grained mapping between
key features in the two lexicons.
As a future work, we intend to explore the possibility of
obtaining a better mapping by applying different weights
to different features. We also intend to improve the usabil-
ity by transforming the tool into a web service; users will
be allowed to upload their input lexicons, to edit the direc-
tives in a user friendly environment and to check and mod-
ify the intermediate mapping report before building their
result lexicon.

Acknowledgments
This work is supported by the EU FP7 ICT Project
PANACEA (Grant Agreement no. 248064).

11. References
Daniel Ka-Leung Chan and Dekai Wu. 1999. Automat-

ically merging lexicons that have incompatible part-of-
speech categories.

39

R. S. Crouch and T. H. King. 2005. Unifying lexical re-
sources. InProceedings of Interdisciplinary Workshop
on the Identification and Representation of Verb Features
and Verb Classes, pages 32–37, Saarbruecken, Germany.

Gil Francopoulo, Nurı́a Bel, Monte George, Nicoletta Cal-
zolari, Monica Monachini, Mandy Pet, and Claudia So-
ria. 2008. Multilingual resources for nlp in the lexi-
cal markup framework (lmf).Language Resources and
Evaluation.

Andrea Marchetti, Maurizio Tesconi, and Salvatore Min-
utoli. 2005. Xflow: An xml-based document-centric
workflow. In WISE, pages 290–303.

Miguel A. Molinero, Benot Sagot, and Lionel Nicolas.
2009. Building a morphological and syntactic lexicon
by merging various linguistic resources. InProceedings
of 17th Nordic Conference on Computational Linguistics
(NODALIDA-09), Odensee, Danemark.

Monica Monachini, Nicoletta Calzolari, Khalid Choukri,
Jochen Friedrich, Giulio Maltese, Michele Mammini,
Jan Odijk, and Marisa Ulivieri. 2006. Unified lexicon
and unified morphosyntactic specifications for written
and spoken italian. InProceedings of the LREC 2006),
Genova, Italy.

Muntsa Padró, Núria Bel, and Silvia Necsulescu. 2011.
Towards the automatic merging of lexical resources: Au-
tomatic mapping. InRANLP, pages 296–301.

Nilda Ruimy, Ornella Corazzari, Elisabetta Gola, Antoni-
etta Spanu, Nicoletta Calzolari, and Antonio Zampolli.
1998. The european le-parole project: The italian syn-
tactic lexicon. InProceedings of the Seventh Interna-
tional Conference on Language Resources and Evalu-
ation (LREC’98), Granada, Spain, may. European Lan-
guage Resources Association (ELRA).

Maurizio Tesconi, Andrea Marchetti, Francesca Bertagna,
Monica Monachini, Claudia Soria, and Nicoletta Cal-
zolari. 2006. Lexflow: A system for cross-fertilization
of computational lexicons. In Nicoletta Calzolari, Claire
Cardie, and Pierre Isabelle, editors,ACL. The Associa-
tion for Computer Linguistics.

40

1. Introduction

During the last twenty years a large number of

monolingual and bilingual language resources and tools

were produced. Especially in the 90’ties, LRs were

produced for a dedicated application, without any concern

regarding reuse, respectively standardization.

With the development of statistical and machine learning

approaches, the existence of reusable training data (i.e.

language resources) became crucial, especially for

multidisciplinary and multi-domain systems. While

standards for encoding corpora, lexicons and treebanks

are widely used, there is still a big issue with the

harmonisation of output produced by processing tools.

Complex systems usually require a pipeline of language

processing engines, and there is a need of harmonization

of tagsets, input and output formats. Recent European and

national initiatives contributed a lot to the development of

monolingual complex linguistic processing pipelines.

However, there is still a big gap at the multilingual level

because each language has its own linguistic

particularities, tools use different linguistic formalisms,

and engines have different degree of complexity.

In this paper we describe the approach used in order to

embed multilingual language technology support into a

Web-based Content Management System
1
. The system is

developed for six languages (Bulgarian, English, German,

Greek, Polish and Romanian) and includes technology for

automatic categorization, summarization and translation,

extraction of concepts (ideas) as well as cross-lingual

retrieval. All these rely on language specific pipelines

harmonised through UIMA framework. As the whole

system is fairly complex and allows the creation of

different Web services based on the above mentioned

technology, we present here one particular Web service,

i-Librarian.

1
The work reported here was performed within the ATLAS

project funded by the European Commission under the CIP ICT

Policy Support Programme (http://www.atlasproject.eu).

2. i-Librarian Features

i-Librarian (http://www.i-librarian.eu) was developed as a

free online library to assist users in organising and

managing multilingual content. i-Librarian is powered by

ATLAS – an open-source software platform for

multilingual Web content management, containing

i-Publisher and Linguistic framework. i-Publisher is a

Web-based instrument for creating, running and

managing dynamic content-driven Web sites

(i-publisher.atlasproject.eu). The Linguistic framework

enriches the content in these Web sites with automatic

annotation of important words, phrases and names,

suggestions for categories and keywords, summary

generation and computer-aided translations in English,

Bulgarian, German, Greek, Polish and Romanian.

As a service powered by ATLAS, i-Librarian is enhanced

by the innovative features provided by its linguistic

framework. On uploading new documents to i-Librarian,

the library system automatically provides the user with an

extraction of the most relevant information (phrases,

named entities, and keywords). i-Librarian then uses this

information to generate suggestions for classification in

the library catalogue as well as a list of similar documents.

Finally, the system compiles a summary and translates it

in all supported languages. Among supported document

formats are Microsoft Office documents, PDF,

OpenOffice, books in various electronic formats, HTML

pages and XML documents. Users have exclusive rights

to manage content in the library at their discretion.

3. Linguistic framework

The ATLAS framework employs technologically and

linguistically diverse natural language processing (NLP)

tools in a platform, based on UIMA
2

. The UIMA

pluggable component architecture and software

framework are designed to analyse content and to

structure it. The ATLAS core annotation schema, as a

2

 Unstructured Information Management Application. See

http://uima.apache.org/.

Merging heterogeneous language resources and tools in a digital library

Anelia Belogay, Diman Karagiozov,
Svetla Koeva, Cristina Vertan,

Adam Przepiórkowski, Maciej Ogrodniczuk, Dan Cristea, Eugen Ignat, Polivios Raxis
E-mail: anelia@tetracom.com, diman@tetracom.com, svetla@dcl.bas.bg, cristina.vertan@uni-hamburg.de,

adamp@ipipan.waw.pl, maciej.ogrodniczuk@gmail.com, dcristea@info.uaic.ro, eugen.ignat@info.uaic.ro,

raxis@atlantisresearch.gr

Abstract

Merging of Language Resources is not only a matter of mapping between different annotation schemata but also of linguistic tools
coping with heterogeneous annotation formats in order to produce one single output. In this paper we present a web content
management system ATLAS which succeeded to integrate and harmonize resources and tools for six languages, including four
less-resourced1 ones. As a proof of the concept we implemented a personal digital library (i-Librarian). We performed two user
evaluation rounds in order to assess the increase of user productivity when the language technologies are harnessed in the processes
of content management.

Keywords: multilingual content management system, UIMA, language processing chains

41

uniform representation model, normalizes and

harmonizes the heterogeneous nature of the NLP tools.

The language processing tools are integrated in a

language processing chain (LPC), so the output of a given

NLP tools is used as an input for the next tool in the chain.

For example, the sentence boundaries and the token tags

are used by the POS tagger; respectively, the tagger’s

annotations are used by the lemmatizer etc.

The main challenge was to harmonize the output of

different processing tools as well as their degree of

annotation. To our knowledge it is for the first time when

such harmonisation is realised within a real system and

with involvement of less resourced languages. Two steps

were performed:

 the minimal set of required tools was identified in

order to ensure accuracy near to state-of the art for all

languages;

 minimal linguistic annotation required for each

language was identified and the correspondent was

model defined; this model contains obligatory

features (like PoS, case, gender, number) but also

optional ones (which may be used for one language

or another: e.g. a special feature to make connection

between verb particles and verbs in German); all

these features are part of the UIMA-based processing

chains, so annotation tags don’t need to be

harmonised across languages.

In order to ensure the interoperability and coherence of

the NLP tools, they have been tuned for higher accuracy

and performance.

The processing of text in the system is split into three

subtasks, executed sequentially. The text is extracted from

the input source (text or binary documents) in the

“pre-processing” phase. The text is annotated by several

NLP tools, chained in a sequence in the “processing”

phase. Finally, the annotations are stored in a data store,

such as relational database or file system.

The architecture, shown on Figure 1, is based on

asynchronous message processing patterns and allows the

processing framework to be scaled horizontally.

Figure 1. Top-level architecture of the Linguistic

framework

3.1 Language Processing Chain components

The baseline LPC for each of the project language

includes a sentence and paragraph splitter, tokeniser, part

of speech tagger, lemmatizer, optional word sense

disambiguation component, noun phrase chunker and

named entity extractor. Figure 2 depicts the LPC basic

components and their execution sequence.

Figure 2. Components of a language processing chain

In addition to the general language-independent rules for

paragraph and sentence splitting, the sentence splitters

and tokenizers utilize language specific knowledge for

word and sentence grammatical structure, for each of the

target languages.

The POS taggers exploit different classification

algorithms depending on the language to be processed:

the OpenNLP
3
tagger for English is based on Maxent and

Perceptron classifiers; the SVM Bulgarian tagger applies

classification based learning (Gimenez J., Marquez L.,

2004); the Greek and Polish taggers are transformation

based. Moreover, some of the algorithms are combined or

extended to improve the robustness. The German tagger is

a combination of the TnT tagger
4

 and a constraint

dependency disambiguation, while the Romanian tagger

exploits a statistical and a symbolic method based on the

context information (the sets of tags retrieved by the

maximum entropy statistical component).

Most of the lemmatizers (i.e. for Bulgarian, English, and

Greek) are rule based engines integrated with large

morphological lexicons, while for Polish the

lemmatisation is combined with shallow parsing

(Degórski, 2011).

The Noun Phrase Extractors (NPE) and Named Entity

Recognizer (NER) have been developed using

language-independent tools and later customised for each

of the target languages. The Spejd tool (Buczyński and

Przepiórkowski, 2009) - a shallow parser exploiting

cascade regular grammars - has been promoted for Polish

and Greek by implementing language-specific parsing

rules. The ParseEst (Genov and Koeva, 2011), a parser

based on the finite-state framework, is used for the

identification of different types of syntactic entities for

Bulgarian and English - phrase structures, named entities,

multi-word expressions, etc. The German NP chunker is

obtained by applying NP constituent rules on dependency

structures. The Polish NER tool (Savary, Waszczuk and

Przepiórkowski, 2010) - a statistical CRF-based named

3
 http://incubator.apache.org/opennlp

4
 http://www.coli.uni-saarland.de/~thorsten/tnt

42

entity recognizer has been extended to cover seven major

types of named entities, namely dates, money, percentage

and time expressions apart from originally recognized

hierarchical names of organizations, locations and

persons.

The annotations produced by each LPC along with

additional statistical methods are subsequently used for

detection of key words and phrases, generation of

extractive summary, multi-label text categorisation and

machine translation.

3.2 Text categorization

A language-independent text categorisation tool which

works for heterogeneous domains was implemented by

the project. This engine is exemplified by documents in

Bulgarian and English. The engine employs different

categorization algorithms, such as Naïve Bayesian,

relative entropy, Class-Feature Centroid (CFC) (Guan,

Zhou and Guo, 2009), Support Vector Machines. The text,

annotated by the NLP tools feeds the categorisation

engine. New algorithms can be integrated easily because

the categorisation engine is based on OSGI platform. The

results of each of the categorization algorithms are

consolidated by a custom label-voting system.

3.3 Summarization

The diverse content in i-Librarian requires a flexible

generation of summary depending on the text length. The

baseline method, used for both short and long texts, relies

on shallow level language independent heuristics that

rank sentences by summing up scores of cue words such

as first occurrences, inclusion of capital letters,

repetitions, etc.

We adopted two state-of-the-art summarisation

approaches – for short and long texts. The summarisation

approach (Cristea, Postolache, and Pistol, 2005) used for

short texts exploits cohesion and coherence properties of

the text on discourse structures that resemble rhetorical

trees. The short texts summarisation chain is a

combination of the output of the language processing

chains and an anaphora resolver, clause splitter, discourse

parser, and summarizer. Currently, the summarisation

chain is implemented for English and Romanian.

The method used to produce summaries of long texts

assembles a template summary from different pieces of

information, specific to different genres. For instance, a

crime novel summary is made of a number of sentences,

uttering pieces of disparate knowledge, extracted using

pattern matching templates, such as the place of the

action, the main characters, etc.

3.4 Machine translation

The ATLAS machine translation engine implements the

hybrid paradigm, combining an example-based (EBMT)

component and a Moses-based statistical approach

(SMT). Firstly, the results of the categorisation engine are

used to select the most appropriate translation model and

MT sub-component. Each input to the translation engine

is then processed by the example-based MT

sub-component. If the input, as a whole, or important

chunks of it are found in the translation database then the

translation equivalents are used and if necessary

combined (Gavrila, 2011). In all other cases the input is

sent further to the SMT component which uses a PoS and

domain factored model following (Niehues and Waibel,

2010).

Similar to the architecture of the categorization engine,

the translation system in ATLAS is able to accommodate

and use different 3rd party translations engines, such as

Google, Bing Translator, Lucy, Yahoo translators.

4. System evaluation

The scope of our current work does not cover the

examination of accuracy of each individual language

processing chain but focuses on evaluation of the quality

and performance of the system, as well as the satisfaction

of the users with a system that harnesses multilingual

processing tools in the processes of the content

management.

The technical evaluation uses indicators that assess

technical elements such as:

 Overall quality and performance attributes (MTBF,

uptime, response time);

 Performance of specific functional elements (content

management, machine translation, cross-lingual

content retrieval, summarisation, text categorisation).

The user evaluation assesses the level of satisfaction with

the system. We measure non-functional elements such as:

 User friendliness and satisfaction, clarity in

responses and ease of use;

 Adequacy and completeness of the provided data and

functionality;

 Impact on certain user activities and the degree of

fulfilment of common tasks.

We have planned for three rounds of user evaluation; all

users are encouraged to try online the system, freely, or by

following the provided base-line scenarios and

accompanying exercises. The main instrument for

collecting user feedback is an online interactive electronic

questionnaire (http://ue.ATLASproject.eu/). All that is

needed is to select a user group and follow the onscreen

suggestions.

The second round of user evaluation is scheduled for

March 2012 involving 180 users, while the first round

took place in Q1 2011, with the participation of 33 users.

The overall user impression was positive and the Mean

value of each indicator (in a 5-point Likert scale) was

measured on AVERAGE or ABOVE AVERAGE. Figure

3 and 4 depicts the user opinion on their increased

productivity and satisfaction with the available

functionality.

43

http://ue.atlasproject.eu/
http://ue.atlasproject.eu/
http://ue.atlasproject.eu/
http://ue.atlasproject.eu/
http://ue.atlasproject.eu/
http://ue.atlasproject.eu/
http://ue.atlasproject.eu/
http://ue.atlasproject.eu/

Figure 3: Distribution of user opinion on productivity

increase.

Figure 4: Distribution of user opinion on satisfaction with

the system functionalities.

5. Conclusion and Further work

The abundance of knowledge allows us to widen the

application of NLP tools, developed in research

environment. The combination of Web content

management and state of the art language technologies

helps the reader to cross the language barrier, to spot the

most relevant information in large data collections and to

keep all this information in order. The tailor made voting

system maximizes the use of the different categorization

algorithms. Two distinctive approaches summarise short

and long texts and their translation are provided by

state-of-the-art hybrid machine translation system.

ATLAS linguistic framework has been released in

February 2012 as open-source software. The language

processing chains for Bulgarian, Greek, Romanian, Polish

and German will be fully implemented by the end of

2012.

6. References

Buczyński, A., Przepiórkowski, A. (2009). Spejd: A

Shallow Processing and Morphological

Disambiguation Tool. In Zygmunt Vetulani, Hans

Uszkoreit (eds.), Human Language Technology:

Challenges of the Information Society, Lecture Notes in

Artificial Intelligence 5603, Berlin, Germany.

Springer-Verlag, pp. 131--141.

Cristea, D., Postolache, O., Pistol, I. (2005).

Summarisation through Discourse Structure.

Computational Linguistics and Intelligent Text

Processing, 6th International Conference CICLing

200. Mexico City, Mexico: Springer LNSC, vol. 3406;

ISBN 3-540-24523-5, pp 632--644.

Degórski, Ł. (2011). Towards the Lemmatisation of

Polish Nominal Syntactic Groups Using a Shallow

Grammar. In Pascal Bouvry, Mieczysław A. Kłopotek,

Franck Leprevost, Małgorzata Marciniak, Agnieszka

Mykowiecka, and Henryk Rybiński, editors, Security

and Intelligent Information Systems: International

Joint Conference, SIIS 2011, Warsaw, Poland, June

13-14, 2011, Revised Selected Papers, volume 7053 of

Lecture Notes in Computer Science. Springer-Verlag,

2011.

Gavrilam M. (2011). Constrained recombination in an

example-based machine translation system. In M. L.

Vincent Vondeghinste (Ed.), 15th Annual Conference

of the European Association for Machine Translation,

Leuven, Belgium, pp. 193--200.

Genov, A., Koeva, S. (2011). Bulgarian Language

Processing Chain. GSCL, Integration of multilingual

resources and tools in Web applications Workshop.

Hamburg, Gemany.

Giménez J., Márquez, L. (2004). Svmtool: A general POS

tagger generator based on support vector machines. IV

International Conference on Language Resources and

Evaluation (LREC’04), Lisbon, Portugal, pp. 43-- 46.

Guan, H., Zhou, J., Guom, M. (2009). A

class-feature-centroid classifier for text categorization.

18th International World Wide Web Conference,

Madrid, Spain, pp. 201--210.

Niehuesm J., Waibel, A. (2010). Domain Adaptation in

Statistical Machine Translation using Factored

Translation Models. EAMT 2010. Saint-Raphael.

Ogrodniczuk, M., Karagiozov, D. (2011). ATLAS — The

Multilingual Language Processing Platform.

Procesamiento del Lenguaje Natural, 47, pp. 241--248.

Savary, A., Waszczuk, J., Przepiórkowski, A.. (2010).

Towards the Annotation of Named Entities in the

National Corpus of Polish. Seventh International

Conference on Language Resources and Evaluation,

LREC 2010. Valletta, Malta.

The system increases your

productivity
Excellent

13%

Below

Average

9%

Average

31%

Good

47%

Poor

Below
Average
Average

Good

Excellent

I am satisfied with the functionalities

Below

Average

3%

Average

38%

Excellent

31%

Good

28%

Poor

Below
Average
Average

Good

Excellent

44

Automatized Merging of Italian Lexical Resources

Thierry Declerck1,2, Stefania Racioppa1, Karlheinz Mörth 2
1 DFKI GmbH, Language Technology Lab

Stuhlsatzenhausweg, 3
D-66123 Saarbrücken, Germany

2 Institute for Corpus Linguistics and Text Technology (ICLTT), Austrian Academy of Science
Sonnenfelsgasse 19/8, 1010 Vienna, Austria

E-mail: declerck@dfki.de, stefania.racioppa@dfki.de, karlheinz.moerth@oeaw.ac.at

Abstract

In the context of a recently started European project, TrendMiner, there is a need for a large lexical coverage of various languages,
among those the Italian language. The lexicon should include morphological, syntactic and semantic information, but also features for
representing the level of opinion or sentiment that can be expressed by the lexical entries. Since there is no yet ready to use such lexicon,
we investigated the possibility to access and merge various Italian lexical resources. A departure point was the freely available
Morph-it! lexicon, which is containing inflected forms with their lemma and morphological features. We transformed the textual
format of Morph-it! onto a database schema, in order to support integration process with other resources. We then considered Italian
lexicon entries available in various versions of Wiktionary for adding further information, like origin, uses and senses of the entries.
We explore the need to have a standardized representation of lexical resources in order to better integrate the various lexical
information from the distinct sources, and we also describe a first conversion of the lexical information onto a computational lexicon.

Keywords: Lexical Resources, Standards, Computational Lexicon

1. Introduction
In the context of a recently launched European R&D
project, TrendMiner1, there is a need for a large lexical
coverage of Italian language. The lexical resources should
include information about morphology, syntax and
semantics, but also about opinions or sentiments that can
be carried by the entries. The lexicon should also be easily
extendable to new types of expressions, like those
occurring in micro-blogs, twitter etc. We are therefore
experimenting with integration issues of existing lexical
resources, starting for now with good quality lexical data
available from both language specialists and collaborative
efforts. In a next step we will investigate how to integrate
in a lexical framework “lower quality” or “noisy” lexical
data, as these are typically used in short messaging
frameworks or other forms of social media.

2. The First Set of Resources
A starting point for our work was a set of Italian resources
made available to the NooJ community. Those relatively
limited resources2 gave us in first line the representation
format for the NooJ resources, both for lexical entries and
inflexion paradigms, against which we could start the
porting of a larger available Italian lexicon, Morph-it!3,
which contains more than 35.000 lemmas.
The textual format of the Morph-it! lexicon consists in a
list of triples displaying a full-form, its corresponding

1 http://www.trendminer-project.eu
2 http://www.nooj4nlp.net/pages/italian.html. In the meantime,
the author of the Italian resources for NooJ uploaded a much
larger resource, which is for the time being available only in the
compiled format, and therefore not usable for our experiment.
3 http://dev.sslmit.unibo.it/linguistics/morph-it.php. See also
(Zanchetta & Baroni, 2005)

lemma and the associated morpho-syntactic information,
as can be seen in the examples in Table 1.

casco casco NOUN-M:s
caschi casco NOUN-M:p
…
casellari casellario ADJ:pos+m+p
casellari casellario NOUN-M:p
casellaria casellario ADJ:pos+f+s
casellarie casellario ADJ:pos+f+p
casellario casellario ADJ:pos+m+s
casellario casellario NOUN-M:s
casellarissima casellario ADJ:sup+f+s
casellarissime casellario ADJ:sup+f+p
casellarissimi casellario ADJ:sup+m+p
casellarissimo casellario ADJ:sup+m+s

Table 1: Examples of lexical entries in Morph-it!

We wrote a script for transforming the Morphit-it! textual
representation into a hash table, with the lemmas used as
the keys. This representation is more compact, since
lemmas are not repeated as often as they have distinct
full-form realizations, and our intermediate format is also
giving a basic linguistic interpretation for the listed
language data, allowing also marking explicitly
ambiguities. An example of this intermediate format is
given in Table 2.

"casco" => {
 "NOUN" => {
 "Infl_1" => {
 "caschi" => "m+p",
 },
 "Infl_2" => {
 "casco" => "m+s",
...
"casellario" => {
 "NOUN" => {
 "Infl_1" => {
 "casellari" => "m+p",
 },

45

 "Infl_2" => {
 "casellario" => "m+s",
 },
 },
 "ADJ" => {
 "Infl_1" => {
 "casellari" => "pos+m+p",
 },
 "Infl_2" => {
 "casellaria" => "pos+f+s",
 …

Table 2: Intermediate representation resulting from a
transformation of Morph-it! Basic linguistic information

is marked-up, contrary to the original format.

A second step consisted in computing the string
differences between the lemma and the set of associated
full-forms. This information is important in the case we
want to use the lexicon in the context of a finite state
machine (FST) platform, like this is the case in NooJ. The
computed string differences are encoded in the form of
morphological operations, that are performed by the FST
engine in order to generate full-forms, as can be seen in
Table 3. There, the value of the “fst” element in the first
case tells that the engine processing the lemma “casco”
has to go back one character (starting from the end of the
lemma), delete the character that has been consumed, and
add the letters “h” and “i” to the remaining of the string,
and to mark the new word form with the inflectional
values “m” and “p”.

The “<E>” symbol in the second case specifies that no
string operation is defined, and that the lemma and the
full-form are thus identical, the latter being
morphologically marked as “m” and “s”.

"casco" => {
 "NOUN" => {
 "Infl_1" => {
 "fst" => "<B1>hi/+m+p",
 "caschi" => "m+p",
 },
 "Infl_2" => {
 "fst" => "<E>/+m+s",
 "casco" => "m+s",
 },
 ...

Table 3: Adding to the intermediate representation
procedural information for the generation of full-forms.

At this level, we included thus some “operational”
information to the lexicon, but this in a modular way. To
use the LMF4 terminology: we can consider this module
describing operational information as being an extension
of the core lexicon.

In NooJ, all those operational information can be encoded
in inflectional paradigms, so that all the lemmas
generating the same type of full-forms can share a unique
paradigm, like for example the nominal lemmas “casco”
and “carico” (and many other lemmas) are sharing the
inflectional paradigm “NOUN_132”, while the paradigm
is specifying the concrete string operation (see Table 4)

4 http://www.lexicalmarkupframework.org

carico,NOUN+FLX=NOUN_132

casco,NOUN+FLX=NOUN_132

NOUN_132 = <B1>hi/+m+p + <E>/+m+s ;
Table 4: Sharing of a inflectional paradigm (NOUN_132)

over various entries

The actual NooJ version of Morph-it contains all the main
classes, and more specifically 6072 verbs, 17443 nouns
and 9385 adjectives. The compiled inflected dictionary
has 657062/12155 states and recognizes 442629 forms.

3. The Second Set of Resources: Entries in
Wiktionary

As one could see from its description above, semantic
information is not encoded in Morph-it! In order to
palliate this lack of information, we searched for other
freely available lexical sources, and we drove our
attention to Witkionary. We didn't take Witkionary as our
first source, assuming that the morpho-syntactic
information encoded in Morph-it! is of a higher quality.

And in general, a drawback of the Wiktionary project is
that the content of its lexical databases is formatted in a
lightweight mark-up system commonly used in Wiki
applications. This mark-up system is neither standardized
nor very structure-oriented. To acerbate the situation, it is
often applied in a considerably inconsistent manner,
which makes extracting structured lexical information a
really challenging task. But we consider Wiktionary still
as a good source, also improving and in constant
extension: We also discovered that the Italian Wiktionary5
is one of the largest Wiktionary resources at all. Therefore
we went into the task of porting the XML dump of this
resource into our internal format. We extracted 29639
purely Italian entries; all encoded as lemma, and did not
consider the full-form entries. An example of an entry we
extract from the XML dump:

<page>
 <title>casco</title>
 <id>162499</id>
 <revision>
<id>1112205</id>

<timestamp>2011-10-29T05:27:52Z</timestamp>
 <contributor>
 <username>Ulisse</username>
 <id>18921</id>
 </contributor>
 <text
xml:space="preserve">{{in|it|noun}}
{{pn | w}} ''m sing '' {{linkp|caschi}}
{{term|abbigliamento|it}} [[copricapo]]
difensivo atto a proteggere la [[testa]] da
urti
particolare tipo di [[assicurazione]] che
copre anche i danni causati dal [[con ducente]]
di un [[autoveicolo]] nei confronti del
medesimo

5 http://it.wiktionary.org/wiki/Pagina_principale. The Italian
Wiktionary (like other Wiktionaries) contains entries for many
languages, but with all the associated information written in
Italian: Therefore the use of the name "Italian Wiktionary".

46

tipo di pettinatura femminile a forma di
{{pn}}
{{-hyph-}}
; cÃ | sco
{{-etim-}}
dallo spagnolo [[casco]] di etimo incerto
{{-rel-}}

Table 5: An example of an entry in the Italian Wiktionary.
Entries also have information about etymology, semantics,

translation, etc., all of which can not be displayed here

We also transform this data representation onto a hash
table, in order to allow comparisons with the data we
already got from NooJ and Morph-it! Our main attention
in this case is given to the acquisition of semantic
information. An example of the transformation from the
XML dump onto the machine readable hash table is given
in Table 6.

"28033"
 => "casco" :: pos = noun {
 pl => caschi
 morph => m sing
 semantic[1] => [[copricapo]]
difensivo atto a proteggere la [[testa]] da
urti
 semantic[2] => particolare tipo
di [[assicurazione]] che copre anche i danni
causati dal [[conducente]] di un
[[autoveicolo]] nei confronti del medesimo
 semantic[3] => tipo di
pettinatura femminile a forma di {{pn}}
 term[1] => abbigliamento
 synonym[1] => [[elmo]],
[[copricapo]], [[asciugacapelli]]

Table 6: Transformation of the XML dump of Wiktionary.
Marking explicitly certain properties and re-organizing

the distribution of information.

From this hash it is then easy to attach the semantic
information to the already ported lexical entries from
Morph-it! and to encode it also in the NooJ format6, just
extending slightly our script.

We mentioned above that encoding in Wiktionary is not
always consistent. An example is given by the entries
“blu”, which is associated to the semantic term “colore”,
and “bianco” which is associated to the semantic term
“colori”. There is a need for harmonization of the naming
of the semantic categories. And further it would be better
to use an Interlingua for naming related semantic
categories.

6 A reviewer of our submission very correctly noticed: things are
not so easy, when one has to integrate semantic information in a
lexicon that has already such information available. Decisions
have to be taken, and it is not obvious how to deal with this
aspect in an automated fashion. We will very soon attack this
problem, also along the lines of very recently announced lexical
resources, for English and German, which are integrating
semantic information from various sources, like FrameNet and
Wiktionary: UBY 1.0 - a large-scale lexical-semantic resource
for natural language processing. See
http://www.ukp.tu-darmstadt.de/data/lexical-resources/uby/ or
(Gurevych et al., 2012)

Fortunately the Wikimedia foundation has foreseen such
a system, so that all the language specific Wiktionaries
can point to a unique set of descriptors (in English) for
semantic categories7, while keeping the origin of the
pointing with the use of standardized language codes.
Nevertheless not a lot of contributors do this.

We further decided then to test the extraction of Italian
entries from the English Wiktionary. Since the
representation format of the English lexicon is different
from the Italian one, we had to adapt our extraction and
transformation script. We can extract the high number of
463480 Italian entries, and we are in the process of
reducing this number to the entries being in fact lemmas.

An example in our intermediate hash format of an Italian
entry we extract from the XML dump of the English
Wiktionary is shown in Table 7

"13837"
 => “spumante” :: pos = Adjective {
 morph = {{it-adj|spumant|e|i}}
 transl = EN =foaming
 }
 => “spumante” :: pos = Noun {
 morph =
{{it-noun|spumant|m|e|i}}
 transl = EN = sparkling wine
 }
 => “spumante” :: pos = Verb
 morph = {{present participle
of|[[spumare#Italian|spumare]]|lang=it}}
 }
 => Related Topics: * [[frizzante]]
 => Category: [[Category:en:Wines]]

Table 7: An example of an Italian entry in the English
Wiktionary, in our intermediate harmonized format

The reader can get an idea of the disparity of information
encodings using in different editions of the Wiktionary
dictionaries, when looking at the entry in the Italian
lexicon (Table 8).

"2141"
 => "spumante" :: pos = agg {
 morph => m
 }
 => "spumante" :: pos = noun {
 morph => m
 pl => spumanti
 }
Table 8: The entry “spumante” in the Italian Wiktionary to
be compared to the entry in the English version in Table 7

Our actual work consists in mapping the tagset from the
Italian Wiktionary to the tagset of the English Wiktionary,
as the basis for merging both lexicons. At the same time
we will add a link to the ISO Data Categories
(http://www.isocat.org/) for ensuring the re-usability of
the tagset.

On the basis of the semantic categorization proposed by
Wiktionary and the mapping of these category descriptors
to the categories suggested in the language specific

7 http://en.wiktionary.org/wiki/Category:All_topics

47

Wiktionaries, we also started to extract a multilingual
Wiktionary-Net, which could be combined with WordNet
(http://wordnet.princeton.edu/)8. And last but not least we
are establishing a machine readable translation dictionary
(IT <-> EN).

4. Standardization

In this submission we stressed our need to get relatively
quickly a large Italian lexicon running on the platform
used in the project. And although can report on successful
and promising work, we are aware that some solutions are
still ad-hoc, since the approach we described was
motivated first by pragmatic needs. We identified clearly
the need to propose, beyond the actual implementation in
the context of a specific platform, more standardized
representations. We mentioned already LMF and we are
in the process of porting the basic lexical information of
our merged lexicon onto the LMF model. Additionally we
will map the used tagset onto the ISO Data Categories,
and include this information into the LMF representation.

An additional plan consist in making the extracted and
integrated lexical information in the context of the Linked
Open Data initiatives active in the field of language
resources. Some works in this direction have been
presented at the recent Workshop “Linked Data in
Linguistics”9. In this context a main effort consists in
publishing linguistic data using W3C standards like RDF
and SKOS10. An example of such work is given in
(McCrae et. al, 2012).

But we first started with the porting of our lexical
information onto TEI (P5), since some work as already
been done in this respect at ICLTT, also in order to make
our work easily available to the Digital Humanities
community, which is making an heaving use of text
annotation properties introduced in TEI. For now, the
German Wiktionary has been converted into TEI (P5)11,
also making use of standardized feature structures (a joint
work by ISO and TEI standardization bodies), especially
for the representation of morpho-syntactic features,
following the recommendation of ISO-MAF, which is not
yet an established standard. The user can access the data
both via a GUI and via a XML download12. We plan to
achieve the same results for the merged Italian lexicon as
the next step of our work, after we merged the entries
from both the English and the Italian Wiktionary
resources.

8 As mentioned in footnote 6, we will have detailed look at the
recent developments described in the work of (Gurevych et al.,
2012)
9 http://ldl2012.lod2.eu/
10 See both http://www.w3.org/RDF/ and
http://www.w3.org/2004/02/skos/
11 Result of this work can be seen at:
http://corpus3.aac.ac.at/showcase/index.php/wiktionaryconvertor
12 See http://www.tei-c.org/Guidelines/P5/

5. Conclusion
We presented an approach for integrating various Italian
resources, in the context of concrete needs. Beyond this
we identified ways for publishing results of our work in
standardized representations that can be used by the NLP
community at large. We will establish concrete
cooperation with initiatives like UBY (in the context of
ISO standards) or LDL (in the context of W3C standards).

6. Acknowledgements

This work has been partly supported by R&D project
TrendMiner, which is co-funded by the European
Commission under the contract nr. 287863.

7. References
Gurevych, I., Eckle-Kohler, J., Hartmann, S., Matuschek,

M., Meyer, C.M., Wirth, C. (2012). A Large-Scale
Unified Lexical-Semantic Resource. In Proceedings of
the 13th Conference of the European Chapter of the
Association for Computational Linguistics. Avignon.

Krizhanovsky, A. (2010). The comparison of Wiktionary
thesauri transformed into the machine-readable format.
(http://arxiv.org/abs/1006.5040)

Krizhanovsky, A., Lin F (2009). Related terms search
based on WordNet / Wiktionary and its application in
ontology matching. In: Proceedings of the 11th Russian
conference on Digital Libraries (RCDL 2009).

McCrae, J., Montiel-Ponsoda, E., Cimiano, P. (2012).
IntegratingWordNet andWiktionary with Lemon. In
Proceedings of the Workshop “ Linked Data in
Linguistics: Representing and Connecting Language
Data and Language Metadata” (LDL).

Meyer, C.M., Gurevych, I. (2010): Worth its Weight in
Gold or yet another resource – a comparative study of
Wiktionary, OpenThesaurus and Germanet. In:
Proceedings of the 11th International conference on
Intelligent Text Processing and Computational
Linguistics. Iasi (Romania) 2010: pp. 38-49

Moerth, K., Declerck, T., Lendvai, P., Váradi, T. (2011):
Accessing Multilingual Data on the Web for the
Semantic Annotation of Cultural Heritage Texts. In:
Proceedings of the 2nd International Workshop on the
Multilingual Semantic Web (Bonn 2011): 80-85.

Navarro, E., Sajous, F., Gaume, B., Prévot, L., Hsieh,
S.-K., Kuo, T.-Y., Magistry, P., Huang, C.-R. (2009).
Wiktionary and NLP: Improving synonymy networks.
In: Proceedings of the 2009 Workshop on Peoples’s
Web Meets NLP, ACL-IJCNLP. Singapore: pp. 19-27.

Zanchetta, E., Baroni, M. (2005). Morph-it! A free
corpus-based morphological resource for the Italian
language. In Proceedings of Corpus Linguistics 2005,
University of Birmingham, Birmingham, UK.

Zesch T., Mueller C., Gurevych I. (2008a). Extracting
lexical semantic knowledge from Wikipedia and
Wiktionary. In: Proceedings of the Conference on
Language Resources and Evaluation. LREC 2008.

Zesch T., Mueller C., Gurevych I. (2008b). Using
Wiktionary for computing semantic relatedness. In:
Proceedings of 23rd AAAI conference on Artificial
Intelligenc

48

Towards An Universal Automatic Corpus Format Interpreter Solution

Radu Simionescu
1
, Dan Cristea

1,2

1
Faculty of Computer Science, “Alexandru Ioan Cuza” University of Iași
2

Institute for Computer Science, Romanian Academy, the Iași branch
E-mail: radu.simionescu@info.uaic.ro, dcristea@info.uaic.ro

Abstract

The process of building a processing chain is always cumbersome because, in most cases, the NLP tools making up a chain do not
match with respect to the input/output format. Convertors are required to transform the output format of a tool to the input format of the
next one in the chain, in order to assure correct communication between modules. The work presented in this paper proposes a solution
for automatic format interpretation of annotated corpora. A mechanism of this kind would finally make possible the automatic
generation of processing architectures. ALPE is a system designed to compute processing workflows, given a sample of an input
format and a description of an intended output format.

Keywords: linguistically annotated files, annotation schemes, natural language processing chains, ALPE

1. Introduction

The field of Natural Language Processing (NLP) has seen

significant developments in terms of resource

accessibility over the later years. Given the constant rich

flow of both theoretical and practical innovations brought

to this research field, many corpora were built, giving

birth to many different annotation formats. Even though

there are many comprehensive annotation standards, the

global cloud of natural language corpora contains many

unknown/nonstandard annotation formats.

The general trend in CL is that both theoretical and

practical developments are deeply anchored on linguistic

data. The research in CL and NLP will always go on with

an arrow head of new, unseen yet, annotation

conventions, because researchers will invent them and

use as soon as the needs appear. The research does not

have time to wait the apparition of standards. Very often,

the object under investigation is spotted on the text on a

bed of annotations that describe already known

phenomena, therefore using annotation conventions

already accepted by the scientific community. As such, an

annotated linguistic corpus often includes three

categories of linguistic markings:

- old, standardised: these describe linguistic phenomena

which, having acquired a large acceptance from the

community, have already been in the focus of a

standardisation process;

- old, non-standardised: these describe known linguistic

phenomena, but for which still subsist a diversity of

notations;

- new, non-standardised: these describe the new

phenomena under investigation, for which annotations

have been freshly proposed by the authors of the corpus.

For the reasons explained, innovative research in NLP

will always use non-standard notations and there is a

continuous process of inventing new annotation formats

for linguistic phenomena previously unseen.

By looking for the first time in a file which includes

annotation markings, a computational linguist is however

capable to distinguish the meaning of those markings.

This paper addresses the issue of deciphering the

semantics of a new, previously unseen, annotation

convention of a text file, by mimicking a human expert

behaviour.

2. Previous work

Projects such as CLARIN
1
, FLaReNet

2
 and METANET

3
,

among others, intend to offer both developers and users

of language resources and tools a management solution

for the growing set of resources available. The primary

objectives of these projects are to provide reusability in

new contexts for existing resources and to guarantee

interconnectivity of newly developed resources and tools.

An easy widening of the original setting of usage means a

multiplication of the visibility of a tool and, finally, of the

productivity of the research activity. In terms of

managing linguistic processing tools, previous efforts

lead to the development of linguistic processing

meta-systems, most significant ones being GATE
4

(Cunningham et al., 2002) and UIMA
5
 (Ferrucci and

Lally, 2004). Both systems allow access to a set of

independently developed NLP tools, integrated into an

environment offering means to create and use processing

chains adding linguistic metadata to an input corpus.

They allow integration of new tools and new processing

chains, but these functionalities require programming

experience.

ALPE (Automated Linguistic Processing Environment)

(Pistol and Cristea, 2009) (Pistol, 2011) is a processing

environment which, making use of annotation schemas

arranged hierarchically in a hyper-graph, is able to

automatically compute workflows made up of disparate

processing resources. The model ALPE is based upon,

called the Formats and Modules Hierarchy (FMH) is

designed to help users to build complex processing

1
 www.clarin.eu/

2
 www.flarenet.eu/

3
 www.meta-net.eu/

4
 www.gate.ac.uk/

5
 www.research.ibm.com/UIMA/

49

architectures, by involving minimum of expert skills.

The FMH is a hyper-graph whose nodes represent

descriptions of annotation formats. Its edges represent

relations of the following categories: subsumption

(Cristea and Butnariu, 2004), conversion and reduction.

The subsumption relation is defined as follows: a format

A subsumes a format B (A⊆sB) if all elements

(annotations) which can be specified by A can also be

specified using the B format. In addition, there can be

elements which can be described using B, but not A.

ALPE is intended to offer solutions of building easily

new processing architectures, by combining existent

tools, each of them performing an elementary operation.

If we bound tools to the edges of the hyper-graph, itself

build by exploiting only the formats, then new

architectures can result at the end of a navigation process

within the graph. However, the ALPE philosophy has

little applicability in an environment characterised by a

great diversity of formats of the files to be processed or of

the input/output conventions of the processing modules.

3. Our model

The work described in this paper adopts a simplified

version of the FMH model, in which the format

descriptions are separated from the modules hierarchy. In

the simplified FMH model a hierarchy H must have

access to an ontology Oh of annotations which consists of

abstract descriptions of annotations used in NLP. Such an

ontology covers various aspects, including the

dependencies between annotation types (e.g., an

annotation for a part of speech requires a notation of

tokens). The nodes of a reduced FMH are simple sets of

such annotation classes.

Such a model can be used to set up a network of input sets

of annotation types which are required in various NLP

processes (associated with edges of the hierarchy) and

their resulting set of annotation types. This approach

requires the annotation classes to be defined only once, in

a unified manner, for all the nodes of a hierarchy H – that

is why any H must have an ontology Oh which describes

the types of annotations that it can handle.

The Corpus-Format Interpreter Component (CFIC) is

used to help a semi-automatic „interpretation” of a given

corpus format, even previously unseen (as long as it

adopts a commonly used structure, like XML, tabular

data, raw text, or others). CFIC is responsible for the

following tasks:

1) to „guess” the significance of annotations existed in

a given corpus C and, as a result, to compute the

ontology of annotations that it contains, Oc;

2) to establish the position of the set of annotations

present in C relative to a hierarchy H. In general, this

implies adding a new node to H, a node which

contains all the classes of Oc, and establishing its

relations with the other nodes of the existent

hierarchy. Prior to such a computation, it is required

that pairs of equivalent annotation classes are found

by matching Oc against OH;

3) once the place of the set of formats the user’s corpus

C includes was established with respect to H, the

user may enter the annotation requirements of the

corpus he/she wants to be obtained out of C (as a

result of applying a processing workflow). At this

moment an ALPE-like system can automatically

compute out of the hierarchy the possible workflows

needed;

4) to create the annotation instances in an internal

format which can be fed to the processing modules

associated with the edges of a hierarchy, when a

workflow processing is requested.

Another component which is part of this model is the

Corpus Writer Component (CWC) which is

responsible for outputting annotations to disk, in a large

variety of formats, including custom formats based on

output samples.

Both CFIC and the CWC will be used only once for a

computed workflow, at the start node for reading the

input and at the destination node for outputting. The

communication between modules is done using the

internal format.

Separating the formats from the modules has some

consequences. First of all, the conversion relations are no

longer necessary in this simplified model. This is a good

thing – in a real world situation there are few NLP

components which match the format from one module’s

output to the next module’s input. For most of the cases

such conversion relations should be established, which

means that modules that actually perform the needed

conversions should be implemented ad-hoc. Of course,

getting rid of the conversion relations does not mean that

conversions are not necessary anymore. They are, but the

conversion is taken over by CFIC, which uses an internal

format as pivot.

Having the freedom to define an internal format makes

also possible to choose the most convenient approach.

For example, an offset based internal format solves the

problem of merging annotations: merging annotations

becomes only a matter of concatenating two or more sets

of annotation instances together; problems like

intersecting inline XML annotations are gone. Even

more, using UIMA’s internal format, this approach would

allow for any UIMA integrated NLP tool to be easily

made compatible with an ALPE hierarchy system.

4. Defining an ontology of annotations

This section presents a possible manner of describing an

ontology of annotation conventions used in NLP. To keep

things simple, we will describe these conventions in

XML, instead of using advanced RDF-OWL features.

Please consider the actual XML format less important –

the key aspect here is the data model.

For the purpose of this paper an ontology of NLP

annotations may contain only three types of classes:

1) offset – these types of annotations are used mostly

for positioning tokens at character level offsets in a

50

source text; any instance of an annotation element of type

offset will contain a start value offset and an end value

offset, both relative to the source text.

<annotType name=”tok” type=”offset”/>

This is an example of definition of an annotation class,

named “tok”, of type offset. Any instance of tok must

contain two offset values.

2) attachAttrib – these annotations are used for

attaching an attribute to another annotation

<annotType name=”pos” type=”attachAttrib”

annotClass=”tok” valType=”string”/>

<annotType name=”lemma” type=”attachAttrib”

annotClass=”tok” valType=”string”/>

“annotClass” specifies the class of annotations to which

an attribute of type string can be attached.

Any instance of an annotation of the type attachAttrib

type will identify the instance of the class that it attaches

to and the value of the attribute that it attaches.

“valType” defines the type of the attribute which is to be

attached and can be one of the following:

 string

 string{‘list’,’of’,’possible’,’values’}

 ref(annotationClassName) – references to instances

of the annotationClassName class (to refer to other

annotations, like in the case of syntactic

dependencies).

<annotType name=”synHead” type=”attachAttrib”

annotClass=”tok” valType=”ref(tok)”/>

<annotType name=”synRel” type=”attachAttrib”

annotClass=”tok” valType=”string{‘list’ ‘of’

‘possible’ ‘values’}”/>

3) list – signals direct parentage of annotation

instances

<annotType name=”NP” type=”list” annotClass=”tok

PP”/>

<annotType name=”PP” type=”list” annotClass=”tok

NP”/>

“annotClass” specifies the type of the annotation

instances which can be contained in the list. An instance

of a list class will specify the annotation instances which

it contains.

Since a list annotation is an annotation class, it is

permitted to attach attributes to a list, for annotating

named entities, for instance:

<annotType name=”NE” type=”list” annotClass

=”tok”/>

<annotType name=”neType” type=”attachAttrib”

annotClass =”NE”

valType=”string{‘city’, ’country’, ’person’, ’c

ompany’, ’product’}”/>

Let’s consider the following annotations ontology:

<annotType name=”tok” type=”offset”/>

<annotType name=”lemma” type=”attachAttrib”

annotClass =”tok” valType=”string”/>

<annotType name=”pos” type=”attachAttrib”

annotClass=”tok” valType=”string”/>

<annotType name=”synHead” type=”attachAttrib”

annotClass=”tok” valType=”ref(tok)”/>

<annotType name=”synRel” type=”attachAttrib”

annotClass=”tok” valType=”string”/>

<annotType name=”NP” type=”list” annotClass

=”tok”/>

<annotType name=”NE” type=”list” annotClass

=”tok”/>

<annotType name=”neType” type=”attachAttrib”

annotClass =”NE”

valType=”string{‘city’,’country’,’person’,’comp

tok

pos lemma synHead synType

NP

PP

NE

neType

Legend

attachAttrib

list

by reference

pronResolution

sentence

 Figure 1

51

any’}”/>

<annotType name=”sentence” type=”list” annotClass

=”tok”/>

<annotType name=”pronResolution”

type=”attachAttrib” annotClass=”tok”

valType=”ref(NP)”/>

(The pronResolution annotation class is used for

specifying the noun phrase which a pronoun refers to)

One could easily define all the annotation classes to be of

type offset but this would make the dependencies

between them difficult to manage. The idea, therefore, is

to glue to the character level the minimum possible of

annotation classes and then attach other annotation

classes on their strict inferior. In this example, the tok

annotation is the only one which directly references the

source text, using offsets. All the other annotations are

based on the tok annotation, by grouping tokens together

and by attaching attributes.

Figure 1 shows the dependency graph for the ontology

given as example above.

Figure 2

Figure 2 shows an example of a reduced FM hierarchy

which uses the ontology from Figure 1. As explained

earlier, a node in the simplified FMH model is just a set of

annotation classes which are identified by their names

and are defined only once in the ontology associated with

the hierarchy.

5. The Corpus Format Interpreter
Component

When interpreting a given corpus C, the first step of the

CFIC is to build an ontology OC of annotation classes that

characterise C. These classes of annotations will be

named arbitrarily. First, the type of annotation format is

identified (XML, tabular data, continuous text, etc.), then

the offset annotations are identified. Next, the CFIC

analyses the various annotation markers found in C and

creates definitions of annotations based on their structure,

attribute values, etc. This process depends very much on

the type of annotation format (XML, tabular etc).

Like stated before, the CFIC is also responsible for

establishing the relations of the annotations belonging to

C with an already existent FMH hierarchy H (which has

access to an annotation ontology OH). The CFIC merges

OC and OH together into OC+H by finding equivalent

annotation definitions. The idea here is to match a smaller

graph (as given by Oc) onto a larger graph (Oh). This

matching process is still work in progress. Any clues that

contribute to this match are used, including matching of

annotation markers’ attribute values, libraries of names of

elements and attributes (the name space), etc.

The position of the annotation schema of C is determined

relative to H, by classification (Cristea, Butnariu, 2004;

Pistol, 2011). This process might require the extension of

H. Let H’ be a hierarchy which contains all the nodes and

structure from H but which uses OC+H instead of OC. H’

also contains an additional new node N, inserted into H’

and containing all the annotation classes contained in OH.

To find the position of N (and

implicitly of the information in

C) relative to H’, it is required to

find all the maximal nodes X

which subsume N (X, there is

no X’≠X≠N in H’ such that X ⊆s

X’ ⊆s N) and to construct

simplification relations between

N and these nodes.

If all the annotations from OC

have equivalents in OH and if H

contains a node which is defined

by a set of all the annotation

classes in OC then the extension

of H is redundant. In this case,

the information in C has a very

clear spot in H.

The paragraphs below present a

simulation of this process on an

example. Let’s consider the

situation were the user wants to know what types of

annotations are contained in a corpus C (see a sample

below) and to determine what workflows could the

system run, considering the hierarchy H from Figure 2

and OH from Figure 1.

…

<p id="15">

<s id="15.6">

 <clause id=”15.6.I”>

<w id="15.6.1" lemma="it" ana="#Pp3ns">It</w>

<w id="15.6.2" lemma="be" ana="#Vmis3s">was</w>

<w id="15.6.3" lemma="a" ana="#Di">a</w>

<w id="15.6.4" lemma="bright"

ana="#Af">bright</w>

<w id="15.6.5" lemma="cold" ana="#Afp">cold</w>

<w id="15.6.6" lemma="day" ana="#Ncns">day</w>

<w id="15.6.7" lemma="in" ana="#Sp">in</w>

<w id="15.6.8" lemma="April"

TXT
sentence

tok

sentence

tok
pos

lemma

sentence

sentence

tok
pos

lemma

NP
PP

sentence
tok

lemma

NE

sentence
tok
pos

lemma
synRel

synType

sentence

tok
lemma

sentence
tok
pos

lemma
NP
PP

NE
synRel

synType

pronResolution

Legend

subsumption
reduction
merging

52

ana="#Ncns">April</w>

</clause>

 <clause id=”15.6.II”>

<w id="15.6.9">,</c>

<w id="15.6.10" lemma="and" ana="#Cc-n">and</w>

<w id="15.6.11" lemma="the" ana="#Dd">the</w>

<w id="15.6.12" lemma="clock"

ana="#Ncnp">clocks</w>

<w id="15.6.13" lemma="be" ana="#Vais-p">were</w>

<w id="15.6.14" lemma="strike"

ana="#Vmpp">striking</w>

<w id="15.6.15" lemma="thirteen"

ana="#Mc">thirteen</w>

<w id="15.6.16">.</c>

</clause>

</s>

…

<s>…</s>

…</p>…

Given C for interpretation, the CFIC would build its

annotation ontology OC:

<annotType name=”tok” type=”offset”/>

<annotType name=”lemma” type=”attachAttrib”

annotClass=”tok” valType=”string”/>

<annotType name=”ana” type=”attachAttrib”

annotClass=”tok” valType=”string”/>

<annotType name=”clause” type=”list” annotClass

=”tok”/>

<annotType name=”s” type=”list” annotClass

=”clause”/>

<annotType name=”p” type=”list” annotClass =”s”/>

Figure 3 shows the dependency graph of OC.

Figure 3

Next, the annotation equivalences between OC and OH are

established and OC+H is built. The equivalent annotation

classes pairs are tok->tok, ana->pos, lemma->lemma and

s->sentence. This paper does not cover details of the

process responsible for detecting equivalences. But it

does explain briefly how could the equivalences from this

particular example be established by an automated

process:

 The equivalence of the tok annotation classes is

based on the fact that tok is the only annotation of the

offset type and on the fact that most hierarchies only

have one annotation class of this type. Also, the

average of the length of the instances is close to a

certain value (used by a heuristic), and there is

identity of names (another heuristic).

 Clues that support the equivalences ana->pos and

lemma->lemma are: the values of the instances

extracted from C, the number of distinct values

found in the instances of C, the fact that each token

has an ana and a lemma, same lemma attribute in

both classes.

 The s->sentence equivalence is sustained by the

average number of tokens found in a sentence. Even

though s annotations are directly dependent on the

clause annotation, the system also considers the

indirect dependency.

Figure 4 shows OC+H with the nodes merged from OC

emphasized.

Finally, Figure 5 shows the position of the annotations in

C relative to H by establishing a reduction relation.

 tok

ana lemma

clause s

p

clause

p

tok

pos lemma synHead synType

NP

PP

NE

neType

pronResolution

sentence

Figure 4

53

6. Conclusion

Even though the goal of automatically interpreting an

annotation format seems yet being distant, there are

important clues suggesting that it can be achieved. A

trained human can easily interpret most of the previously

unseen annotation formats. Like in many artificial

intelligence fields, this goal can be achieved by observing

the human’s mind behaviour when reading a new file, and

formalizing this behaviour could result in a system which

its performance.
This paper outlines a pathway towards automatic

interpretation of previously unseen annotation formats.

Finding a position in an FHM hierarchy of any corpus,

would make possible for it to be processed at once, with

no more energy being wasted on converting the corpus in

a particular format or computing the process chain. A

system which can offer such functionality will represent

the next level of performance and accessibility to

resources. And this would have a great impact on the

entire field of NLP.

7. Acknowledgements

The research conducted in this article was partially
supported by the ICT-PSP projects MetaNet4U and
Atlas.

8. References

Cristea, Dan, and C Butnariu. Hierarchical XML. Lisbon:

In Proceedings of the LREC 2004 Workshop on

XML-Based Richly Annotated Corpora, 2004.

Cunningham H., Maynard D., Bontcheva K., Tablan V.

GATE: A framework and graphical development

environment for robust NLP tools and applications. In

Proceedings of the 40th Anniversary Meeting of the

ACL (ACL’02). Philadelphia, US, 2002.

Ferrucci D. and Lally A. UIMA: an architectural

approach to unstructured information processing in the

corporate research environment, Natural Language

Engineering 10, No. 3-4, 327-348, 2004.

Pistol, I.C. The Automated Processing of Natural

Language. Phd Thesis, Iași: “Alexandru Ioan Cuza”

University of Iași, 2011.

Pistol, I.C., and Dan Cristea. Managing Metadata

Variability. Milan: Proceedings of the 6th International

Workshop on Natural Language Processing and

Cognitive Science - NLPCS 2009, p111-116, 2009.

TXT
sentence

tok

sentence
tok
pos

lemma

sentence

sentence

tok
pos

lemma

NP
PP

sentence
tok

lemma

NE

sentence
tok

pos
lemma
synRel

synType

sentence
tok

lemma

sentence
tok
pos

lemma
NP
PP

NE
synRel

synType
pronResolution

tok
lemma

pos
clause

sentence

p

Figure 5

54

	LREC 2012 MergingLR Workshop Proceedings
	LREC 2012 Workshop on
	Language Resource Merging
	Editors
	Workshop Organizers/Organizing Committee
	Workshop Programme Committee

	Table of contents
	Author Index
	Introduction

	1_Uby
	2_rimell_paper_merging
	3_padro_bel_necsulescu_2012_final
	4_SagotFinal_paper
	5_BoscoMontemagniSimi-wsMergingLRECfinal
	6_L-Leme
	7_Belogay_LREC_2012
	8_Declerck
	9_Radu_Cristea

