
LG-Eval: A Toolkit for Creating Online Language Evaluation Experiments

Eric Kow, Anja Belz

School of Computing, Engineering and Mathematics
University of Brighton
Brighton BN2 4GJ, UK

a.s.belz@brighton.ac.uk,eric.kow@gmail.com

Abstract
In this paper we describe the LG-Eval toolkit for creating online language evaluation experiments. LG-Eval is the direct result of our
work setting up and carrying out the human evaluation experiments in several of the Generation Challenges shared tasks. It provides
tools for creating experiments with different kinds of rating tools, allocating items to evaluators, and collecting the evaluation scores.

Keywords: Natural Language Generation, Evaluation Methods, Evaluation Resources.

1. Comparative Evaluation of Automatically
Generated Language

The past six years have seen big changes in how Natu-
ral Language Generation (NLG) systems and modules are
evaluated. In 2005, a discussion began in the NLG commu-
nity about sharing data and system components, and mak-
ing it possible to directly compare independently developed
systems and components. Informal discussions at the 2005
NLG workshops (ENLG’05 and UCNLG’051.) were fol-
lowed by the INLG’062 Special Session on Sharing Data
and Comparative Evaluation3.

Both sides of the discussion came together at the NSF
Workshop on Shared Tasks and Comparative Evaluation in
NLG4 where some of the break-out working groups started
hammering out the details of some potential shared task
evaluation challenges (STECs). All four specific task pro-
posals that were first presented at the NSF workshop have
since come to fruition (TUNA-REG,5 GREC,6 GIVE7 and
QG8). A further two shared tasks have been run (SR9 and
HOO10), and two more have been proposed and are likely
to run in the near future (a Spanish surface realisation task
and GRUVE11).

110th European Workshop on Natural Language Genera-
tion, http://www.ling.helsinki.fi/˜gwilcock/ENLG-05/; and 1st
Workshop on Using Corpora for Natural Language Generation,
http://www.itri.brighton.ac.uk/ucnlg/ucnlg05/

24th International Natural Language Generation Conference,
http://www.ict.csiro.au/inlg2006/.

3http://www.itri.bton.ac.uk/˜Anja.Belz/inlg06-specsess.html.
4http://www.ling.ohio-state.edu/nlgeval07/
5On Referring Expression Generation, http://www.itri.brigh

ton.ac.uk/research/genchal09/tuna/
6On Generating Referring Expressions in Context, http://

www.itri.brighton.ac.uk/research/genchal10/grec/
7On Giving Instructions in Virtual Environments, http://www.

give-challenge.org/research/
8On Question Generation, http://www.questiongeneration.org/
9On Surface Realisation, http://www.itri.brighton.ac.uk/res

earch/sr-task/
10On text correction, http://clt.mq.edu.au/research/projects/hoo/
11Generating Routes Under Uncertainty in Virtual Environ-

ments.

That makes a total of eight NLG STECs in five years,
covering a range of NLG subfields from referring expres-
sion generation (REG) to generating instructions in vir-
tual environments (GIVE, GRUVE). The variety of tasks
has been mirrored by variety in evaluation methods. NLG
Shared Tasks have seen diverse extrinsic and intrinsic, auto-
matically and human-evaluated methods. The overall bene-
fits from the shared tasks have been substantial: legacy task
definitions, data and evaluation resources have been made
available to the wider community and have led to numerous
associated publications and follow-on research. Many re-
searchers from outside traditional NLG have been drawn in
as a result of the shared tasks (Basile and Bos, 2011; Boyd
and Meurers, 2011), comparative evaluation is now stan-
dard, and the Generation Challenges (GenChal) sessions,
where results from current STECs and ideas for new ones
are presented, have been part and parcel of the alternating
INLG and ENLG conferences since 2008.

Apart from the legacy data sets, task definitions and de-
tailed documentation, evaluation software has been an im-
portant by-product of GenChal shared tasks.12 Many of
these are for automatic evaluation of automatically gener-
ated language. However, we also carried out human evalua-
tions in every GenChal shared task we ran, and in this paper
we describe the software tool we created and tested in the
course of the numerous human evaluation experiments we
carried out for the shared tasks as well as many follow-on
experiments. We start with an overview of the three main
dimensions of experimental design according to which lan-
guage evaluation experiments differ (Section 2.), followed
by a description of the LG-eval toolkit itself (Section 3.),
and some concluding remarks (Section 4.).

2. Language Evaluation Methods and Tools
The benefit of setting up a language evaluation experiment
with the LG-eval toolkit is that it takes care of implementa-
tional aspects and leaves the experimenter free to focus on

12In this volume, we also report on the newly created online
repository of data, tasks, documentation and evaluation software
that have resulted from the GenChal shared tasks (Belz and Gatt,
2012). See http://sites.google.com/site/genchalrepository/.

4033



Figure 1: Example of an evaluation experiment (from the SR’11 evaluations) with absolute quality judgements and visual
analogue scales.

choosing an appropriate set of quality criteria, and a suit-
able evaluation tool and method, selecting the data to be
evaluated, and writing instructions for evaluators.

2.1. Quality Criteria

The LG-eval toolkit permits any quality criteria to be used
and defined in the introduction text. The following are the
intrinsic quality criteria we have used so far:

Fluency/Readability: This is a single quality criterion
intended to capture language quality as distinct from its
meaning, i.e. how well a piece of text reads.13 In our eval-
uation experiments we have sometimes called it Fluency,
and sometimes Readability.

Adequacy/Clarity: In the TUNA evaluation experi-
ments, this quality criterion was called Adequacy, ex-
plained as “how clear the description is”, and “how easy it
would be to identify the image from the description”. This
criterion was called Clarity in other experiments, explained
as “how easy it is to understand what is being described”.

Coherence: To score highly on this criterion, a text
should be well structured and well organised. The text
should not just be a heap of related information, but should
build from sentence to sentence to a coherent body of infor-
mation about a topic (wording from DUC).

Meaning Similarity: This criterion requires evaluators
to read two pieces of text, and then to decide how close in
meaning one text is to the other.

13It was not our intention to capture ‘reading ease’ which is
sometimes also referred to as readability.

2.2. Relative vs. Absolute Quality Judgements

One of the dimensions along which the rating tools we have
used in intrinsic human evaluations differ is that they either
require evaluators to make judgements of individual pieces
of text in isolation (absolute quality judgements), or they
require evaluators to compare two pieces of text and de-
cide which is better (relative quality judgements). Ab-
solute quality judgements are by far the more commonly
used in Natural Language Processing (NLP). Relative qual-
ity judgements had also been used in NLP system evalua-
tion previously (Reiter et al., 2005), but to our knowledge
ours was the first systematic investigation of relative quality
judgements where evaluators express, in addition to their
preference (which system do you prefer?), also the strength
of their preference (how strongly do you prefer the system
you prefer?).

Figure 2 shows two evaluation experiments (both put to-
gether using the LG-eval kit) where one (on the left) has ab-
solute quality judgements, whereas the other (on the right)
has relative quality judgements.

2.3. Different Rating Tools

The LG-eval kit provides two types of rating tools that can
be plugged into experiments (others can also be used but
have to be created first).

With Verbal Descriptor Scales (VDSs), participants
give responses on ordered lists of verbally described and/or
numerically labelled response categories, typically varying
in number from 2 to 11 (Svensson, 2000). Two examples of
a VDS can be seen on the left in Figure 2, one for the cri-
terion of Adequacy, one for Fluency. VDSs are used very

4034



Figure 2: Example of two evaluation experiments (from TUNA evaluations) that are identical except that in one (on the
left) absolute quality judgements and verbal descriptor scales are used, whereas in the other (on the right) relative quality
judgements and visual analogue scales are used.

widely in contexts where computationally generated lan-
guage is evaluated, including in dialogue, summarisation,
MT and data-to-text generation.

Visual analogue scales (VASs) are far less common
outside psychology and related areas than VDSs. Re-
sponses are given by selecting a point on a typically hor-
izontal line (although vertical lines have also been used
(Scott and Huskisson, 2003)), on which the two end points
represent the extreme values of the variable to be measured.
Such lines can be mono-polar or bi-polar, and the end points
are labelled with an image (smiling/frowning face), and/or
a brief verbal descriptor, to indicate which end of the line
corresponds to which extreme of the variable. The labels
are commonly chosen to represent a point beyond any re-
sponse actually likely to be chosen by raters. The experi-
ment shown in Figure 1 uses a VAS.

We have also used VASs for relative quality judgements,
as can be seen on the right of Figure 2.

3. The LG-Eval Toolkit
3.1. Preliminaries
The following are explanations of some of the terms that
we use in subsequent sections.

1. Latin Square Experimental Design (LSED): A
Latin square is an n× n array the cells of which con-
tain n different symbols, each occurring exactly once
in each row and exactly once in each column. We

use (sets of) Latin square(s) (collectively known as an
LSED) to allocate trials to evaluators (corresponding
to the rows), such that each evaluator sees each sce-
nario (corresponding to the columns) and each of the
systems or pairs of systems in the case of relative qual-
ity judgements (corresponding to the n symbols) the
same number of times. For each experiment, a new
(set of) Latin square(s) is randomly generated. The
LSED is converted to an array of trials by assigning to
cell (i, j) = k the output of the kth system for the jth
scenario. In the subsequent evaluation experiment, the
ith evaluator will be presented with all and only the
trials contained in the ith row of the array.

The following is a simple example of a single 4×4
Latin square for an experiment involving 4 scenarios
and 4 evaluators:

Scenarios
1 2 3 4

E
va

lu
at

or
s 1 S3 S1 S2 S4

2 S4 S2 S1 S3
3 S1 S4 S3 S2
4 S2 S3 S4 S1

For example, the first cell refers to the output produced
by System S3 for Scenario 1 which will be evaluated
by Evaluator 1. The second row contains all the out-
puts that will be evaluated by Evaluator 2, etc.

4035



2. System: A computer program or human author gener-
ating outputs for a given task. An LSED for an evalu-
ation experiment involving n systems will be made up
of at least one n× n Latin square.

3. Scenario: A single data item for which systems pro-
duce outputs. E.g. in the case of weather data to
weather forecast generation, there may be a single set
of weather data for each date and systems generate a
single weather forecast for each date. In this case, each
date can be said to provide one scenario. Scenarios
correspond to columns in a given LSED.

4. Trial: A single system output (attribute set, word,
phrase, sentence, etc.) to be evaluated (or pair of out-
puts, in the case of relative quality judgements), and
the context within which it is to be evaluated.

5. Trial set: All the trials to be evaluated by the same
evaluator, corresponding to a row in a given LSED.

3.2. Overview
The LG-eval toolkit (http://www.nltg.brighton.ac.uk/
research/lg-eval) emerged from developing several similar
but not identical online evaluations of automatically
generated language. The ultimate goal of the toolkit is to
reduce the work involved in, and (hopefully thus) human
reluctance to creating, running and maintaining evaluation
experiments. To this end, we aim to cut down on the
amount of new code and human intervention needed to
create a new evaluation experiment. The toolkit consists of
two components:

• A set of Perl modules to provide experiment infras-
tructure, running as a CGI script, and

• a Haskell script to generate the LSED and assign trials
to evaluators (participants) on its basis.

The toolkit comes with documentation written in the style
of a quick start or walkthrough rather than a user manual
(http://www.nltg.brighton.ac.uk/research/lg-eval). Our ex-
perience has been that revisiting experiments is easier if we
have examples that we can copy and paste from rather than
a list of options to wade through.

3.3. Experiment infrastructure
An online experiment consists of a list of trial sets. Each
trial set is evaluated by a single participant (or evaluator).
A trial set consists of a set of trials. Each participant is
allocated a trial set, this is assigned a random order and will
normally have a small number of practice examples added
at the beginning.

Running through such an ordered single trial set plus
practice examples (which has to be done for each partici-
pant) can be described with a simple state machine (shown
in Figure 3). At its heart, the LG-eval toolkit implements the
state machine, taking care of details such as user authenti-
cation, handling incomplete forms, and saving the results.
This leaves the experimenter with the task of designing the
presentation of trials and rendering the design as an HTML
form. Much of this task can be accomplished by copying

and pasting from the example experiments provided with
the toolkit.

In addition to minimising work for the experimenter, the
toolkit aims to retain flexibility. It does this by maintaining
agnosticism with respect to the precise design of trials and
by requiring the use of callback functions for some parts
where toolkit functionality must be interleaved with code
specific to the experiment:

3.3.1. Trial design
The toolkit is deliberately agnostic to the contents of the
trial file. It treats each trial as arbitrary data, which the
experimenter is responsible for translating into an HTML
form. LG-eval simply provides the system outputs and
plugs them into the given trial file at run time.

The toolkit does not place any constraints on what type
or size of item can be evaluated. E.g. texts to be evaluated
can be of any length: in the experiment shown in Figure 1
two texts of paragraph length were compared, whereas in
the experiments shown in Figure 2 short noun phrases of
roughly 3-6 words on average were evaluated.

3.3.2. Callback functions
As an example of the use of callback functions, the toolkit
has a function that saves the results of the evaluation of
a single trial to disk. This function is not exposed to the
experimenter as it is internal to the implementation of the
toolkit’s state machine; however, to do its job, the function
needs to know what the results of evaluating the trial are.
To keep this opaque to the experiment, the toolkit simply
requires that the experimenter provide a callback function
that renders the result of a given trial as a string, which the
toolkit will in turn append to the appropriate results file.

3.4. Repeated Latin squares
The LG-eval toolkit uses a Latin Squares Experimental De-
sign (LSED, see previous section) which ensures that each
subject sees the same number of outputs from each system
and for each scenario. There are modules for generating the
squares themselves, given certain constraints, as well as for
mapping squares to arrays of trials (see above). As certain
constraints (such as having to have a given number of total
trials, e.g. for comparability of experimental cost) make the
use of LSEDs not entirely straightforward, we have aimed
in the toolkit to simplify the process through both automa-
tion and documentation.

3.4.1. Automation
Automation for repeated Latin square generation comes in
the form of a Haskell script that (i) reads a directory con-
taining the experimental data along with parameters such
as the square size, (ii) divides the data up to fit a given
LSED, and outputs a set of files that can be used by the CGI
script described above. Done by hand, the process is both
complex and uninteresting, and thus error-prone. Automat-
ing this process allows the experiment to get started faster
and, more importantly, to avoid mistakes. It also improves
repeatability, allowing experiments to be revisited without
requiring the experimenter to dredge up old processes from
memory or relying on them to have documented them in the
past.

4036



Figure 3: A simplified representation of the state machine implemented by the LG-eval toolkit.

3.4.2. Documentation
To reduce the startup cost of running evaluation experi-
ments with LSEDs, the toolkit comes with a recipe for de-
signing Latin squares, written with the aim of being usable
as a sort of worksheet which the experimenter can plug val-
ues into. It also provides a handful of example configura-
tions taken from past experiments. In our experience, the
ability of revisit the worksheet rather than recall how to
make use of the Latin squares has been invaluable.

3.5. Putting it all together
The LG-eval toolkit comes with step-by-step instructions
regarding which components the experimenter needs to
provide and how to name them and/or where to place them
so that they will work properly with the Perl and Haskell
modules described above. For example, the data to be eval-
uated needs to be placed in a given directory, the HTML
file that forms the home page of the experiment has to be
created (including instructions for evaluators), as does the
HTML code that the evaluators see for each trial, including
the chosen rating tool (although much of that can be copied
and adapted from the example experiments provided with
the toolkit). An exit questionnaire can also be added if re-
quired.

4. Concluding Remarks
In this paper, we presented the LG-eval toolkit for de-
signing and implementing language evaluation experi-
ments. LG-eval is the result of our work on numer-
ous language evaluation experiments both in the context
of GenChal shared tasks and in other contexts. In ad-
dition to the code itself, a thorough walk-through in-
troduction with many examples can be found online
(http://www.nltg.brighton.ac.uk/research/lg-eval). We are
making the tool freely available and hope it will contribute
to increasing the number of human evaluations and in par-
ticular meta-evaluations of evaluation methodology that the
NLG field would benefit from.

5. References
Valerio Basile and Johan Bos. 2011. Towards generating

text from discourse representation structures. In Pro-
ceedings of the 13th European Workshop on Natural
Language Generation (ENLG’11).

A. Belz and A. Gatt. 2012. A repository of data and evalu-
ation resources for natural language generation. In Pro-
ceedings of the 8th International Conference on Lan-
guage Resources and Evaluation (LREC’12).

Adriane Boyd and Detmar Meurers. 2011. Data-driven
correction of functionwords in non-native english. In
Proceedings of the 13th European Workshop on Natural
Language Generation (ENLG’11).

E. Reiter, S. Sripada, J. Hunter, and J. Yu. 2005. Choosing
words in computer-generated weather forecasts. Artifi-
cial Intelligence, 167:137–169.

J. Scott and E. C. Huskisson. 2003. Vertical or horizontal
visual analogue scales. Annals of the rheumatic diseases,
(38):560.

Elisabeth Svensson. 2000. Comparison of the quality of
assessments using continuous and discrete ordinal rating
scales. Biometrical Journal, 42(4):417–434.

4037


