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Abstract
We examine speaker independent emotion classification fromspeech, reporting experiments on the Berlin database across six basic
emotions. Our approach is novel in a number of ways: First, itis hierarchical, motivated by our belief that the most suitable feature set
for classification is different for each pair of emotions. Further, it uses a large number of feature sets of different types, such as prosodic,
spectral, glottal flow based, and AM-FM ones. Finally, it employs a two-stage feature selection strategy to achieve discriminative
dimensionality reduction. The approach results to a classification rate of 85%, comparable to the state-of-the-art on this dataset.
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1. Introduction
Automatic emotion recognition from speech has attracted
significant interest in recent years, aiming at improved
human-computer interaction. Several approaches have
been proposed in the literature, varying in the types and
number of features employed, the classifier used, and the
system developed. For example, there have been works us-
ing traditional features from the speech recognition liter-
ature or higher level voice quality ones (He et al., 2010),
some adopting flat and simple systems, and others that
employ complex classifiers and systems of a hierarchical
form (Mao and Zhan, 2010; Shaukat and Chen, 2008). Up
to now, most of the highest performing speaker indepen-
dent emotion recognition systems use large feature sets and
rather complex classifiers (Schuller et al., 2006; Lee and
Narayanan, 2005). For example, Schuller et al. (2006) ex-
tract a large set of 4k features, achieving an average recog-
nition rate of 87% on the Berlin database of emotional
speech (Burkhardt et al., 2005).
The proposed approach in this paper achieves comparable
performance with the best research efforts by using only
112 features in total. We accomplish this by designing a
system that is based on smaller and more specially trained
sub-systems that focus on pairs of emotions. We also use a
two-stage feature selection scheme, in contrast to the state-
of-the-art simple sequential selection. We finally involve
feature sets that are not typically employed in the emotion
recognition literature, such as glottal flow features and AM-
FM ones. Thus, although the total number of features re-
mains small, there is much variety in their types.
The rest of the paper is organized as follows: First, in Sec-
tion 2, we describe the different feature sets considered, to-
gether with their basic theoretical background. In Section
3, we present our two-stage feature selection approach, and,
in Section 4, we explain how the final system works. Fol-
lowing these, in Section 5, we present our experiments and
associated results. Finally, we conclude the paper with a
short summary in Section 6.

2. Feature Extraction

A number of feature sets are considered in our approach. In
more detail they fall within the following four categories:

2.1. Prosodic Features

Such features are strongly related to the emotional state of
the speaker and are extensively used in the literature. In
this paper, we extract two features relevant to prosody in-
tonation and intensity. First, we calculate the pitch contour
of the utterance using the RAPT algorithm (Talkin, 1995),
and, second, we compute signal energy to obtain informa-
tion about speech intensity.

2.2. Spectral Features

As in the state-of-the-art in speech recognition, we employ
the Mel frequency cepstral coefficients (MFCCs), together
with their first-order derivatives (Young et al., 2002). In
addition, we compute the zero crossing rate (ZCR) of each
frame (Young et al., 2002).

2.3. Glottal Flow Features

The volume velocity of air-flow through the glottis is the
excitation source for voiced speech. The glottal flow is re-
lated with several voice quality features, such as breathi-
ness, harshness, and creakiness, and therefore it provides
useful information about the emotional state of the speaker.
The estimation of the glottal flow is based on Fant’s source-
filter theory, according to which the voice excitation and the
vocal tract are linearly separable. In this manner, speech
production can be modeled by a cascade of linearly separa-
ble filters. In order to obtain the glottal flow, we perform in-
verse filtering by using the IAIF algorithm, which employs
the discrete all pole (DAP) method to model the vocal tract
and then cancels it iteratively to obtain an estimate of the
glottal flow waveform (Airas et al., 2005).
Once the glottal flow is obtained, we extract time and fre-
quency based features from its waveform, such as the:
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Figure 1: The two-stage feature selection scheme employed
here. Numbers in brackets depict feature dimensionality.

• Open quotient, which is the ratio of the time in which
the vocal folds are open and the whole pitch period
duration.

• Speed quotient, defined as the ratio of rise and fall time
of the glottal flow.

• Normalized amplitude quotient that is used to
parametrize the glottal closing phase.

• Harmonic richness factor, which is the ratio of higher
harmonics to the first harmonic.

In total, we extract 18 time based and 4 frequency based
features.

2.4. AM-FM Features

The AM-FM model considers decomposing the speech sig-
nal into a series of a few instantaneous frequency and am-
plitude signals. These signals can be considered as time-
frequency distributions, containing acoustic information
that is not captured by the linear speech model (Potamianos
and Maragos, 1999).
Following the approach in (Dimitriadis and Maragos,
2005), we model each speech sound by six AM-FM sig-
nals, estimating their parameters by the energy separation
algorithm (ESA). At the end, twelve (2×6) parameters are
obtained for each utterance frame.

We should note that, for all aforementioned feature sets, we
only utilize their first and second order statistics (mean and
variance).

3. Feature Selection Strategy
Feature selection is a very crucial step in pattern recogni-
tion problems to counter the curse of dimensionality. It
does so, avoiding feature transformations such as PCA or
LDA, obtaining instead a subset from the initial set of fea-
tures that is most relevant to the classification problem at
hand.
In general, this requires a search strategy to select can-
didate subsets and an objective function to evaluate such
candidates. Depending on their objective function, feature
selection algorithms can be divided into filters and wrap-
pers. Filters evaluate feature subsets by their information
content, typically statistical dependence or information-
theoretic measures. Wrappers, in contrast, evaluate the sub-
sets by their classification rate on test data. One can claim
that filters have better generalization properties, as theyare
not related to any classifier. On the other hand, wrappers
can interact with a specific classifier and find a subset that
is also appropriate for the problem at hand.

feature

extraction

feature

selection

classifier

training

Figure 2: Training of each emotion recognition sub-system.

Two of the simplest and most used wrappers belong to se-
quential feature selection algorithms, and areforward fea-
ture selection (FFS) andbackward feature selection (BFS).
FFS starts from the empty set and sequentially adds the fea-
ture that results in the highest recognition rate, when com-
bined with the features that have already been selected. In
contrast, BFS starts from the full feature set and sequen-
tially removes the feature that leaves a subset with the high-
est recognition rate. Both constitute greedy approaches and
may be trapped in local minima. In our experiments, we
compare these two wrappers and show that BFS performs
better, especially when the initial set of features is large.
In our system we use a two-step feature selection scheme
that takes advantage of both generalization properties of fil-
ter algorithms and classifier-adaptive properties of wrap-
pers. As a filter we employ themaximum relevance-
minimum redundancy (MRMR) algorithm (Peng et al.,
2005). This method tries to select a feature set that has
maximum relevance with the two emotions involved in each
two-class emotion classification sub-problem (see Section
4), as well as minimum intra-redundancy in terms of mu-
tual information between its features.
In more detail, ifS denotes a set of selected features within
the set of all possible featuresΩ, then a measure of itsre-
dundancy is given by

WS =
1

|S|2

∑

i,j∈S

I(i, j) ,

whereI(i, j) represents the mutual information between
featuresi and j, and |S| denotes the number of features
in setS. Theminimum redundancy criterion seeks the set
of featuresS that minimizesWS . Next, if c ∈ C denotes
the class of interest (for the two-class emotion classification
problem we will haveC = {c1, c2}), we can calculate the
relevance of feature setS as

VC,S =
1

|S|

∑

i∈S

I(c, i) .

The maximum relevance criterion seeks feature setS that
maximizesVC,S for the specific classification problemC.
The MRMR algorithm then tries to achieve both of the two
previous criteria by maximizing the following quotient:

max
S ⊂ Ω

∑

i∈S

I(c, i)

1

|S|

∑

i,j∈S

I(i, j)
.

Obtaining the optimal solution to the above through ex-
haustive search is clearly intractable. In practice, one
proceeds with a sequential, incremental, non-optimal ap-
proach, by first selecting as the first feature the one that
maximizes the relevance criterion, and subsequently adding
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Figure 3: The five sub-systems for recognizing “happi-
ness”, denoted by the five lines connecting the circles.

one feature at a time, similarly to the FSS approach men-
tioned earlier. Assuming that the selected set at the current
iteration isS, then featurei ∈ Ω − S will be selected as

i = arg max
i ∈ Ω−S

I(c, i)
1

|S|

∑

j∈S

I(i, j)
.

The process terminates, once we arrive at the desired fea-
ture set size. We should also note that, in the above, all
mutual information quantities are computed after appropri-
ate discretization of all continued-valued features.
The two-stage feature selection scheme employed in our
approach is depicted in Figure 1.

4. Final System
Our emotion classification system has ahierarchical struc-
ture, as it is composed from multiple specialized systems.
Each one of the smaller systems is trained to distinguish
between only one pair of emotions (e.g., fear vs. happi-
ness, anger vs. happiness, etc.), and it is trained separately,
as depicted in Figures 2 and 3. Since, in this paper, we
concentrate on six basic emotions (see Section 5), the pro-
posed approach gives rise to 15 sub-systems. Each such
sub-system is implemented based on a simple linear sup-
port vector machine (SVM) classifier. Majority voting over
the sub-system classification results is then used to pro-
vide the final classification. In addition, we use the a-priori
knowledge of gender information, as such has been shown
to play an important role in emotion recognition in the lit-
erature.

5. Experiments and Results
In our experiments we used the well-known Berlin database
of emotional speech. The corpus has been recorded at the
Technical University of Berlin, and it consists of 493 utter-
ances by 10 professional actors (5 male and 5 female). It
contains seven emotions (acted), namely anger, happiness,
sadness, fear, boredom, neutral, and disgust (Burkhardt et
al., 2005), of which we concentrate on the first six in accor-
dance with similar work in the literature. We follow a leave-
one-speaker-out experimental paradigm to provide speaker
independence.
In the following tables we present results in the form of
confusion matrices for several different experiments. From
these, we can immediately observe the superiority of the
gender dependent vs. the gender independent approach.
Clearly, a-priori gender knowledge significantly improves

Anger Fear Sadness Boredom Neutral Happiness
Anger 87% 2% 0% 1% 0% 10%
Fear 7% 78% 4% 3% 1% 7%
Sadness 1% 7% 84% 6% 2% 0%
Boredom 0% 6% 7% 61% 23% 3%
Neutral 3% 3% 0% 12% 82% 0%
Happiness 14% 10% 0% 1% 1% 74%

Table 1: Confusion matrix for thegender dependent exper-
iment withforward selection algorithm used for feature se-
lection from the entire set of features. The overall accuracy
is 77.08%.

Anger Fear Sadness Boredom Neutral Happiness
Anger 86% 1% 0% 1% 0% 12%
Fear 6% 82% 3% 3% 1% 5%
Sadness 0% 5% 88% 5% 2% 0%
Boredom 0% 4% 6% 64% 22% 4%
Neutral 2% 3% 0% 10% 84% 1%
Happiness 15% 9% 0% 1% 2% 73%

Table 2: Confusion matrix for thegender dependent exper-
iment with backward selection algorithm used for feature
selection from the entire set of features. The overall accu-
racy is79.71%.

algorithm performance. Furthermore, we observe the grad-
ual improvement of recognition accuracy of almost all emo-
tion classes, first when applying the BFS scheme in place of
FSS, and subsequently when employing the proposed two-
stage approach that includes the MRMR algorithm. One
should note that these results are in par with human emo-
tion perception experiments reported at 84.3% by Schuller
et al. (2007).
Next, in Figure 4, we show some results on the several sub-
systems performance with different initial features sets.As
we can observe, the addition of glotal and AM-FM features
lead to better recognition results. In a few sub-systems per-
formance is somewhat better when using only MFCC and
prosodic features. This demonstrates that such features are
sufficient for the specific sub-systems.
Finally, concerning the types of features selected by the
proposed algorithm, it should be noted that different fea-
ture combinations are selected for each subsystem, a fact
that backs our hierarchical approach. For example, when
one of the two classes of interest is fear, more glottal fea-
tures are selected.

6. Conclusions
In this paper, we proposed a hierarchical classification sys-
tem that is based on the discriminative power of its appro-
priately trained sub-systems. These sub-systems employ
feature sets of various types appropriately selected through
a two-stage feature selection algorithm. Finally we took
advantage of the well-established method of gender depen-
dent systems to achieve better results.
Our final system achieved an overall classification accu-
racy of 85.18% that is comparable to the state-of-the-art in
the field. Both glottal flow and AM-FM features were se-
lected by the feature selection scheme employed and indeed
improved recognition results in comparison to the state-of-
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Anger Fear Sadness Boredom Neutral Happiness
Anger 90% 2% 0% 1% 0% 7%
Fear 5% 81% 3% 6% 0% 5%
Sadness 1% 3% 96% 0% 0% 0%
Boredom 0% 3% 7% 73% 15% 2%
Neutral 0% 2% 0% 8% 90% 0%
Happiness 16% 2% 0% 1% 0% 81%

Table 3: Confusion matrix for thegender dependent ex-
periment with the final proposed feature selection scheme
(backward selection followed by MRMR). The overall ac-
curacy is85.18%.

Anger Fear Sadness Boredom Neutral Happiness
Anger 85% 4% 0% 0% 0% 11%
Fear 5% 74% 5% 7% 2% 7%
Sadness 0% 3% 86% 6% 5% 0%
Boredom 0% 10% 6% 71% 11% 2%
Neutral 1% 3% 1% 9% 84% 2%
Happiness 17% 3% 0% 3% 0% 77%

Table 4: Confusion matrix for thegender independent ex-
periment with the final proposed feature selection scheme
(backward selection followed by MRMR). The overall ac-
curacy is80.09%.

the-art systems that employ only MFCCs and prosodic fea-
tures. Finally, the combination of the MRMR filter based
algorithm with the BFS wrapper based one outperformed
simple sequential feature selection.
In future work, we will investigate the use of temporal fea-
ture information (feature contours), as opposed to just their
means and variances. Furthermore, we will consider larger
datasets and spontaneous speech data.
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