
An Annotation Scheme for Quantifier Scope Disambiguation

Mehdi Manshadi, James Allen, Mary Swift

Department of Computer Science, University of Rochester
Rochester, NY 14627

{mehdih,james,swift}@cs.rochester.edu

Abstract
Annotating natural language sentences with quantifier scoping has proved to be very hard. In order to overcome the challenge, previous
work on building scope-annotated corpora has focused on sentences with two explicitly quantified noun phrases (NPs). Furthermore,
it does not address the annotation of scopal operators or complex NPs such as plurals and definites. We present the first annotation
scheme for quantifier scope disambiguation where there is no restriction on the type or the number of scope-bearing elements in the
sentence. We discuss some of the most prominent complex scope phenomena encountered in annotating the corpus, such as plurality
and type-token distinction, and present mechanisms to handle those phenomena.

Keywords: Quantifier Scoping, Annotation Scheme, Scope Disambiguation

1. Introduction
There are two main reasons for the lack of work on auto-
matic quantifier scope disambiguation. First, it is generally
believed that instances of scope ambiguities are rare. The
rich literature on quantifier scope ambiguity in theoretical
semantics and philosophy has probably contributed to this
misunderstanding. Researchers in those areas are mainly
interested in situations where there are in fact multiple plau-
sible readings, as in “Three men carried four tables”. Those
situations do not happen very often in the daily usage of nat-
ural language, and when they do, we may not care to get the
exact scoping of the sentence, and even if we do, it is fine
in those rare cases to stop the speaker and ask a follow-up
question in order to resolve the ambiguity! In computa-
tional semantics, however, every sentence with more than
one scope-bearing element carries scope ambiguity.
Recent work on semantic parsing (Liang et al., 2011) shows
that even in a very restricted domain such as answering
questions about the geography of the US (where most NPs
are expected to be proper nouns and hence carry no scope
ambiguity), addressing quantifier scoping will improve the
performance. We believe that as NLP systems start to go
deeper in language understanding, quantifier scope ambi-
guity will become a bigger issue.
Second, no corpus has been provided with full scope dis-
ambiguation. With no corpus at hand, even developing
an unsupervised model seems challenging, as there are no
available test sets to evaluate the performance of the model
(Srinivasan and Yates, 2009). The lack of labeled corpora
is because the hand annotation of quantifier scoping is sur-
prisingly hard. As a result, previous work (Higgins and
Sadock, 2003; Galen and MacCartney, 2004) has focused
on annotating sentences with two explicitly quantified NPs
as the explicit quantification makes the scoping more intu-
itive.1 The 52% inter-annotator agreement (IAA) achieved

1The usage of the word explicit here is sloppy and is meant
to rule out definites, indefinites, and bare nouns. Throughout this
paper, unless otherwise specified, by “quantifier” we mean “gen-
eralized quantifier” including definite, indefinite and bare NPs.

by Higgins and Sadock (2003) on a simpler task is evidence
that this kind of annotation is difficult.
As mentioned in Manshadi et al. (2011), in order to over-
come these challenges, we have chosen a domain in which a
conscious knowledge of scoping is often required in order
to fully understand a sentence and be able to accomplish
the requested task. Within this domain, however, we do
not put any restriction on the number of scopal elements
in the sentence. We examine every two NPs (including
definites, indefinites, bare nouns, etc.) for possible scope
interactions. Furthermore we scope almost all scopal op-
erators (a.k.a. fixed-scopals; c.f. Copestake et al. (2005)).
We have had two goals in mind for developing the anno-
tation scheme. First, we have worked toward addressing
complex scope phenomena (e.g. plurality) by devising the
necessary machinery to represent the full scoping. Second
we have targeted achieving a high quality annotation with
high IAA by isolating the scope disambiguation task from
other semantic phenomena, which are sometimes mixed up
with quantifier scope ambiguity (the latter was proved to be
a major source of disagreement in our early experiments).
Manshadi et al. (2011) describes the general properties of
our corpus. In this paper, we describe the basics of our an-
notation scheme and the notation we have invented to repre-
sent scope disambiguations. There are some technical and
theoretical details in our scheme that are beyond the scope
of this paper. Those are left for a longer version.
The structure of the paper is as follows. An overview of
our domain is given in Section 2. We chunk the sentences
in this domain into scope-bearing elements. The process is
discussed in Section 3. The core of the annotation scheme
and the notation is presented in Section 4. In Section 5 and
6 we discuss the two most challenging phenomena encoun-
tered in the process of scope annotation and extend our no-
tation to address them. Section7 converts scope annotations
into a graph representation for evaluation purposes.

2. Data
Our domain of choice is natural language instructions on
editing plain text files. We have picked this domain for the

1546

following reasons:

• The sentences in this domain contain a fair amount of
explicit quantifiers creating scope interactions.

• Quantifier scoping is critical for such tasks. In order
to be able to accomplish a task, the (human) agent
must have a conscious knowledge of quantifier scop-
ing, as the task requires (subconsciously) converting
the natural language instructions into formal descrip-
tions. This means that the scope annotation is fairly
intuitive for human annotators.

• For the same reason, it is essential for a natural lan-
guage understanding (NLU) system to figure out the
scope disambiguation in order to accomplish the task.
Therefore, while in some other domains an NLU sys-
tem might work fine by leaving quantifier scoping un-
derspecified (Allen et al., 2007; Bos, 2008), it would
be hard to do well in this domain without having the
scope ambiguity resolved in one way or another.

Our corpus consists of 500 sentences each describing a
standalone task. For more information on the resources
used to provide this corpus, and some statistics on the dis-
tribution of scopal elements in the corpus, see Manshadi et
al. (2011).

3. Chunking
A natural way to build a scope-disambiguated corpus is to
add a scope-disambiguation layer on top of an existing cor-
pus labeled with scope-underspecified semantic representa-
tion, such as the Redwoods corpus (Oepen et al., 2002). As
mentioned before scope annotation on such a broad-domain
corpus is very difficult, hence we provided a corpus in a
restricted domain (Section 2). Since we do not have the
full (scope-underspecified) semantic representation of our
corpus, we take a shortcut. We chunk every scope-bearing
element in the sentence, and assign a unique ID to each
chunk. We then use those IDs to represent the scopings as
explained in the next sections. The chunks have been dis-
tinguished by being wrapped within square brackets. The
chunk ID is placed right after the left square bracket and is
immediately followed by a slash and a space, as shown in
the following example.

1. Cut [1/ Every line] in [2/ the file] ending in [3/ a comma] .

There are three NPs in 1 labeled 1, 2, and 3. There are two
major types of chunk, NP chunks and (scopal) operators.

3.1. NP chunks
NP chunks consist of all the shallow NP chunks. Our
definition of shallow NP is the standard definition used
in NP chunking systems, first introduced as baseNP by
Ramshaw and Marcus (1995): “the initial portions of non-
recursive noun phrases up to the head including determin-
ers but not including postmodifying prepositional phrases
or clauses”. We chunk all the NPs including bare NPs and
pronouns. This includes those NPs, which (sometimes con-
troversially) act as an adverbial and introduce no first order
entity in the domain of discourse. This is because we do

not want to impose any presumption about the scoping of a
sentence but to leave those decisions to the annotators. For
example consider the sentence

2. Print [1/ all the words] in [2/ the file] in [3/ order] .

It may be argued that “order” creates an entity, the “order”
of “the words” to be printed, which is unique with respect
to all the words, hence has a wide scope. In contrast, one
could argue that the preposition phrase (PP) “in order” be-
haves as an adverbial modifying the action of “printing”,
hence “order” does not participate in scoping. By chunking
all the NPs while providing a mechanism for the annotators
to pick either of the two alternatives, we do not force one of
the above interpretations. Chunking is first done automati-
cally and then revised manually, so it is gold standard. For
details refer to Manshadi et al. (2011).

3.1.1. Pronouns and possessive determiners
Pronouns are chunked like any other NP, as are possessive
determiners. However, since possessive determiners are
by definition part of the shallow NPs, they create a nested
chunk, as shown below:

3. For [1/ each numerical field], delete [2/ [3/ its] decimal
point]] followed by [4/ the subsequent digits] and [5/ the
space] after [6/ it]] .

WH-determiners and WH-pronouns, on the other hand,
have not been chunked. The decision was made for two
reasons. First, those words occur very rarely in our corpus.
Second, even when they do , their scoping does not give any
extra information about the scoping of the overall sentence.
This is because unlike ordinary pronouns, WH-pronouns
occur in limited syntactic structures. This strategy may be
revised in future versions of the annotation scheme, if com-
pelling arguments are found in favor of the other alternative.

3.1.2. NP Conjunctions
NP Conjunctions could simply be treated as distinct NPs
and have their own chunks. However, almost always, the
sub-NPs in an NP conjunction have the same scope level,
and it is a painful job to repeat the scope constraints for
each sub-NP. An alternative is to chunk them all as one big
chunk, but this imposes the presumption that all sub-NPs
always have the same level of scoping. Since we do not
want to make any speculation, we choose a third option.

4. Delete [1/ all the lines] ending in [2/ [2.1/ a comma], [2.2/
a semicolon], [2.3/ a question mark], [2.4/ an exclamation
mark] or [2.5/ a period]] .

We let every sub-NP have its own chunk indexed as 2.1,
2.2, etc., but at the same we allow annotators to refer to
the whole conjunction by a single ID (2 in the above ex-
ample). As a result, while providing the convenience of
avoiding repetition of the same scope constraints for each
individual sub-NP, we allow annotators to provide differ-
ent scope constraints in exceptional cases. Note that we
are not committed to providing such a convenient chunking
for every NP conjunction. For example, for complex NP
conjunctions, where the sub-NPs have post-modifiers, such
chunking will be confusing, so it will be avoided.

1547

5. Delete [1/ all lines] ending in [2/ a word] with [3/ no upper-
case letter] or [4/ a number] with [5/ no decimal points].

3.1.3. Partitives
Consider the following sentence:

6. Delete [1/ every line] in which [2/ some] of [3/ the fields]
are numerical .

7. Print [1/ the first half] of [2/ the fields] in [3/ each row] .

Some believe that “some of the fields” in 6 is a noun phrase
with “some of the” being the determiner, and some believe
that it is composed of two NPs. As shown in 6 we go with
the second view. This is because we believe this phrase
introduces two entities, a definite set “the fields” in “every
line”, and a subset of this set. Adopting this strategy may
be better justified by looking at example 7. This example
is less controversial, as it clearly introduces three entities:
“each row”, “the fields in each row”, and “the first half”
of those “fields”. The two phrases have almost the same
structure and we have not found any compelling argument
why they should be treated in different ways.

3.2. Operator chunks
Operataor chunks include modal operators (e.g. “possibly”,
“probably”, etc.), frequency adverbials (e.g. “twice”), sen-
tential adverbials (e.g. conditionals, “while”, “whenever”,
etc.), and negation. While the ID of NP chunks starts with
numbers, the ID of scopal operators starts with a letter fol-
lowed by a number. Negation starts with “N”. Sentential
operators start with “S” and the rest of the operators start
with ”O” as illustrated in the following examples.

8. Cut [1/ every word] that occurs [O1/ twice] in [2/ a line] .

9. Erase [1/ every line] that does [N1/ not] contain [2/ a digit].

10. [S1/ If] there is [1/ a line] ending in [2/ a digit] , delete [3/
the last field] of [4/ it].

4. Scope annotation: the basics
The chunked corpus is given to annotators to be labeled
with scoping. The scope relation between every two chunks
is either explicitly mentioned in the scoping or entailed
from the rest of the relations as detailed later. If i, j are two
arbitrary chunks in a sentence, the following four relations
can be recognized between the two: outscoping, scope-
equvalence/no-interaction, coreference relation, bridging
anaphora relation. Trivially, coreference and bridging
anaphora relations are only meaningful when both chunks
are NP chunks. The scope annotation is a list of semicolon-
delimited chains of relations wrapped within parentheses
following the keyword “SI:” as shown below. Annotators
may leave comments between “/*” and “*/”. Therefore ev-
erything between these two tokens is ignored (i.e. is not
interpreted as part of the scope representation).

11. SI : (i1 R1 i2 R2 . . . ; j1 P1 j2 P2 . . . ; · · ·) /*The
general structure of a scope representation*/

Where i1, j2, . . . are chunk IDs and R1,P2, ... are rela-
tions. In 11, in order to obtain a more concise (and often
more readable) scoping, we have allowed relations to be
cascaded. The following statement holds in general.

Statement 1 Given a sentence with chunks i, j and k,
(i1 R1 i2 R2 i3) is equivalent to (i1 R1 i2 ; i2 R2 i3).

Annotators are allowed to provide more than one scoping
for a sentence, with their most/least preferred reading being
the first/last. In practice, an annotator very rarely labels
a sentence with more than one scoping. The rest of this
section describes all the relations in detail.

4.1. Outscoping constraints
An outscoping constraint is represented as (i > j) denoting
that chunk i has wide scope over or outscopes chunk j. For
example, in sentence 1 (repeated in 12), we have (2 > 1).
This is because the “file” is fixed with respect to “every
line”. In other words, it is not the case that there is a distinct
file corresponding to “every line”. In contrast, there is a
distinct “comma” that ends “every line”. Therefore, “every
line” has wide scope over “a comma”, hence (1 > 3).2

12. Delete [1/ Every line] in [2/ the file] which ends with [3/ a
comma] .
SI : (2 > 1 ; 1 > 3)

Trivially outscoping is a transitive relation, therefore the
following statement holds.

Statement 2 Given a sentence with chunks i, j and k, if
(i > j) ∧ (j > k) then (i > k).

As a result the relation (2 > 3) is entailed from the two
constraints and there is no need to explicitly mention that.
Therefore we can take advantage of Statement 1 to obtain a
more concise representation:

13. SI : (2 > 1 > 3)

4.2. Coreference/anaphoric relations
The coreference relation is represented as (i := j) and
states that both chunks corefer to the same entity.

14. Take [1/ “test.txt”] and print [2/ every line] in [3/ the file] .
(1 := 3 ; 3 > 2)

Or euiqvalenly (following Statement 1):

15. SI : (1 := 3 > 2)

Here is a sentence with an anaphoric relation.3

16. For [1/ every line] that has [2/ a punctuation] at [3/ the end],
delete [4/ it] .
SI : (1 > 3 > 2 := 4)

“:=” is a transitive relation, therefore:

Statement 3 Given a sentence with chunks i, j and k, if
(i := j) ∧ (j := k) then (i := k).

It may be controversial whether coreference relation should
be annotated as a scope relation or not. We label it for the
following reasons:

2Throughout this paper, unless otherwise specified, the scop-
ings given for every sentence are for the most preferred reading(s).

3Throughout the rest of this paper, whenever we talk about
coreference relations we are including anaphoric relations as well.

1548

• In sentences with co-referring NPs, specifying coref-
erence relations before trying to figure out scope inter-
actions was shown to lower the chance of error.

• For the very same reason, scoping is more readable to
the users of the corpus.

• Since identifying coreference relations helps human to
find scope interactions, it may in fact increase the pre-
cision of automatic scope disambiguation too.

• Last but not least, it sometimes prevents theoretical
problems. For example, in sentence 14 it may be
controversial whether chunk 1 directly interacts with
chunk 2 or its interaction is only through chunk 3. By
explicitly stating the coreference relation between 1
and 3, we have a representation which is both intuitive
and theoretically sound. This is particularly important
in sentences with donkey anaphora as in 16.

4.3. Bridging anaphora
From quantifier scoping point of view, bridging anaphora
are very different from the coreference relation in that they
are often a special case of the outscoping relation. Of
course this could only be true if the antecedent is accessible
to the anaphoric expression as demonstrated in 17.

17. For [1/ every line] starting with [2/ a question mark] , delete
[3/ the last two words] .
SI : (1 > 2 ; 1 > 3)

In the most preferred reading of this sentence, 1 outscopes
3. At the same time, there is a bridging anaphora between
the two chunks. In these cases there is no advantage in an-
notating bridging anaphora. However, when the antecedent
is not accessible to the anaphoric expression, such as in
donkey sentences, it is not theoretically sound to consider
a scope interaction between the two entities, therefore only
in these cases we label bridging anaphora relations.

18. For [1/ each word] which contains [2/ a hyphen], print [3/
the surrounding letters] .

In a reading of 18 in which 3 refers to the “surrounding let-
ters” of ”a hyphen”, informally speaking, 2 has wide scope
over 3; but since 2 is not accessible to 3, we cannot have
(2 > 3). In these cases we use the bridging anaphora re-
lation represented as “=>” to express the scope interac-
tion between the two entities. This symbol emphasizes that
bridging anaphora are a special case of an anaphoric re-
lation in which the pronoun referring to the antecedent is
absent. For example, in 18, we can imagine that there is an
implicit pronoun “its” in chunk 3 (i.e. “[3/ [4/ its] surround-
ing letters]”), not realized in the surface of the sentence.
Therefore (2 => 3) is in fact a short for (2 := 4 > 3).
Following this, we represent the scoping of 18 as in 19.

19. SI : (1 > 2 => 3)

Note that we do not consider “=>” as a transitive relation.

4.4. Equivalence interaction
Consider the following sentence:

20. For [1/ each line] add [2/ a colon] at [3/ the end] of [4/ the
first word].

What is the scoping between 3 and 4 in 20? Our experi-
ments show that since “the end” semantically depends on
“the word”, most people believe (4 > 3), even though,
from logical perspective, both scopings are equivalent
(partly because both chunks are definite):

21. Dx Dy, end(x) ∧ word(y) ∧ of(x, y)

D is the generalized quantifier representing a definite NP.
Although it is theoretically sound to follow annotators’ in-
tuition (since the two scopings are equivalent), it creates a
problem in practice. In order to explain the problem, let’s
consider chunks 2 and 3 in 22.

22. Delete [1/ every line] containing [2/ a word] wrapped within
[3/ single quotes]

2 and 3 are both existentials and their two scopings are log-
ically equivalent. However, this time different annotators
have different intuitions. Some prefer (2 > 3) and some
(3 > 2). Therefore relying on annotators’ intuition cre-
ates inter-annotator disagreement even though both scop-
ings results in the same interpretation. We have required
annotators to recognize pairs with semantically equivalent
scopings and label them with a new relation, represented by
comma and called equivalence interaction.

23. SI : (1 > 2, 3)

The relation “,” has the following properties.

Statement 4 Given a sentence with the chunks i, j, k, . . .

• if (i > j, k, . . .) then (i > j ; i > k ; . . .)

• if (j, k, . . . > i) then (j > i ; k > i ; . . .)

We cannot automatically annotate the equivalence relations
for several reasons. First, because our corpus is not labeled
with the true quantification of NPs (e.g. a bare plural may
be a definite expression, an existential, etc.). Second, we
avoid making any speculation about the semantics of nat-
ural language, so we do not take for granted that every
two identical quantifiers have semantically equivalent scop-
ings.4 Finally it is not the case that only identical quantifiers
can have equivalent scopings. There are cases where differ-
ent scoping of two non-identical quantifiers does not create
different interpretations, as in the following example.

24. For [1/ every line], delete [2/ the last word] starting with [3/
an uppercase letter]
SI : (1 > 2, 3)

This is almost always the case for definite NPs vs. exis-
tentials in our corpus, but once again following our no-
speculation rule, we leave it to the annotators’ judgement
to decide whether the scopings are equivalent or not.

4In fact some quantifiers, such as “no” (because of the implicit
negation), are not interchangeable. Although we haven’t found
such examples in our corpus, they can happen in our domain, as
in “Delete all lines containing no word with no uppercase letter.”
(many thanks to Lenhart Schubert for motivating this example).

1549

4.5. Scoping with scopal operators
Trivially, there is no coreference or bridging anaphora re-
lations for scopal operators. Therefore the only relations
between two chunks where one of them is a scopal operator
is either an outscoping relation or no interaction. Sentence
8 (Section 3) is repeated below with two plausible scopings.

25. Cut [1/ every word] that occurs [O1/ twice] in [2/ a line] .
(a) SI : (1t > 2 > O1) /*Each word in the text will be
removed, if there exists a line containing two occurrences of
that word.*/
(b) SI : (2 > 1t > O1) /*Given a line, for every word
that occurs twice in the line, both instances of that word will
be removed from the line.*/

In the above scopings, 1t is used to refer to the first chunk.
You can ignore the suffix “t” for the moment. In Section 6,
we describe what the letter “t” stands for.
Example 26 shows scoping of a sentence with negation.

26. Erase [1/ every line] that does [N1/ not] contain [2/ a digit].

SI : (1 > N1 > 2) /*A word is removed if none of its
characters are numeric i.e. [0-9].*/

There is another plausible scoping for this sentence with
“a digit” outscoping the negation. It corresponds to the
reading in which the “line” is removed if there exists “a
digit” such that this “digit” does not exist on “the line”. We
haven’t yet defined the mechanism to represent this reading
(see 45 in Section 6).
The scoping of sentential operators is slightly different.
Those operators often create two or more subspaces, e.g.
the antecedent and the consequent for conditionals. We rep-
resent those subspaces by i.1, i.2, . . . for a sentential oper-
ator with ID i. 27 gives an example of a sentential operator.

27. [S1/ If] there is [1/ a line] ending in [2/ a digit] , delete [3/
every alphanumeric character] from [4/ it] .
SI : (S1.1 > 1, 2 ; S1.2 > 4 > 3 ; 1 := 4) /*1 and 2
are both considered to be existentials.*/

Subspaces of a sentential operator are considered orthog-
onal, that is the entities (scoped) within one subspace are
not accessible to the entities within another. For example,
there is no interaction between an entity within the scope of
the antecedent and one within the scope of the consequent
of a conditional, except through a coreference or bridging
anaphora relation.5

4.6. No interaction
Given two chunks i, j, if no outscoping, coreference, or
bridging anaphora relations between the two are explicitly
mentioned in or can be entailed from the given scoping,
then the two chunks are considered to have no interaction.
For example, chunks 2 and 3 in 17 have no interaction.
There are several types of NP which never have any scope
interaction with any chunk in the sentence. Those chunks
are explicitly labeled in the scoping. The next two subsec-
tions describes two types of NP with this property.

5In Discourse Representation Theory (Kamp et al., 2011) the
antecedent is considered accessible to the consequent, but our an-
notation scheme is not designed for a particular semantic formal-
ism, hence we do not consider such an accessibility.

4.6.1. Constants
Trivially for any given domain, the constants of the domain
do not participate in scoping. The suffix “:C” is attached
to a chunk representing that the chunk denotes a constant.
Some example of constants in our domain are constant in-
tegers such as 1, 2, 3, etc., constant characters such as “1”,
“2”, “a”, “b”, “(”, “)”, etc., and constant strings such as
“dog”, “cat”, “mouse”, etc.6

28. Replace [1/ every occurrence] of [2/ dog] with [3/ an occur-
rence] of [4/ cat] .
SI : (2 : C ; 4 : C ; 1 > 3)

4.6.2. Non-scopal adverbials
As mentioned before, we chunk every NP in the sentence,
leaving it to the annotator to decide whether the NP partici-
pates in the scoping. An example of NPs with no interaction
are NPs acting as an adverbial (often as part of a PP). For
example consider the following sentence:

29. For [1/ every file] in [2/ the folder] sort [3/ the lines] alpha-
betically ignoring [4/ case].

One can argue that since “the lines” are composed of “char-
acters” and each “alphabetical character” has a “case”,
chunk 4 is in fact participating in scoping. Another in-
terpretation is that “ignoring case” is simply an adverbial
modifying the verb “sort” similar to the adverbial “alpha-
betically”; therefore, “case” does not need to be scoped.
The first approach could be adopted if we had a detailed se-
mantic representation of the sentence which supported this
interpretation. Since we do not have such a detailed seman-
tic representation, we would prefer to go with the second
interpretation. A suffix “:P” (for predicate) is attached to
the chunk’s ID in such cases to indicate that the NP chunk
behaves as an adverbial and does not introduce a first order
entity that participates in scoping, Following this interpre-
tation, here is a scoping for the sentence in 29.

30. SI : (2 > 1 > 3 ; 4 : P)

4.7. No interaction vs equivalence interaction
It is implicit in the definition of no interaction, at the begin-
ning of Section 4.6, that equivalence interaction between
two chunks is treated like no interaction. While some work
in the past (Higgins and Sadock, 2003) has adopted the
same strategy (that is, no distinction between equivalence
interaction and no interaction), some make a distinction be-
tween the two (Galen and MacCartney, 2004). We follow
the first strategy for the following reasons.
First, the boundary between the two cases is very blurry.
Consider the following sentence.

31. Delete [1/ the first letter] of [2/ the first word] and [3/ the
last letter] of [4/ the last word] in [5/ each row] .

Clearly 5 has wide scope over 1 & 2 (5 > 1, 2) and 3 &
4 (5 > 3, 4). However, it is not easy to decide whether
there is a scope interaction between 1 and 3. Arguments
can be made in favor of either alternative. In fact, our ex-
periments show that neither of the alternatives is highly pre-
ferred to the other by the annotators. This is not surprising,

6These are constants as a type not as a token (cf. Section 6).

1550

as it makes no difference in practice. This last point forms
our second argument in favor of “no distinction” strategy.
Whether 1 and 3 have no interaction or they do interact but
both scopings are semantically equivalent makes no dif-
ference in how one interprets the overall meaning of the
sentence or perceives the requested task. This suggests no
distinction between the two relations, resulting in the three
following scopings for 31 being considered equivalent.

32. (a) SI : (5 > 1 ; 5 > 2 ; 5 > 3 ; 5 > 4)
(b) SI : (5 > 1, 2 ; 5 > 3, 4)
(c) SI : (5 > 1, 2, 3, 4)

Note that although it may show counter-intuitive behav-
iors, our notation potentially supports the distinction. To
see why, remember that from statement 4, (5 > 1, 2) en-
tails (5 > 1 ; 5 > 2). If we distinguish the two relations,
the other direction does not hold; because the former states
that 1 and 2 have equivalence interaction, while the latter
implies that there is no interaction between 1 and 2. There-
fore, the three scopings in 32 will no longer be equivalent.7

5. Dealing with plurals
Plurality and quantification have been one of the most chal-
lenging phenomena in theoretical semantics (Hamm and
Hinrichs, 2010). Although the problem has been studied in
depth in theoretical semantics, the focus has been mainly on
the interaction of events and plurality (Landmann, 2000). A
typical example of this phenomenon is given in 33.

33. The students met the teacher.

In this sentence, the ambiguity is whether there is a sin-
gle event (collective reading) or multiple events of meeting
(distributive reading). The complexity could go beyond the
simple two possible readings in general, as in the following
example from Gillon (1987).

34. Rodgers, Hammerstein, and Hart wrote musicals.

where any of the the three musicians did not write a mu-
sical all by himself nor all three collaborated to write any
musical. Fortunately, these cases are rare and at least in
our corpus we do not encounter such complex cases. How-
ever, we have to deal with an issue which often has not
been addressed in the literature. It is not enough for us to
decide the type of the reading carried by a plural per sen-
tence (which is the common practice in theoretical seman-
tics), but we have to make such a decision for every pair of
scope-bearing elements in the sentence (where at least one
is a plural). This issue may or may not be interesting from
a theoretical perspective, but it is definitely a problem from
computational point of view.
To further support our claim, consider the following sen-
tence in our domain:

7There are compelling arguments in favor of the distinction as
well, even when we look at the issue solely from practical point of
view. For example, two universals with no interaction could repre-
sent two independent loops, while two universals with equivalence
interaction may be translated into a nested loop structure. Further
investigation of this matter is left for future work.

35. Find [1/ the count] of [2/ rows] containing [3/ a numerical
field].

Relative to chunk 1, the plural must be treated as a collec-
tion (a.k.a group), hence has a collective reading, but with
respect to chunk 3 it most likely has a distributive reading
(each row has its own (potentially distinct) numerical field).
A common practice to describe the collectivity vs distribu-
tivity is to treat plurals as a collection of individuals. We
adopt the same strategy but we frame it into a more gen-
eral realm of terms introducing more than one entity in the
domain of discourse, which we have used to describe some
other phenomena as well (cf. Section 6). Therefore chunk
2 introduces two entities: a collection and the individuals
in the collection. We represent the collection as 2c and the
universally quantified entity, ranging over the individuals in
the collection, by 2d. This means that we will be scoping
four instead of three entities.

36. SI : (1, 2c > 2d > 3)

The relation (1, 2c) is the result of the fact that chunk 1
and chunk 2 (as a collection) are both definites. (1 > 2d)
emphasizes that with respect to chunk 1, the plural has a
collective reading. That is, there is a definite “number”, the
size of the collection, which is unique for all the individu-
als in the collection. In contrast, the plural has a distributive
reading with respect to chunk 3, because (in the most pre-
ferred reading) each individual has its own potentially dis-
tinct numerical field. Therefore, representing a universal
quantifier, 2d outscopes the existential in chunk 3.
Although less frequently, more complex sentences with
plurals occur in our corpus, as in the following sentence.

37. Print [1/ the sum] of [2/ numerical fields] in [3/ all the
rows].

37 demonstrates a true collective-vs-distributive ambiguity
(that is there are in fact two plausible readings). The simple
machinery devised above can handle these cases too and
represent both plausible readings, as shown in 38 and 39.

38. SI : (1, 2c, 3c > 2d, 3d) /*The reading in which a single
sum is printed.*/

39. SI : (3c > 3d > 1, 2c > 2d) /*The reading in which a
distinct sum is printed for each individual row.*/

To better understand 38 and 39, we have represented their
corresponding logical formulas in 40 and 41 respectively.

40. Dx1 Dx2c Dx3c N(x1) ∧ C(x2c) ∧ C(x3c) ∧
[∀x2d ∀x3d (F (x2d) ∧ R(x3d) ∧ In(x3d, x3c) ∧
In(x2d, x3d))⇐⇒ In(x2d, x2c)]
∧ S(x2c, x1) ∧ P (x1)

41. Dx3c C(x3c) ∧ ∀x3d [(R(x3d) ∧ In(x3d, x3c)) ⇐⇒
(Dx1 Dx2c N(x1) ∧ C(x2c) ∧
[∀x2d (F (x2d) ∧ In(x2d, x3d))⇐⇒ In(x2d, x2c)]
∧ S(x2c, x1) ∧ P (x1))]

1551

Where N,C, F,R, S, and P stand for Number, Collection,
Field, Row, Sum, and Print respectively.8

By convention, chunk ID iwith no suffix is equivalent to ic.
This helps to have a regular scoping for sentences in which
the plural has no distributive reading, as in 23 for 22.

6. The type-token distinction
Consider 42, purposefully chosen from outside our domain.

42. [1/ Every student] in [2/ the class] had [3/ the text book].
SI : (2, 3 > 1) /*Incomplete scoping*/

Even though the scoping is given, the sentence is still am-
biguous between two readings, one where there is a sin-
gle copy of the textbook and one where there are multiple
copies. This happens because it is not clear what 3 in the
given scoping is referring to, “the textbook” as an abstract
entity, say Landmann (2000), or “the textbook” as a con-
crete physical instance, say the copy of Landmann (2000)
in room 631 of the Computer Studies Building at the Uni-
versity of Rochester at the time of writing this paper. “the
textbook” in its first usage is called a type and in its sec-
ond usage is referred to as a token (Peirce, 1958). Note
that this is not a word sense ambiguity problem because
both senses are present at the same time. The phenomena
is called type-token distinction and has been well studied
in philosophy and formal semantics. In computational se-
mantics, however, it has not been investigated in depth. In
particular, to the best of our knowledge, there is no previous
work on dealing with type-token distinction in the realm of
quantifier scope disambiguation.
Incidentally, the type-token distinction is a big (if not the
biggest) issue in our domain. It was not surprising for us to
learn that the popular example for demonstrating this phe-
nomenon happens to be in our domain.9 It addresses the us-
age of “word” as a type (as in “the word dog” in its abstract
sense) vs. its usage as a token (say the physical realization
of “dog” in your copy of this paper). In fact almost all the
examples we have given in this paper so far deal with this
issue. This is because most concepts in our domain (“Line”,
“Word”, “Character”, etc.) may be perceived as an abstract
entity (type) as well as a physical realization (token) of this
entity. As an example, consider the following sentence.

43. Delete [1/ every line] that ends with [2/ a digit] .
SI : (1 > 2) /*Incomplete scoping*/

In the above scoping, chunk 2 may refer to “a digit” as a
type or a token. In the latter case, the scoping states the
obvious: that “every line” has its own instance of “a digit”,
so it is still ambiguous whether the type of “digit” is the
same for “every line” or not.

8As seen in 39 and 41, we are able to represent the distributive
reading without reification of the predicate print. That has gener-
ally been the case in our corpus. For other domains, one may need
to use a neo-Dvidsonaian approach to represent events in order to
be able to represent both distributive and collective readings of a
plural with respect to an event.

9Consider the line ”Rose is a rose is a rose is a rose.” from
the poem Sacred Emily by Gertrude Stein, borrowed from Wetzel
(2009). How many words are in this line?

Here we use the same mechanism, which we already de-
vised to deal with plurals. That is we treat the type-token
terms as another category of nouns introducing more than
one entities in the domain of discourse. One of the entities
is the type and the other is the token. We use the suffix “t”
to represent the type and the suffix “i” (for “instance” or
“inscription”) to represent the token.

44. SI : (1 > 2t, 2i)

In 44, 2t refers to “a digit” as a type, contrasting 2i which
refers to “a digit” as a token. This scoping corresponds to
the reading in which “every line” ends with a potentially
distinct type of “digit”. Note that while both type and to-
ken for “a digit” are within the scope of universal, they are
both existentially quantified, hence carry equivalence inter-
action, resulting in the scoping in 44.
As another example, consider the sentence in 9, repeated
below with its scoping revised using the new machinery, in
order to be able to assign a second scoping to the sentence.

45. Erase [1/ every line] that does [N1/ not] contain [2/ a digit].
(a) SI : (1 > N1 > 2i, 2t) /*A line is removed if none
of its characters are digit.*/
(b) SI : (1 > 2t > N1 > 2i) /*A line is removed if there
exists a type of digit that does not appear on this line.*/

In the preferred reading of almost all the examples in this
paper, the token in the type/token chunks outscopes the type
(that is every token is of a potentially distinct type, as in
“every line in the file”, “every word in a line”, etc.), there-
fore we choose this scoping as the default for type/token
chunks. Furthermore, for a type/token chunk m, we as-
sume that m (with no suffix) is equivalent to mi, the index
representing the token entity. Using these two conventions,
in most cases we do not have to worry about the type-token
distinction and only scope the token entity introduced by
chunks.10 As a result, almost all scopings given in the pre-
vious sections remain correct with no modification.11

7. Modeling scoping as a DAG
Although we have coreference (and bridging anaphora) re-
lations annotated in the corpus for the reasons we have dis-
cussed above, our true goal is to model scoping. Annotat-
ing coreference relations is by far easier than scope disam-
biguation, and incorporating those relations in the evalua-
tion metric may result in deceptively higher numbers when
measuring IAA or the performance of an automatic scope

1025 is the only exception in which the token interpretation of
“word” is implicit in the verb “occurs”, therefore chunk 1 does not
make a direct refernce to a token and only introduces a type.

11The type-token problem is more complex in general. In fact,
it is not enough to consider one layer of abstraction. Consider the
sentence “Insert [1/ a line] containing [2/ 10 consecutive ‘*’] after
[3/ every other line]”. Chunk 2 represents neither a type (other-
wise, what are we counting “10” of?), nor a token (because chunk
1 is intrdoucing an abstract entity (a type of line), hence it cannot
“contain” a token (i.e. a phyisical realization)). To explain chunk
2, we need to define a second layer of abstraction, called occur-
rence (see Wetzel (2009)). We cannot afford to take this into ac-
count at the moment, as the scheme is already quite overwhelming
for the annotators. We leave that to the future.

1552

G G

3c

3d

2d

2c1

N1

2t 2i

1

1 2

Figure 1: Scoping as DAG

disambiguation system. Therefore we exclude them from
our model of scoping in order to define evaluation met-
rics. Excluding those relations and given that we make
no distinction between no interaction and equivalence in-
teraction relations leaves us with only two types of rela-
tion: outscoping or no scope preference (where the latter
includes both no scope interaction and equivalence inter-
action). We can simply model those two relations using
a graphical notation in which the scope-bearing elements
represent the nodes and outscoping relations form the di-
rected edges. Therefore if two nodes are not connected by
an edge, there is no scope preference between them. Since
outscoping constraints cannot form a cycle in a well-formed
scoping, the graph will be a directed acyclic graph (DAG).
G1 and G2 in Figure 1 are the DAGs for the scopings in 39
and 45(a) respectively. In order to define evaluation met-
rics, we need to define a similarity measure between two
DAGs, which can be used in calculating both IAA and the
performance of an automatic scope disambiguation system
against gold standard data. Given two DAGs G1 = (V,E1)
and G2 = (V,E2) the similarity measure is defined as:

σ+ =
|E+

1 ∩ E
+
2 |+ |Ē

+
1 ∩ Ē

+
2 |

|V |(|V |+ 1)/2
(1)

in which Ḡ = (V, Ē) and G+ = (V,E+) are the comple-
ment of the underlying undirected graph and the transitive
closure of the DAG G = (V,E) respectively. Details can
be found in Manshadi et al. (2011). There, we also define
precision/recall for evaluating the performance of an auto-
matic scope disambiguation system vs. gold standard data.
We have achieved the IAA of 75% on our corpus, much
higher than 52% agreement that Higgins and Sadock (2003)
achieve for a simpler task but broader domain.

8. Conclusion
We present the first work on developing an annotation
scheme for quantifier scope disambiguation when there are
an arbitrary number of scope-bearing elements (including
all NPs and most scopal operators) in the sentence. Our
scheme presents machinery for dealing with some complex
scope phenomena including plurality and the type-token
distinction. Some details are left out because of the space
limitation. In particular, we define the scheme in an in-
formal way with the help of intuitive examples, which we
hope will suffice to understand the scope annotations in our

corpus. Besides, there are complexities that have not yet
been addressed in the current scheme. A formal definition
of the framework and solutions to some of the issues that
the current scheme is dealing with remains for the future.

9. Acknowledgements
We need to thank Eric Meinhardt and Timothy Dozat for
their feedbacks on the annotation scheme, and Lenhart
Schubert and Greg Carlson for the fruitful discussions. This
work was supported in part by NSF grants IIS-1012205 and
IIS-1012017, and ONR grant 00014-11-1-0417.

10. References
J. Allen, M. Dzikovska, M. Manshadi, and M. Swift. 2007.

Deep linguistic processing for spoken dialogue systems.
In Proceedings of EACL-07 Workshop on Deep Linguis-
tic Processing.

J. Bos. 2008. Wide-coverage semantic analysis with boxer.
In Proceedings of the 2008 Conference on Semantics in
Text Processing, STEP ’08, pages 277–286.

A. Copestake, D. Flickinger, C. Pollard, and I. A. Sag.
2005. Minimal recursion semantics – an introduction.
Research on Language and Computation, 3:281–332.

A. Galen and B. MacCartney. 2004. Statistical resolution
of scope ambiguity in natural language.

B. S. Gillon. 1987. The readings of plural noun phrases in
english. Linguistics and Philosophy, 10:199–219.

F. Hamm and E. W. Hinrichs. 2010. Plurality and Quantifi-
cation. Studies in Linguistics and Philosophy. Springer.

D. Higgins and J. M. Sadock. 2003. A machine learning
approach to modeling scope preferences. Comput. Lin-
guist., 29(1):73–96, March.

H. Kamp, J. Genabith, and U. Reyle. 2011. Discourse rep-
resentation theory. In Dov M. Gabbay and Franz Guen-
thner, editors, Handbook of Philosophical Logic, vol-
ume 15, pages 125–394. Springer Netherlands.

F. Landmann. 2000. Events and plurality. Kluwer Aca-
demic Publishers, Dordrecht.

P. Liang, M. I. Jordan, and D. Klein. 2011. Learning
dependency-based compositional semantics. In Associ-
ation for Computational Linguistics (ACL).

M. Manshadi, J. Allen, and M. Swift. 2011. A corpus
of scope-disambiguated english text. In Proceedings of
ACL-HLT ’11: short papers, pages 141–146.

S. Oepen, K. Toutanova, S. Shieber, C. Manning,
D. Flickinger, and T. Brants. 2002. The lingo red-
woods treebank motivation and preliminary applications.
In Proceedings of COLING ’02, pages 1–5.

C. S. Peirce. 1958. Collected Papers of Charles Sanders
Peirce: Science and Philosophy and Reviews, Corre-
spondence and Bibliography. Harvard University Press.

L. A. Ramshaw and M. P. Marcus. 1995. Text chunk-
ing using transformation-based learning. CoRR, cmp-
lg/9505040.

P. Srinivasan and A. Yates. 2009. Quantifier scope disam-
biguation using extracted pragmatic knowledge: prelim-
inary results. In Proceedings of EMNLP ’09.

L. Wetzel. 2009. Types and tokens: on abstract objects.
MIT Press.

1553

