
Towards automation in using multi-modal language resources: compatibility and
interoperability for multi-modal features in Kachako

Yoshinobu Kano
PRESTO, JST (Japan Science and Technology Agency)

4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
E-mail: kano@nii.ac.jp

Abstract
Use of language resources including annotated corpora and tools is not easy for users, as it requires expert knowledge to determine
which resources are compatible and interoperable. Sometimes it requires programming skill in addition to the expert knowledge to
make the resources compatible and interoperable when the resources are not created so. If a platform system could provide automation
features for using language resources, users do not have to waste their time as the above issues are not necessarily essential for the
users’ goals. While our system, Kachako, provides such automation features for single-modal resources, multi-modal resources are
more difficult to combine automatically. In this paper, we discuss designs of multi-modal resource compatibility and interoperability
from such an automation point of view in order for the Kachako system to provide automation features of multi-modal resources. Our
discussion is based on the UIMA framework, and focuses on resource metadata description optimized for ideal automation features
while harmonizing with the UIMA framework using other standards as well.

Keywords: automation, multi-modal, UIMA

1. Introduction
Although there have been many discussions about
metadata of language resources, such discussions tend to
focus on human readable metadata but not on machine
readable metadata. For example, human readable
information of authors, license, and organization would
be useful when creating a catalogue of language resources.
However, machine readable metadata is also important
when we need to combine language resources.
A Natural language processing (NLP) task is normally
accomplished by combining a couple of language
resources, including annotated corpora and NLP tools.
Users of language resources are required to understand
behaviours of the resources in order to find which
resources can be combined. Such behavioural information
is, in most cases, only fragmentally described in the
resource metadata, or in worse cases, users need to
investigate the corpus annotations (or source codes when
the resource is an NLP tool) directly.
We claim that combinations of language resources,
including comparisons and evaluations, can be automated
if language resources are properly designed and their
metadata well described in a machine readable way. Such
a design can largely reduce human work, allowing the
users to concentrate on the essential part of their entire
task. This claim requires that several layers of resource
representation, such as the data format, data type
definitions, and resource metadata descriptions, should be
standardized in a compatible and interoperable way.
We adopt the UIMA framework (Ferrucci, et al., 2006) as
the base framework for the compatibility and
interoperability. UIMA, Unstructured Information
Management Architecture, is getting widely used in the
community, e.g. the CMU component repository, JCoRe
(Hahn, et al., 2008), BioNLP Component Repository

(Baumgartner, et al., 2008), ClearTK (Ogren, et al., 2008)
and the UIMA-fr project (Hernandez, et al., 2010). IBM’s
Watson question answer system (Ferrucci, 2011), which is
now very famous as winning the Jeopardy! Quiz
competing with a human champion, is also based on the
UIMA framework.
Since UIMA is a generic framework, it is still not enough
to be truly interoperable to make the human work
decreased. For example, what data types should be
defined, which part of tools should be decomposed or
composed into a single resource component, and what to
describe in the metadata, are left to resource developers.
The previous works which provide language resources as
UIMA components do not sufficiently address these
issues, so it was not necessarily possible to determine
whether arbitrary two components can be combined;
comparisons including evaluations were also impossible
within the UIMA framework.
The U-Compare (Kano, et al., 2009) system allows
combinations and evaluations in a UIMA compliant way.
Although U-Compare addressed the above issues to some
extent, U-Compare is designed as single-modal, assuming
written mono-language. In addition, U-Compare does not
provide sufficient automation features so it was not easy
for users to exploit the combination features.
We have created a brand new system called Kachako
(Kano, 2012), which provides automation features based
on the UIMA framework. While Kachako is intended to
provide automations for users in an ideal way, it assumes
single-modal resources and multi-modal resources are
currently not supported. We suggest more generic design
of language resource infrastructure in this paper. This
design allows combinations and evaluations of
multi-modal resources in an automated way, e.g. text,
audio, and cross-linguistic resources. These features will
be publicly available as they are integrated into the

1098

Kachako system.
In this paper, we describe about UIMA briefly as
background information in Section 2. Then we describe
our motivation and goal in Section 3, and describe our
design and implementation which achieve the goal in
Section 5. We conclude this paper in Section 6 describing
possible future directions.

2. UIMA
UIMA is an open framework specified by the OASIS
open international standard1. Apache UIMA2 provides a
reference implementation as an open source project.
UIMA itself is intended to be purely a framework, i.e. it
does not intend to provide specific tools or type
definitions. Users should develop such resources by
themselves. In this section we briefly describe about
UIMA focusing on architectures related to this paper.
Figure 1 illustrates those architectures conceptually.

2.1 CAS: data structure
UIMA uses a Common Analysis Structure (CAS) as its
standard data structure. A CAS holds raw information and
annotations, e.g. raw text and linguistic annotations in
case of NLP. The UIMA framework uses the “stand-off
annotation” style (Ferrucci et al., 2006), which associates
an annotation with the raw information via offset
positions in the raw information. A CAS holds a set of
such annotations while an annotation is not necessarily
linked with positions directly. An annotation may refer to
another annotation, thus an entire set of annotations in a
CAS can represent any directed graph structure.

2.2 Type system: data type definitions
Each annotation should have its type defined explicitly.
Types should be defined in a hierarchical way by
developers in a UIMA’s type system XML descriptor file.
A type has a single parent type so a type system forms a
tree structure.

2.3 Component: processing unit

1 http://www.oasis-open.org/committees/uima/
2 http://incubator.apache.org/uima/

A processing unit in UIMA is called a component. A
primitive UIMA component is a processing unit which
actually performs a specific task receiving a CAS and
adding new annotations to the CAS. An aggregate UIMA
component holds a set of child components deciding
which component to process the CAS next. This decision
is made by a flow controller specified in the aggregate
component. The default flow controller is a serial pipeline
while developers can create any flow using the content of
input CAS of the aggregate component. This decision is
made dynamically every time before processing a child
component. Aggregate components can be nested. UIMA
standardizes component metadata as a component
descriptor XML file, which has fields of I/O capabilities
(types of inputs and outputs), a flow controller in case of
aggregate component, supported language names, and I/O
sofa capabilities, etc.

2.4 Sofa: multi-modal data structure
UIMA provides Sofa (Subject of Analysis 3) allowing a
CAS to hold sub-CASes, which can be used to represent
multi-modal information. A sofa aware i.e. multi-sofa
component can access all of the sub-CASes, while a sofa
unaware i.e. single-sofa component can only access the
default sub-CAS. If there is two or more sofas (i.e.
sub-CASes), one of the sofas should be specified as a
default sofa for a sofa aware component to access a
relevant sofa. There is no global information available;
any information (raw information and annotations) should
belong to one of the sofas. Each sofa should have a unique
sofa name as a String value.

3. Motivation and Goal
Our motivation is simple: automation. That is, our goal is
to provide automation features for users to achieve their
individual tasks without wasting time in handling issues
which can be essentially performed by the system.
However, such automation is not possible by the system
side only, but the resources themselves should be well

3 In the current Apache UIMA implementation, sofa and view
are almost equal while they are specified differently. We use
only sofa to avoid confusion.

CAS (multi-sofa)

Aggregate Component
Flow Controller

Sofa A

…

annotations

Raw info
Sofa B

annotations

Raw info

Component 1 Component 2 …

previous component
in workflow

next component
in workflow Type system

CAS

CAS CAS CAS CAS

Figure 1. A conceptual figure of the UIMA framework focusing on relevant parts of this paper. The left-hand figure
illustrates a CAS structure of multi-sofa. The right-hand figure shows a processing order of an aggregate component

together with flow controller and child components.

definition

reference

1099

described from the automation point of view.
We also claim that reusability of resources is crucial.
Once a resource is created, the resource should be able to
be used without modification. For example, a
single-modal resource, from the users’ point of view,
should be able to be combined with multi-modal
resources as it is.
Assuming the above conditions, our goal is to define
metadata descriptions and automatically calculate
possible component combinations from a given set of
components. This goal requires another condition; the
possible combinations of components should be
calculated from metadata in a static way but not
dynamically at runtime. This is because a CAS, i.e. input
and output data, does not necessarily contains sufficient
information to determine which combination of
components is possible. For example, a person name
recognizer may not detect any person name depending on
its input. Thus the next component cannot notice what sort
of output type may be passed from the person name
detector component. This I/O information should be
described in the component metadata, so the possible
combinations should be calculated from metadata. By
calculating combinations in this static way, all of
configurations can be done by lightweight metadata
without heavy executable files.
Kachako provides such architecture which calculates
possible combinations of components from I/O
information and efficiently process the combinations.
This architecture is similar to the virtual workflow
architecture (Kano et al., 2011; Kano, 2011) that allows
UIMA components to be combined and compared, while
Kachako’s one has different design and implementation
created from scratch to provide automatic workflow
generation feature. This architecture calculates possible
combinations of components from user specified
components, assuming that the component I/O
capabilities are correctly described. UIMA components
implemented without aware of this architecture can be

(re)used. All of the processes are performed as a single
UIMA workflow while it virtually runs various
workflows internally. This architecture is compliant with
the UIMA standard.
Another point of this architecture is that its internal data
structure is designed in an efficient way. Because
combinations of components could share their input
annotations passed from previous combinations of
components, output annotations of each component is
grouped and shared as much as possible while all of
outputs are stored in a single CAS. By selecting relevant
groups of annotations, each component receives and
outputs annotations as if it runs in one of the virtual
workflows.

4. Multi-modal Interoperability and
Compatibility for Automation

Multi-modal resources can be easily represented in UIMA
by exploiting the multi-sofa structure. For example, an
audio-sofa and its translated text-sofa can be put together
into a single multi-sofa CAS. However, there are a couple
of issues when combining multi-sofa components.
Firstly, a single-sofa component and a multi-sofa
component cannot be mixed without specifying a relevant
default sofa for the single-sofa component to find and
process an appropriate sofa. A solution would be not to
use multi-sofa but put all of information together into a
single sofa. However, this solution requires that all of
components should be implemented to adapt this
mechanism. This requires reimplementation of existing
components. Further, putting differently encoded
information together, e.g. audio and text, would not be
practically possible because each CAS assumes to hold
the same sort of raw information. Therefore, we need
multi-sofa.
Secondly, the virtual workflow architecture described in
the previous section does not support multi-sofa, while its
comparison feature (including evaluation) is a crucial task.
For example, a user of machine translation (e.g.

Sofa-name mapper
MMC

Corpus Reader Component
A B C

G H D C

A

Z

Sofa-name mapper

Z Z

A D
Sofa Switcher

…

A D

Z

D E F

A B C

Figure 2. A conceptual figure of the multi-modal virtual workflow architecture.
SMC stands for Single-Modal Component, MMC stands for Multi-Modal Component.

corresponds to a component which capabilities (including supported language) shown as adjacent
small boxes, upper ones for input capabilities, lower ones for output capabilities.

MMC SMC SMC
Sofa-name mapper

MMC

Sofa Switcher
… SMC SMC

Sofa Switcher
… SMC SMC

1100

translation from language L1 to L2) would like to
compare gold standard data (L2) with results of machine
translation tools (L2). If we use multi-sofa, the original
text (L1) and texts of the translated language (L2) will be
stored in different sofas. Because our goal is to allow
comparisons without component re-implementations, the
architecture should work outside of these components
while everything should be UIMA compliant. Such
architecture will allow maximum reuse of potentially
available UIMA components with minimum cost of users’
and developers’ human work.
In the sections below, we assume that the language
resources are already implemented as UIMA components,
which metadata describes their I/O capabilities correctly.

4.1 Multi-modal Resource Representation
Because we assume that the I/O capabilities already have
sufficient information to calculate inter-component
dependencies of single-modal components, the main issue
here is to support multi-modality that harmonizes with the
current single-modal architecture.
A component should have, even implicitly, its input and
output requirements not just for annotation data types but
also for language and modality. As UIMA does not
specify possible values of relevant fields for modality
specification, we need such specification based on
standardization and theoretical requirements to allow I/O
dependency calculations.
Although UIMA has “supportedLanguages” metadata
field in the component metadata, supportedLauguages
metadata field only assumes that its field value should be
compliant with the standardized language code. This is
not sufficient because a language specification may
include input/output distinctions. As the current standard
language code (the IETF language tag4) defines “private
use” subtag, we can put input/output distinction into this
private use subtag without violating the standard.
The sofa name is also unspecified in UIMA; the only
requirement is that sofa names should be unique within a
single CAS. Because the sofa name is the only metadata
which describes modality of a sofa, the sofa name should
be sufficiently specified to represent the content type.
MIME (Multipurpose Internet Mail Extension) would be
the relevant standard as MIME can specify text, image,
video, etc. These usages of standards would not be a
single solution; we may use more suitable alternative in
future.

4.2 Multi-modal Virtual Workflow Architecture
Our multi-modal virtual workflow architecture is
conceptually shown in Figure 2. This architecture only
assumes that each of the UIMA components has properly
described component metadata as discussed above. The
sofa names are mapped to be unique while maintaining
original MIME as prefix. If a pipeline of single-sofa
components is used, it will be wrapped by a sofa switcher
component which maps a relevant sofa to/from the default

4 http://tools.ietf.org/rfc/bcp/bcp47.txt

sofa.
Each group of annotations corresponds to a component
which created these annotations. Each group holds
corresponding I/O sofa name(s) which are specified when
creating the annotations. By these extended information,
the virtual workflow architecture can support multi-sofa
components in a similar way of its single-sofa version.

5. Summary and Future Directions
We suggested a multi-modal resource representation and
multi-modal virtual workflow architecture, all compliant
with the UIMA standard. We will provide implementation
of such resources integrated in our Kachako system.
These resources can reduce human works by allowing
reuses of UIMA standardized resources, automation of
combinations, and comparisons/evaluations, by minimum
cost of human work. Increasing the number of
multi-modal language resources available in the
suggested way would be a future work.

6. Acknowledgments
This work was partially supported by JST PRESTO and
Grant-in-Aids for Scientific Research (C) [21500130]
(MEXT, Japan).

7. References
Baumgartner, W.A., Jr., Cohen, K.B. and Hunter, L. (2008)

An open-source framework for large-scale, flexible
evaluation of biomedical text mining systems, J
Biomed Discov Collab, 3, 1.

Ferrucci, D., et al. (2006) Towards an Interoperability
Standard for Text and Multi-Modal Analytics. IBM
Research Report.

Ferrucci, D.A. (2011) IBM's Watson/DeepQA, SIGARCH
Comput. Archit. News, 39.

Hahn, U., et al. (2008) An Overview of JCoRe, the JULIE
Lab UIMA Component Repository. LREC'08
Workshop, Towards Enhanced Interoperability for
Large HLT Systems: UIMA for NLP. Marrakech,
Morocco, pp. 1-8.

Hernandez, N., et al. (2010) Building a French-speaking
community around UIMA, gathering research,
education and industrial partners, mainly in Natural
Language Processing and Speech Recognizing
domains. LREC 2010 Workshop of New Challenges for
NLP Frameworks. Valletta, Malta.

Kano, Y. (2012) Kachako: A Data-Centric Platform for
Full Automation of Service Selection, Composition,
Scalable Deployment and Evaluation. To appear.

Kano, Y., et al. (2009) U-Compare: share and compare
text mining tools with UIMA, Bioinformatics, 25,
1997-1998.

Ogren, P.V., Wetzler, P.G. and Bethard, S. (2008) ClearTK:
A UIMA Toolkit for Statistical Natural Language
Processing. LREC 2008 workshop 'Towards Enhanced
Interoperability for Large HLT Systems: UIMA for NLP.
Marrakech, Morocco, pp. 32-38.

1101

	Towards automation in using multi-modal language resources: compatibility and interoperability for multi-modal features in Kachako

