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Mladen Karan, Jan Šnajder, Bojana Dalbelo Bašić
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Abstract
Collocations can be defined as words that occur together significantly more often than it would be expected by chance. Many natural
language processing applications such as natural language generation, word sense disambiguation and machine translation can benefit
from having access to information about collocated words. We approach collocation extraction as a classification problem where the
task is to classify a given n-gram as either a collocation (positive) or a non-collocation (negative). Among the features used are word
frequencies, classical association measures (Dice, PMI, chi2), and POS tags. In addition, semantic word relatedness modeled by latent
semantic analysis is also included. We apply wrapper feature subset selection to determine the best set of features. Performance of
various classification algorithms is tested. Experiments are conducted on a manually annotated set of bigrams and trigrams sampled
from a Croatian newspaper corpus. Best results obtained are 79.8 F1 measure for bigrams and 67.5 F1 measure for trigrams. The best
classifier for bigrams was SVM, while for trigrams the decision tree gave the best performance. Features which contributed the most to
overall performance were PMI, semantic relatedness, and POS information.
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1. Introduction
Automatic collocation extraction (CE) is the task of auto-
matically identifying collocated words in a given natural
language text. The term collocation has a significant over-
lap with the term multi word entity (MWE). MWEs include
phrases, idioms, named entities, etc. Collocations can be
viewed as empirical epiphenomena of MWEs: each time a
MWE is mentioned in a text, the words forming it occur to-
gether. Most collocations have a certain degree of added
meaning, making them more than a sum of their parts.
While there exist more elaborate definitions, in the scope of
this paper we will define collocations as sequences of terms
or words that appear together more often than it would be
expected by chance (Manning and Schütze, 1999).
The reason why CE is important is that many Natural Lan-
guage processing (NLP) tasks can benefit by having ac-
cess to information about collocated words. One exam-
ple of a task that greatly benefits from such information
is natural language generation (NLG) in the form of text
or speech. A common example is the phrase “strong tea”
used far more often than “powerful tea”, which sounds un-
natural, although it is grammatically correct and conveys
the same meaning. This information is very useful to an
NLG algorithm. Some other areas of NLP that benefit from
collocation information include word sense disambiguation
(Jimeno-Yepes et al., 2011; Jin et al., 2010) as well as ma-
chine translation (Liu et al., 2010).
CE can be framed as a classification problem, where can-
didates are classified as collocations or non-collocations
based on input features. Traditionally used lexical asso-
ciation measures (AMs) used for CE (Church and Hanks,
1990) have a limited modelling power. It has been shown in
(Pecina and Schlesinger, 2006) and (Ramisch et al., 2010)
that combining several AMs together with other features

and using machine learning methods to train a classifier can
improve CE. The goal of this paper is to further explore this
classification approach for CE in Croatian. Several learning
methods are evaluated in an effort to find both the optimal
classification model and optimal features using feature sub-
set selection (FSS). In addition to several commonly used
traditional features, we also explore the possible benefits
of using semantic relatedness between words. Motivated
by the future application of our work in terminology and
keyword extraction for Croatian, we focus on noun phrases
(NP) exclusively. The evaluation is done intrinsically on a
set of examples derived from a corpus in Croatian language.
The rest of the paper is structured as follows. In the next
section we briefly discuss related work. In Section III we
describe the classification methods and features. Section
IV presents the experimental setup and evaluation results.
Section V concludes the paper and outlines future work.

2. Related Work
Among the first to use lexical AMs based on statistics and
information theory were Church and Hanks (1990). A lex-
ical AM measures the lexical association between words
in a collocation candidate. The higher the AM value, the
more likely it is for the candidate to be a collocation. Some
traditional AMs are as follows.
The Dice coefficient is a simple yet remarkably effective
measure, which gives larger values for words that often oc-
cur together:

DICE =
2f(w1w2)

f(w1) + f(w2)
(1)

Pointwise mutual information (PMI) is based on informa-
tion theory and can be viewed as measuring how much in-
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formation is shared between the words:

PMI = log2
f(w1w2)

f(w1)× f(w2)
(2)

The statistical χ2 (chi-square) measure is based on testing
the hypothesis that the words of a collocation candidate oc-
cur independently (Manning and Schütze, 1999):

χ2 =
∑
i,j

(Oi,j − Ei,j)
2

Ei,j
(3)

Quantities Oi,j and Ei,j are the actual and expected prob-
abilities of occurrence. These can be obtained using maxi-
mum likelihood estimates based on frequency counts.
The above measures were defined for bigrams. In order
to improve AM performance on n-grams longer than two
words, specialized extension patterns were introduced in
(Petrović et al., 2010). For generalization from bigrams
to n-grams for (1) and (2) we use the same expressions as
(Ramisch et al., 2010). Measure (3) generalizes to n-grams
trivially.
A comprehensive evaluation of possible AMs can be found
in (Pecina, 2005). There have been several attempts to im-
prove lexical AMs using machine learning. An approach
used in (Šnajder et al., 2008) uses genetic programming to
evolve optimal AMs for a given training set. Collocation
extraction has been treated as a classification problem with
AMs as input features in (Pecina and Schlesinger, 2006).
Similar features are used in (Ramisch et al., 2010) in ad-
dition to basic part-of-speech (POS) information. In con-
trast to (Pecina and Schlesinger, 2006) and (Ramisch et al.,
2010), we explore a new feature type (semantic relatedness
between n-gram words). Furthermore, we use wrapper FSS
to determine the optimal features for each classifier. The
main advantage of such an approach is that it takes into
account the way the learning algorithm and the data set in-
teract (Kohavi and John, 1997). This enables us to better
understand which features are relevant for identifying col-
locations.

3. Classification Methods and Features
The classifiers we use include decision trees (C4.5), rule in-
duction (RIPPER), naive Bayes, neural networks, and sup-
port vector machines (SVM) with both linear and polyno-
mial kernel. With this list we feel that we have covered a
variety of commonly used methods: generative, discrimi-
native, probabilistic, and nonparametric.
We use features already used in similar work (Pecina and
Schlesinger, 2006; Ramisch et al., 2010). In addition we
introduce some semantically based features. A summary of
all features we use is given in Table 1.

3.1. Frequency Counts
The number of occurrences of an n-gram and all subse-
quences of an n-gram. These are a simple and intuitive
choice for a feature since they are obviously important in
deciding if a given candidate is a collocation. E.g., for an
n-gram w1w2w3 we use the following counts as features:
fw1

, fw2
, fw3

, fw1w2
, fw2w3

, and fw1w2w3
.

Table 1: Summary of used features

Feature class Description

Frequency counts Number of occurrences of an n-
gram or subsequences of an n-gram

Traditional AMs Pre-calculated traditional AM val-
ues

POS tags Binary features representing POS
information

Semantic Semantic relatedness of words
forming an n-gram

Table 2: Descriptions of POS tags

Tag Description

N Noun
A Adjective
E Pronouns and numbers
C Conjunction
S Preposition
R Adverbs

3.2. Traditional Lexical AMs
Clearly, lexical AMs provide valuable information for our
classifier. In our experiments we use Dice, PMI, and χ2.

3.3. Part of Speech
POS of words in n-grams is also used as a feature. For each
wordwi in an n-gram there are six binary POS features Pi,t.
Each Pi,t is true if and only if the word wi of the n-gram
has POS tag t. The tags used and their meaning is given in
Table 2. Note that there is no tag for the remaining word
classes in Croatian (Verbs, Interjections, Particles) because
NPs of the length we considered almost never contain these
word types. To keep the tagset size small, pronouns and
numbers were combined into a single class because in the
NPs we consider they have virtually identical roles.

3.4. Semantic Features
Semantic features are defined as semantic similari-
ties of all word pairs in an n-gram. E.g., an
n-gram w1w2w3 would have the following features:
s(w1, w2), s(w2, w3), s(w1, w3), with s(wi, wj) being a
semantic similarity measure, which can be modelled in var-
ious ways.
We can intuitively justify these features by arguing that se-
mantic relatedness is correlated to the property of being a
collocation to a certain degree. Many collocations, such as
“state official” and “economy crisis”, consist of words that
have a certain degree of semantic relatedness. Of course
we do not expect this to always be the case. In fact, for
idioms such as “hot dog” the correlation should be nega-
tive. Still we hypothesize that machine learning methods
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could perhaps benefit from such features. To determine if
this hypothesis is true is one of the goals of this paper.
To explore the benefits of using these features in our CE
task, a model for semantic similarity is required. For this
purpose we employ latent semantic analysis (LSA) (Deer-
wester et al., 1990). We leave experiments with various
other available semantic models for future work. LSA is a
well-known mathematical technique based on linear alge-
bra, which can be used to model semantic relatedness. The
procedure is summarized as follows.
First we construct a word-document matrix. This is a ma-
trix whose rows correspond to words and columns corre-
spond to documents. The most commonly used method for
setting the values of the elements is to set them to the tf-
idf value of the corresponding word-document pair. An-
other method, which has been shown to work quite well in
(Landauer, 2007), is to use the logarithmic value of word-
document frequency and the global word entropy (entropy
of word frequency in all documents), as follows:

aw,d = log (tfw ,d + 1)

1 +
1

logN

∑
d′∈C

tfw ,d′

gfw
log

tfw ,d′

gfw


(4)

where tfw ,d value represents occurrence frequency of word
w in document d, value gfw represents the global frequency
of word w in corpus C and N is the number of documents
in corpus C. Next, singular value decomposition (SVD)
is applied to the matrix A yielding two matrices U and V
containing left and right singular vectors of A. Finally a di-
mensionality reduction is performed that approximates the
original matrix by keeping only the first k singular values
and the corresponding singular vectors (first k columns of
U and first k rows of V ). This reduction can be interpreted
as a removal of noise. Each row of such a reduced ma-
trix U describes a word in the corpus. These vectors form
a concept space and can be compared (e.g., using cosine
similarity) to model the semantic relatedness of words.
Since our corpus was a set of sentences, the documents we
use for LSA consist of a single sentence. The method used
to construct the word-document matrix was log-entropy
(Landauer, 2007) and the number k of dimensions to which
we reduce is 250.
While for bigrams we use only one semantic feature
– s(w1, w2) – for trigrams we use three – s(w1, w2),
s(w1, w3), and s(w2, w2) – so it is possible to analyze their
correlation using Pearson’s coefficient. It is interesting that
these pairwise correlations are higher for collocation tri-
grams (0.365, 0.310, 0.143) than for non-collocation tri-
grams (0.244, 0.0, -0.004). This is not unexpected, as, on
average, words within collocations are more semantically
related than words occuring in random n-grams.

4. Evaluation and Results
4.1. Data Set
A corpus was generated by sampling sentences from the
Croatian newspaper “Glas Slavonije”. The corpus was
lemmatized using an automatically acquired morphologi-
cal lexicon described by Šnajder et al. (2008). A random
sample of 1000 bigrams was extracted from the corpus and

Table 3: The κ coefficient for bigram collocations

κ(x, y) A B C D E F

A – 0.62 0.53 0.61 0.52 0.63
B 0.62 – 0.56 0.73 0.50 0.64
C 0.53 0.56 – 0.55 0.54 0.58
D 0.61 0.73 0.55 – 0.50 0.65
E 0.52 0.50 0.54 0.50 – 0.59
F 0.63 0.64 0.58 0.65 0.59 –

Table 4: The κ coefficient for trigram collocations

κ(x, y) A B C D E F

A – 0.38 0.28 0.31 0.32 0.35
B 0.38 – 0.31 0.41 0.40 0.35
C 0.28 0.31 – 0.26 0.55 0.32
D 0.31 0.41 0.26 – 0.31 0.47
E 0.32 0.40 0.55 0.31 – 0.35
F 0.35 0.35 0.32 0.47 0.35 –

manually POS tagged. Frequency statistics for each of the
bigrams were collected from the lemmatized corpus. Six
annotators were given the samples and instructed to anno-
tate those n-grams which they consider to be collocations.
The inter-annotator agreement was measured using the κ
coefficient with the goal of obtaining an annotated subset
with sufficient agreement. Because the main intended ap-
plication of this work is terminology extraction, we decided
to focus on NPs exclusively. Consequently, we manually
filtered all non-NPs from the data set. This step could also
have been done automatically using the morphological lex-
icon from (Šnajder et al., 2008).
The κ coefficient for bigrams is given in Table 3. Four an-
notators (A, B, D, and F) had substantial inter-annotator
agreement (κ larger than 0.6) and their lists were combined
into a bigram data set, resulting in a set of 694 bigrams. Fi-
nally, after manually filtering out non-NPs, 534 bigrams re-
mained, 84 (15.7%) of which were labeled as collocations.
Values of κ for trigrams are given in Table 4. Even though
no pair of samples satisfy the sufficient agreement condi-
tion, the experiment was conducted on the pair C and E.
This combination yielded a sample of 792 trigrams. After
the manual removal of non-NPs, 614 trigrams remained,
239 (38.9%) of which were labeled as collocations.
The observed inter-annotator agreement indicates that the
task of determining whether an n-gram is a collocation is
quite subjective and the exact boundary is fuzzy even for
humans (Krenn and Evert, 2001).

4.2. Evaluation Methodology
It is known that having additional features need not nec-
essarily improve classification performance. Such features
can even bring noise into the data and downgrade results.
This is why we attempt to find the optimal feature subset.
To this end we use the wrapper FSS approach with the
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Table 5: Results for bigram classification

All features Feature subset selection

Precision Recall F1 Precision Recall F1

Baseline 70.7 ± 12.6 64.3 ± 15.6 67.3 71.1 ± 7.3 64.2 ± 7.1 67.5
Decision tree 69.2 ± 13.0 67.7 ± 6.8 68.4 75.0 ± 9.1 65.2 ± 5.6 69.8
RIPPER 70.6 ± 7.5 68.8 ± 13.2 69.6 72.3 ± 14.8 61.9 ± 5.2 66.7
Naive Bayes 39.3 ± 8.0 95.2 ± 2.4 55.7 72.5 ± 8.4 77.6 ± 9.3 75.0
Logistic regression 77.6 ± 9.2 78.7 ± 6.9 78.2 85.3 ± 13.6 75.0 ± 6.6 79.8
Neural network 84.2 ± 10.5 72.7 ± 5.7 78.0 83.4 ± 8.6 72.6 ± 5.9 77.6
SVM (linear) 65.7 ± 9.5 82.2 ± 5.1 73.0 85.5 ±11.6 70 ± 4.9 76.7
SVM (polynomial) 85.9 ± 6.7 71.3 ± 6.3 78.1 91.5 ± 6.7 67.3 ± 5.1 77.6

Table 6: Results for trigram classification

All features Feature subset selection

Precision Recall F1 Precision Recall F1

Baseline 59.2 ± 1.5 62.85 ± 12.4 61.0 49.9 ± 9.4 67.3 ± 14.9 57.3
Decision Tree 61.1 ± 4.2 75.4 ± 6.8 67.5 64.9 ± 5.5 68.7 ± 13.4 66.8
RIPPER 58.1 ± 3.9 48.3 ± 5.4 52.8 64.9 ± 4.6 56.0 ± 13.4 60.1
Naive Bayes 50.6 ± 1.4 94.4 ± 2.2 65.9 67.9 ± 4.3 61.7 ± 6.5 64.6
Logistic regression 74.8 ± 5.3 52.2 ± 4.7 61.5 68.9 ± 7.3 57.0 ± 11.7 62.4
SVM (linear) 70.7 ± 7.9 58.7 ± 10.9 64.1 70.4 ± 7.2 53.9 ± 8.8 61.1

forward selection algorithm described by Kohavi and John
(1997). The algorithm starts with an empty set of features
and then it iteratively adds new features. In each iteration
the feature that improves performance the most is added to
the feature set. The process stops when no remaining fea-
ture would provide significant improvement when added to
the feature set. This algorithm was chosen because we ex-
pect the relevant subset of features to be small with respect
to the total number of features.
An important advantage of the wrapper approach to FSS is
that it implicitly takes into account redundancy and corre-
lation between features, unlike univariate filter FSS meth-
ods. The disadvantage of the wrapper approach is that it is
prone to overfitting. In order to prevent overtraining, the
entire parameter optimization and FSS procedure is encap-
sulated in an outer cross validation loop, making it a nested
cross validation. The outer validation loop is done in five
folds and the inner one in ten folds. E.g., for bigrams the
inner loop uses a train set consisting of ∼60 collocations
and ∼384 non-collocations and a validation set containing
∼6 collocations and ∼42 non-collocations. The optimal
feature subset as well as parameters can vary in different
folds of the outer validation, however we can still measure
the overall importance of a given feature by counting how
many times it was chosen during the entire feature selection
procedure.
The calculation of SVD required for LSA was performed
using the SVDLIBC library.1 Once all the features were

1http://tedlab.mit.edu/˜dr/SVDLIBC/

calculated, the evaluation process was implemented as a
RapidMiner2 model.
To measure how well our classifiers work we use the stan-
dard F1 measure, which is the harmonic mean of precision
and recall first introduced by van Rijsbergen (1979). As a
baseline we use a perceptron with a single traditional AM
value as input (this ammounts to computing the optimal
threshold for the AM). Among the three tested traditional
AMs, PMI was chosen as the best performing one.

4.3. Results
After each iteration of the outer validation loop, the optimal
set of features for that iteration was recorded. The number
of times a feature was chosen during the entire procedure
is given in Tables 7 and 8 for bigrams and trigrams, respec-
tively. Only features occurring two or more times are listed.
The results for bigram and trigram classification with and
without using FSS are given in Tables 5 and 6, respectively.
In case of bigrams, the LSA-based semantic feature is cho-
sen often, which implies it is useful. Decision trees seem
to be able to take advantage of the χ2 measure better than
the other classifiers. Other methods predominantly use a
combination of semantic, PMI, and Dice features. SVMs
give better precision, while better recall is achieved by the
Bayes classifier. This may indicate that further improve-
ment is possible by using a classifier ensemble. POS tag
features are also selected often, especially P1,E , which de-
termines if the first word is a pronoun or a number. This is

2http://www.rapidminer.com
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Table 7: Features used most often for bigram classification

5x 4x 3x 2x

Baseline – – – –
Decision Tree – χ2 s(w1, w2) fw1

, fw1w2
, P1A, P1E

RIPPER – fw2
, χ2 s(w1, w2) pmi

Naive Bayes pmi P1A P2R –
Logistic regression P1N , s(w1, w2) P1A fw1w2 P1E

Neural network P1A, pmi, s(w1, w2) fw1w2
fw2

, P2E –
SVM (linear) P1E , s(w1, w2), pmi – fw2

, fw1w2
dice

SVM (polynomial) P1E , s(w1, w2), pmi – dice, fw2
, fw1w2

, P2R –

Table 8: Features used most often for trigram classification

5x 4x 3x 2x

Baseline – – – –
Decision Tree – fw2

–
RIPPER – fw2 P1E , P2A, P2E P2N

Naive Bayes P2A, s(w2, w3) pmi P2R fw3 , P2R, s(w1, w3)
Logistic regression – P1E , P2A P1N , P2N , pmi P1A, P2E , P3E , P3C , P3R, P2E , dice
Bayes net P2A fw2

, s(w2, w3) – fw2w3

SVM (linear) P1E , P2A dice pmi fw3
, P2E , P2C

along the lines of results obtained by Petrović et al. (2010).
In general, in case of bigrams, classifiers using FSS outper-
form classfiers trained on all features.

Trigram classification appears to be a harder problem and
FSS does not seem to be as useful as in the case of bi-
grams. However, there are some patterns that can be ob-
served. POS features are used by all classifiers. The P2A

(second word is an adjective) in particular was selected very
often for most of the classifiers. From the selection of other
POS features it can be concluded that the adjective and pro-
noun or number (which behave very similarly to adjectives)
features were selected often. Of classical AMs, PMI is
the one chosen most often. Classifiers that did not choose
classical AMs as features compensated for this by choos-
ing raw frequency features instead. An interesting finding
was the performance of the Decision tree classifier, which
had a very good result using only the fw2

(frequency of the
second word) feature consistently. In addition to fw2

, other
features were used in different folds of the outer validation,
but each one no more than once. This is not completely
unexpected as some of our features are highly correlated.

It is difficult to say which classifier is the best consider-
ing the large variances caused mostly by the small size of
the data set. Further statistical analysis of the results is re-
quired. While there are similar approaches used for English
(Pecina and Schlesinger, 2006; Ramisch et al., 2010), to
our knowledge, the work reported here is the first attempt
to treat collocation extraction in Croatian as a classifica-
tion problem. Consequently, comparison to existing work
in Croatian for collocations (Šnajder et al., 2008; Petrović
et al., 2010) is difficult.

5. Conclusion and Future Work
We have evaluated several common machine learning mod-
els on the task of collocation extraction for Croatian. The
logistic regression classifier gave the best F1 score for bi-
grams while the decision tree was best for trigrams. Of all
the features that were evaluated, it can be concluded that
specific POS features, semantic features, and PMI seem to
generally contribute the most to best performing classifiers.
In our opinion the approach should be further evaluated on
a bigger and more consistent data set.
For future work, we also intend to experiment with other
types of features such as morphological, syntactic, and
other semantic features. A different venue of research can
include modifying the methods to perform ranking (regres-
sion) instead of classification. Another idea is to perform
evaluation on different types of collocations to determine
what features work best for what type.
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