
 Application of a Semantic Search Algorithm to

Semi-Automatic GUI Generation

Maria Teresa Pazienza
1
, Noemi Scarpato

2,3
, and Armando Stellato

1

ART Group,
1
Dept. of Enterprise Engineering

2
Dept. of Computer Science, Systems and

Production

University of Rome, Tor Vergata
Via del Politecnico 1, 00133 Rome, Italy

3
University Telematica San Raffaele

Roma
Via Val Cannuta 247, 00166 Rome, Italy

{pazienza, scarpato, stellato}@info.uniroma2.it

Abstract

The Semantic Search research field aims to query metadata and to identify relevant subgraphs. While in traditional search engines
queries are composed by lists of keywords connected through boolean operators, Semantic Search instead, requires the submission of
semantic queries that are structured as a graph of concepts, entities and relations. Submission of this graph is however not trivial as
while a list of keywords of interest can be provided by any user, the formulation of semantic queries is not easy as well.
One of the main challenges of RDF Browsers lies in the implementation of interfaces that allow the common user to submit semantic
queries by hiding their complexity. Furthermore a good semantic search algorithm is not enough to fullfil user needs, it is worthwhile
to implement visualization methods which can support users in intuitively understanding why and how the results were retrieved. In
this paper we present a novel solution to query RDF datasets and to browse the results of the queries in an appealing manner.

Keywords: Semantic Search, Web Page Visual Analysis, Semantic Web.

1. Introduction

The term Semantic Search has been traditionally adopted

with two meanings, according to the interpretation of

these words in different research communities: on the one

hand, it has been a common expression for what is

technically known as Semantic-driven IR, the application

of semantic technologies to the traditional IR problem.

In (Mangold, 2007) Semantic Search is defined as a

document retrieval process that takes advantage of

analyzed domain ontologies to understand the meaning of

keywords and discover relations among them.

The second interpretation relates to Semantic Web Data

Search, which mainly deals with the retrieval of semantic

web data. Many approaches following this second

interpretation have been published in these last years,

embracing several application areas and exposing

different realizations.

In (Tran, Cimiano, Rudolph, & Studer, 2007) the authors

try to map keywords of queries to ontology concepts; this

is very important to understand users information needs

and refine queries to get more precise results.

In (Lei, Uren, & Motta, 2006) the authors presents a

semantic-based keyword search engine, the system

propose a simple query interface that hides complexity of

semantic query to the users. Recently, answering

keyword-based queries on graph-structured data has

emerged as an important research topic: an algorithm for

the exploration of top-k matching subgraphs has been

presented in (Thanh Tran, 2009).

Retrieval of information in a web page is a more difficult

task respect to the traditional document search, because a

web page is not a good information unit in which to

search information.

One of the main problems of the traditional information

retrieval in web pages, is that often they contain multiple

topics and/or many irrelevant information as example

navigation structures, decorations, and interaction part of

the page.

The individuation of the informative blocks that

correspond to different topics in a web page should be a

good solution to solve the multi topic (Wu, 2006).

The web page segmentation can be used to make the

identification of blocks of a web page and to discriminate

between informative and non-informative blocks.

Following this idea, search providers have implemented

several algorithms able to scan the visual content in

which a page is organized to find the structure of the web

content. In this paper it is adopted the idea that a web

page visual analysis algorithm should be provided before

the application of the semantic search algorithm to

improve the performance of the latter.

However a good semantic search algorithm is not enough

3631

to fulfill user needs; it is worthwhile to implement some

visualization methods which can help users instantly and

to intuitively understand why and how the results are

being retrieved.

 In (Myungjin Lee, 2010) Myungjin Lee presents a

semantic association-based algorithm and shows how to

provide proper visualization and navigation methods for

the results. Dadzie & Rowe in their survey in (Dadzie &

Rowe, 2011) describe many different approaches to

visualize Linked Data, underlining the massive grow up

of research on linked data visualization.

In (Pazienza, Scarpato, & Stellato, 2010) we defined our

approach to automatic generation of GUI for browsing

Semantic Web data.

In this paper we present SAGG, a semantic search

algorithm to support “live generation” of GUIs from

examples in web pages selected by the user.

The web is full of applied data visualization patterns:

tables, forms, item lists, enhanced paragraph formatting,

be them interactive (i.e. User Interfaces) or not, all

provide interesting examples on how to represent the

information coming from knowledge and data

repositories. Our idea is to apply the basic concept of

information reuse, to allow non-developers to be able to

easily generate visual components for their own data, and

the code necessary to populate them, by presenting

concrete examples taken from a similar or identical

domain. These pseudo-generated components can then be

refined, but with a large save in development effort and a

sensible enhancement in terms of rapid-application

prototyping.

In this paper we introduced more in detail the concept

idea behind SAGG, also we described the algorithm for

inducting visualization patterns from selected graphical

objects; finally we presented a scenario for the

application of SAGG and evaluated the obtained results.

2. Overview

SAGG foresees a seed composed of a series of sample

documents1 representing information related to the same

domain of (or with strong overlap with) the user’s data

for which a UI is to be generated.

These documents are analyzed to identify representation

patterns, that is how the information is structured and

presented into the web page, and how this structure could

be populated generating similar results, by querying the

data owned by the user. In this sense, this approach

“wraps up” previous research work on Keyword-based

Semantic Search With, such as (Lei, Uren, & Motta,

2006), with two non-trivial extensions: by first, keywords

are extracted from the content of the sample documents

instead of getting them from the user; secondly, the

output is not a set of triples but a reverse-engineered

1 We often refer to examples taken from web pages and thus

implicitly refer to HTML components, though the presented

algorithm can be applied to any common document model, such

as the generic XLS-FO (http://www.w3.org/TR/xsl/) model.

query able to re-extract the same data of the samples

from the user dataset, in order to populate the sample

forms. This algorithm thus enables an easy “create-by-

example” approach to generation of user interfaces and

queries.

2.1. Model

The data model behind SAGG algorithm foresees a set of

elements which are identified and analyzed over standard

documents. We adopt the DOM (Le Hégaret, Whitmer, &

Wood, 2009) standard structure to make assumptions

regarding content of the page. We call the input of GUI

Generator PatternExample; a PatternExample is an

HTML page or part of this that users identify as relevant

for their domain. A PatternExample can be segmented

into a set of recognizable Graphic Objects (GOs):

 (1)

A GO is a part (presentation & content) of a

PatternExample exposing relevant (and mostly self-

contained) information. SAGG assumes content of GOs

as independent information units i.e. information which

can be analyzed separately from the rest of the page with

respect to the user data. As from the adopted DOM

formalism, the presentation of a GO can be structured

through a tree with a root element (e.g. TABLE, LIST ...)

identifying its nature, and a list of tree children.

In each GO we can recognize a list of atomic information

units called GE.

 (2)

In our approach we assume that a pair of GEs contained

in the same GO may be bound through a relationship. We

have defined the following grammar to identify the

different relations which can hold between.

(3)

In our grammar we have identified two types of relations:

 + being sibling

 x dependency

The sibling relation is a generic relation that is

established between pairs of GE which are part of the

same GO and are considered as peers with respect to the

content analysis process 2.

2
 The choice of the name “sibling” is appropriate with respect to

the semantic analysis and assessing of relationships among

GEs. On a syntactical perspective, this should not bring

confusion with the fact that “sibling” elements may actually be

nested on each other or belong to different branches of the
DOM tree and thus not be sibling in the hierarchical

organization of elements.

3632

http://www.w3.org/TR/xsl/

A further – more specific – relation, called dependency,

can be established among pairs of elements where one of

them acts as a pivot for the other (the relation has thus a

verse).

Usually a pivot establishes a dependency with several

other elements (e.g. a column header in a table is a pivot

for the content of the cells in its same column).

This type of relation implies a stronger binding with

respect to the sibling relation (which relies on basic

keyword-based search solutions over graphs), so that the

algorithm can apply more constraints on the search.

We thus define for each GO a list of triples:

 (4)

These triples are ranked according to the following

method.
First of all, a weight for the sibling relation (0.2) and for

the dependency relation (0.4) have been empirically

assigned . Then to determinate the weight for each GE

involved in the relation, an algorithm to check if some

GEs can be mapped with some to RDF nodes of in RDF

Schema the dataset has been implemented. If this

condition is verified a weight equal to 0.3 is assigned to

it. The fiond rank of a triple is the sum of the weight of its

relation and weights of each of the two GEs.
In the Figure 1 all possible combinations of values of
weights for a triple are shown.

2.2. Overview of the algorithm

In this section we make an overview of the different steps

involved in the SAGG process. The two main parts of the

algorithm are related to the induction of representation

patterns and the estimation of the queries which can

populate them in a way similar to the presented example,

but taking data from the user’s own dataset.

These part are implemented by the introduction of the the

SAGG’s VIPS algorithm and the SAGG’s SSA algorithm.

The key idea behind our algorithm is to analyze

information units (GOs) instead of processing all the text

from the input page. Another key aspect is that we use the

structure of information units to identify atomic

information (GE) and to understand their peculiarity. In

particular the relative position of GEs in a recognized GO

is meaningful to establish relationships between GEs and

to assess the nature of these relationships. Here below, we

detail the different steps of the algorithm:

2.2.1. Pattern Recognition

In order to identify graphic objects (GO) and their

graphic element (GE) we defined a rule-based webpage

segmentation algorithm to divide the PatternExample

into GO information units.

Once the GOs have been recognized, we analyze each

GO to identify its GEs and generate a list of triples

representing relationships between them.

 (5)

Depending on the nature of the GO (e.g. list, table, etc..)

we have implemented customized strategies with

different assumptions regarding the establishment of

relationships among GEs. The result of this step is thus a

list of GOs and their associated list of triples over GEs

and relations.

Many details about this algorithm, called SAGG’s VIPS

algorithm, will be provided in the next section.

2.2.1.1. SAGG’s VIPS algorithm

In this paper it is applied the idea that a web page visual

analysis algorithm should be provided before the

application of the semantic search algorithm to improve

the performance of the latter. Indeed a VIPS algorithm

has been developed to recognize relevant blocks (called

GO from now on) in a web page.

The key idea behind SAGG’s VIPS algorithm is that the

position of keywords in an html structure is meaningful

to understand the relations between the keywords.

SAGG’s VIPS algorithm defines a chain of actions to

identify relations between GEs .

For a set of special kind of tags (e.g. title, table) some

customized strategies has been implemented, to make

further assumptions regarding the nature of relations and

to identify relations of dependency between particular

kinds of GEs.

To realize SAGG’s VIPS algorithm first of all a grammar

has been defined. The Definition of this grammar makes

possible the formal description of the relations that exist

between data that are inside of different tags in an HTML

page.

The inputs of SAGG’s VIPS algorithm are : a web page (

or a portion of the web page) identify by the users in the

web; and a knowledge base indicated by the users itself.

The main assumption of SAGG’s VIPS Algorithm is that

the web page is chosen for users because it is a good

example of visualization pattern for the semantic data

stored in the knowledge base. This means that users

recognize into the page both a desired graphical

representation and data that are in the same domain of

them.

Considering that the goal of SAGG is the creation of a

new GUI, in the SAGG’s VIPS algorithm a complete

mapping between DOM tree of page and visual tree has

Figure 1: Ranking Value

3633

been implemented with the aim to reproduce the same

page structure, in the created GUI. In our approach a GO

is characterized by a root element that correspond to a

DOM node and by a list of GEs, each of this GEs ,in turn,

is characterized with a DOM node that is a child node of

the root node related to the GO.

In the visual tree provided by In SAGG’s VIPS

Algorithm it is possible that, some GO has as root

element a DOM element that is a child of another GO

root element. In this case the first GO it is composed only

by the portion of html that surround the second GO that is

pulled out from the GO . This because in the SAGG’s

approach, it is assumed that the overlap between GOs is

not permitted.

The first step of SAGG’s VIPS algorithm is to recognized

a list of self contained units called GO that can be

analyzed separately

The second step of SAGG’s VIPS algorithm is the

analysis of each GO, in this phase the algorithm

recognizes in each GO a list of a single unit of

information (called GE from now on) and their relations.

Differently from traditional web page visual

segmentation approaches where block level is the most

granular level of segmentation, in the SAGG’s VIPS

algorithm approach it was introduced a further

segmentation level. In fact in each block it is recognized

a list of GEs.

In this paper it is assumed that to understand the meaning

of a GO it is useful identify a list of GEs that compose it.

After the identification of the GEs it is also defined a

graph of relations between GEs analyzing the position of

each GE into the GO.

To recognize a GO some rules have been defined, these

rules are related both to visual and structural features.

Furthermore a rule that allow to recognize and discard

not meaningful elements (e.g. comment or script that are

not interesting for SAGG purpose) has been defined.

The realization of this rule is achieved through the

definition of a stop list of non-relevant elements.

Same as GOs to recognize GEs a set of rules has been

defined. In this approach it is assumed that the overlap

between GEs is not permitted, then if a GE is recognized

in another GE they are split. Also for GEs a stop list to

exclude non-relevant elements has been defined . As

shown in the

Figure 2 the idea behind SAGG web page visual analysis

algorithm is to support the SAGG’s semantic search

algorithm by providing as output a list of GO and for

each one the related graph of GEs that will be analyzed

from the SAGG’s semantic search algorithm.

In this sense SAGG’s approach follows the idea that web

page segmentation can improve the semantic search

process.

The contributions provided by SAGG’s VIPS algorithm

are the introduction of a further level of segmentation in

VIPS approaches and the introduction of an approach

that affirms that the segmentation it isn’t only useful to

identify different topics within a web page but can

provide further information about the nature of each of

these topics in the page.

In the next section the SSA algorithm a semantic search

algorithm that exploits the SAGG’s VIPS algorithm

output to improve its semantic search process will be

proposed.

Figure 2: Interaction between SAGG’s SSA Algorithm and SAGG’s VIPS Algoritm

3634

2.2.2. Query Generator

This phase of the algorithm consists in analysing, for
each GO, its associated triples list, in order to match
triples in the linked data repository.
First of all, for each triple GE, we extract keywords from
their textual content and try to match them over RDF
nodes in the linked data repository.
The result of this step is a list of seeds for GEs that are
bound through a relation. Using this seed the algorithm
navigates into the linked data repository .

The next operation is to rank triples according to the

strategy previously mentioned in the model description.

Triples over a given threshold are analysed to extract a

list of queries (in SPARQL) over the user dataset which

are able to reproduce their content. The last operation of

the algorithm consists in unifying these small queries and

to create the best graph pattern which approximates the

constraints to reproduce the content of the whole GO.

Further details about this algorithm called SSA algorithm

will be provided in the next section.

2.2.2.1. SSA Algorithm

As mentioned above the retrieval of semantic web data is

a challenging task, in the SAGG’s approach it is needed

to understand content of a example page to extract query

exploited to populate generated GUIs.

In this paragraph the SSA algorithm has been presented,

SSA is a semantic search algorithm implemented to

accomplish the challenge of search semantic web data.

The SSA algorithm takes in input the output provided by

the SAGG’s VIPS algorithm (see 2.2.1.1) that is a set of

GOs, composed by a set triples in the form of:

 (6)

The interaction between SAGG’s SSA Algorithm and

SAGG’s VIPS Algorithm is shown in the

Figure 2

The SSA algorithm for each of previous triples identifies

a related list of triples composed as:

 (7)

To extract keywords from textual content of both GEs in

the triple SSA uses the Chaos parser (Zanzotto, 2001).

Chaos is a modular and lexicalized syntactic and

semantic parser for Italian and for English.

In the SSA approach, the syntactic parsing features are

used to identify into the textual content of the GEs the

nouns , the verbs and the adjectives that are considered as

possible candidate keywords (other words as example the

conjunctions, the prepositions etc. are discarded).

The second phase of the SSA algorithm for each GO

analyzes the list of previous triples to map theme in the

RDF graphs by the following action: the SSA algorithm,

tries to mapping each keyword into a node in a RDF

graph.

The relation is investigated using an approach guided by

the nature of the relation identified in SAG’s VIPS

algorithm (i.e. if the relation is a dependency relation,

the SSA investigates first of all “InstanceOf ”and

“SubClassOf ”and only if none of these are reify others

relation in knowledge base are investigated).
After the mapping process all candidate RDF triples:

 (8)

which match

 (9)

are identified .

After the validation of triples, the validated triples are

analyzed and composed to create a list of queries related

to each GO.

The SSA algorithm differs from others semantic search

approaches mentioned in (Dr.T.V.Rajinikanth, 2011)

because they take as input only queries composed by list

of keywords, SSA instead exploits the output of SAGG’s

VIPS Algorithm.

Our approach makes easier the composition of candidate

matching graph patterns (lists of triples) instead of a

simple list of keywords.

The SAGG system proposes a new interaction mode

between the users and the semantic search systems, it

asks users to indicate only a example of web page that

contains both keywords and visualization patterns instead

semantic or keywords query.

By using information provided by the input page

analyzed by the SAGG’s VIPS Algorithm, the SSA

algorithm implements an algorithm of query expansion

guided by the definition of relationship identified by the

analysis provided by web page visual analysis step. The

SSA algorithm tries to map not only the keywords, but all

Figure 3 HTML Input Table

3635

the triples, this allow to identify both resources and

relations.

2.2.3. Configuration File Composer

In (Pietriga, Bizer, Karger, & Lee, 2006), the authors

present Fresnel, an RDF vocabulary for RDF information

visualization. Fresnel’s two basic concepts are lenses and

formats. Lenses define which properties of one or more

RDF resources to display and their order of presentation.

Formats determine how to render the resources, their

properties and values.

The configuration file composer uses both the graphic

pattern and the query generated by previous steps to

create a configuration file following Fresnel vocabulary.

The GO pattern are used to generate formats. The graphs

provided by Query Generator are used to generate lenses.

2.2.4. Form Composer

The form composer steps automatically generate a form

capable of showing the linked data organized according

to the desired pattern of visualization. To perform this

task we have implemented a Fresnel parser able to read a

configuration file and create a form.

3. SAGG: Scenario

In this section an example of use of SAGG is presented .

A web service able to take in input an html fragment and

a URI of a knowledge base and to provide in output an

html page is implemented .

As shown in the Figure 3 the input is composed by a part

of a document HTML that contains a table.

The knowledge base of user is composed by a simple

ontology that defines only two concepts

“Marcatore”(football player) and “Squadra”(team).

The ontology defines also three relationship: an object

property “gioca in”(play in) that relate the concept

“Marcatore” with the concept “Squadra”; and two

datatype property “golSegnati”and “rigoriSegnati”(they

represent respectively goals and penalties scored by the

player).

The Pattern Generator analyzes the HTML document

given in input and recognizes the table as a GO. Then it

identifies as GE all cells of the table (the row are

discarded because there is no information beyond the cell

in a row) and creates a list of triples.

Note that in this case a custom strategies is applied to

analyze the table and in according to this strategy in the

triples list are added only the relationship between the

cell which are located in the same row or in the same
column, besides the dependency relations between header
and cell of a column are added. In the Figure 4 is shown a
fragment of the triples list that contains all the triples
generated for a row of analyzed table. The Query
Generator takes in input previous triples list and analyzes
this list to generate the list of atomic queries.

The Configuration File Composer module take in input

both the lists of simple queries and values and the pattern

provided by the Pattern Generator. The Configuration File

Composer exploit these inputs to create the Fresnel

Configuration File. A fragment of the created

Configuration File is shown in the

Figure 5. At the end of the process the GUI composer

module parses the configuration file and creates the

HTML GUI that is shown in the Figure 6

Figure 4: Triple List

3636

As shown in the Figure 6 the GUI contains data retrieved

from the knowledge base and it is formatted like the input

page.

In conclusion the configuration file is saved in the

knowledge base side by side with the domain ontology.

4. Conclusions

In this paper an innovative approach to generate

visualization forms able to show linked data in an

appealing manner has been presented.

The data model behind our system and the algorithms

which realize it have been described.

The algorithms provided by SAGG cover the analysis of

patterns of representation and the generation of structured

queries exploiting the selected graphical objects.

The algorithms’ implementation also cover the generation

of Configuration Files according to Fresnel W3C

specification and finally they realize the generation of

customized GUI to show data.

Differently from others approach in literature, this

approach is open to different domains because SAGG

asks users to indicate their own knowledge base and

generate the GUI exploiting the example web page.

The SAGG approach can be implemented and integrated

in very different scenarios, as an extension for Semantic

Enhanced Web Browsers, RDF Browsers, Ontology

Editors and Annotation Tools.

In this paper, to achieve the aim of generate GUI in semi-

automatic way, a novel VIPs algorithm the SAGG’s VIPs

algorithm has been proposed.

This algorithm introduces a further level of segmentation

respect to the traditional VIPS algorithms, indeed not

only the visual object (called GO in this approach) but

also their content are analyzed to individuate the

elements (called GE) that are part of the GO and theirs

relations.

This approach allows to make assumptions about the

content of each GO. The output of this algorithm is a list

of graphs of GEs related to each GO.

Exploiting this output, also an innovative semantic search

algorithm, the SSA algorithm, has been realized.

The SSA algorithm exploits the output of SAGG’s VIPs

algorithm to perform an optimized search process.

In addition to visualization, our approach can be

exploited to facilitate the ontology population.

Indeed SAGG identifies not only the candidate queries

but also values that could be used to fill the GEs; if these

values are not in the knowledge base they can be in any

case added to the generated GUI and they can be

proposed to the users. If the users validate them they are

stored in the knowledge base.

In conclusion we can affirm that the SAGG approach has

Figure 5: Configuration File

3637

reached the goal of providing a RDF browser user-

friendly and with a very tasteful graphical interface,

furthermore the SAGG approach is compliant with the

reusability and sharing principle of the Semantic Web

vision because it provide a standard configuration file that

can be reused and shared among users.

Moreover in the SAGG approach have been implemented

two innovative algorithms (the SAGG’s VIPS algorithm

and the SSA algorithm).

5. Future Works

A future research direction for SAGG lies in the

combination of several Fresnel files to generate more

complex GUIs, possibly specifying interrelationships (i.e.

semantic constraints) between them.

While this could simply be seen as a further refinement,

we would stress the importance for the user of being able

to specify compositional patterns for reusable atomic

Fresnel units, in a sort of Semantic Mash-up.

This would open up the way to reusable, shareable

libraries of active UIs (i.e., carrying the information on

how to populate them from available data), which could

be easily searched (according to different perspectives,

what they show, how they show it, etc..), accessed,

imported (into heterogeneous Semantic UI developing

environment) and composed according to user/developer

needs, in the spirit of the Semantic Web vision.

Another important future improvement is to include the

formalization of relations between GOs to extend the

VIPS algorithm and consequently to provide a more

informative input to our semantic search algorithms.

The exploration of this kind of relations is based on the

idea that – as affirmed above about the significance of the

position of GEs in a GO – GOs’ position in the example

pages can be useful to understand their meaning, mostly

in the cases where a GO is nested in another GO.

Moreover the SAGG’s VIPS algorithm can be improved

by the definition of further strategies that will improve

the identification of the relations between GEs in several

GOs.

6. References

Dadzie, A.-S., & Rowe, M. (2011). Approaches to
Visualising Linked Data: A Survey . Semantic Web
Journal , 89-124.

Dr.T.V.Rajinikanth, G. a. (2011). Intelligent Semantic
Web Search Engines: A Brief Survey. International
journal of Web \& Semantic Technology (IJWesT)
(Vol.2, No.1).

Le Hégaret, P., Whitmer, R., & Wood, L. (2009, 06 01).
W3C Document Object Model. Retrieved from World
Wide Web Consortium (W3C):
http://www.w3.org/DOM/

Lei, Y., Uren, V. S., & Motta, E. (2006). SemSearch: A
Search Engine for the Semantic Web., (p. 238-245).

Mangold, C. (2007). Int. Journal Metadata Semantics and
Ontology. A survey and classification of semantic
search approches. 2 (1).

Myungjin Lee, W. K. (2010). Semantic Association-
Based Search and Visualization Method on the
Semantic Web Portal. International journal of
Computer Networks & Communications , 2 (1), 140-
152.

Pazienza, M. T., Scarpato, N., & Stellato, A. (2010).
Semi-automatic Generation of GUIs for RDF
Browsing. 14th International Conference on
Information Visualisation, IV, (p. 267-272). London.

Pietriga, E., Bizer, C., Karger, D., & Lee, a. R. (2006).
Fresnel - A Browser-Independent Presentation
Vocabulary for RDF. 5th International Semantic Web
Conference. Athens, GA, USA.

Thanh Tran, H. W. (2009). Top-k Exploration of Query
Candidates for Efficient Keyword Search on Graph-
Shaped (RDF) Data. ICDE 2009, (p. 405-416).
Shanghai.

Tran, T., Cimiano, P., Rudolph, S., & Studer, R. (2007).
Ontology-Based Interpretation of Keywords for
Semantic Search. Lecture Notes in Computer Science ,
4825, 523-+.

Wu, C. a. (2006). A Web page Segmentation Algorithm
for extracting product information. Proceedings of
IEEE International Conference on Publication, 1374--
1379.

Zanzotto, R. B. (2001). Flexible Parsing Architectures for
NLP Applications. AI*IA, 308-313.

Figure 6: Output HTML table

3638

