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Abstract
This paper describes the different strategies used to improve the results obtained by our off-line speaker diarisation tool with the
Albayzin 2010 diarisation database. The errors made by the system have been analyzed and different strategies have been proposed to
reduce each kind of error. Very short segments incorrectly labelled and different appearances of one speaker labelled with different
identifiers are the most common errors. A post-processing module that refines the segmentation by retraining the GMM models of the
speakers involved has been built to cope with these errors. This post-processing module has been tuned with the training dataset and
improves the result of the diarisation system by 16.4% in the test dataset.
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1. Introduction
The aim of speaker diarisation is to detect speaker changes
in an audio recording and to identify which of the resulting
speech segments come from the same speaker, without any
prior information about the number or identity of the speak-
ers (Tranter and Reynolds, 2006). To achieve this goal sev-
eral tasks are performed, usually in a sequential way. These
tasks typically include speech detection, speaker change
detection, speaker clustering and resegmentation of the au-
dio stream. To objectively assess the validity of the al-
gorithms developed, competitive evaluation campaigns like
NIST Rich Transcription1 and Albayzin diarisation evalu-
ation (Zelenák et al., 2010) are organized. In these cam-
paigns, different research groups tests their algorithms with
a shared database, which allows for performance compari-
son and helps identifying new trends.
We built a diarisation system for Albayzin 2010 evaluation
campaign that obtained good results, even if it did not in-
clude any resegmentation step (Luengo et al., 2010). In this
paper, the strategies proposed to cope with the errors made
by this system and the improvements in the results achieved
are presented.
In section 2 the baseline diarisation system presented by our
group to Albayzin 2010 evaluation campaign is described.
Section 3 presents the database used in the experiments.
Section 4 focuses on the analysis of the errors made by the
baseline system and proposes the strategies to cope with
them. The results of the post-processing module developed
are presented in section 5. Finally, some conclusions are
drawn in section 6.

2. Baseline Speaker Diarisation System
Figure 1 shows a schematic diagram of the baseline speaker
diarisation tool. The algorithm is based on an efficient
implementation of a BIC change detector and an off-line
speaker clustering. In the following sections, each step of
the algorithm will be explained with more detail.

1http://www.itl.nist.gov/iad/mig/tests/rt/

Figure 1: Diagram of the baseline diarisation system

2.1. Speech detection
A separate GMM model with 16 mixtures was trained
for music, noise, clean speech, speech+music and
speech+noise, using the development recordings and the
audio segmentation labels provided by the Albayzin 2010
diarisation challenge (Zelenák et al., 2010) organisation.
These models are used in a Viterbi segmentation in order to
detect audio segments with and without speech. Develop-
ment experiments showed that the addition of derivatives of
MFCC provides slightly better segmentation results, there-
fore 12 MFCC with first and second derivatives were used
for the classification. Finally the speech detection labels
were post-processed in order to discard silences shorter
than 500 ms. Only the segments identified as speech are
then provided to the speaker change detection algorithm.

2.2. Voiced unvoiced detection
The speaker change detection step uses only voiced frames,
discarding the unvoiced ones. In order to make the
voiced/unvoiced (VUV) estimation, the PTHCDP algo-
rithm described in (Luengo et al., 2007) was used. This
algorithm uses cepstrum transformation and dynamic pro-
gramming in order to estimate the F0 curve and the VUV
information.

2.3. Speaker change detection
For the initial speaker change detection, a growing win-
dow architecture and BIC metric (Chen and Gopalakrish-
nan, 1998) are used. The growing window provides better
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results than a fixed-size sliding window, but the computa-
tional cost is also larger. In order to reduce the time of
computation as much as possible, the solution described in
(Cettolo and Vescovi, 2003) is used:

• No speaker change is searched in the first and last 2
seconds of the window.

• The window grows 2 seconds every time that no
change is detected.

• Once the window reaches 20 seconds, instead of grow-
ing, it becomes a sliding window.

• For each window, a speaker change is searched every
250 ms. If a change is located, the search is refined to
50 ms.

• Once a change is found, the window size is reset to 5
seconds.

This solution provides the same accuracy as the growing-
window algorithm, while keeping the window size and the
amount of calculation to a minimum. Furthermore, the cal-
culation of the BIC values is also optimised by using a
buffer of cumulative sums as described in the work made by
Cettolo and Vescovi (2003). Development results showed
that discarding unvoiced frames and using only voiced ones
decreased the diarisation error by 12%. Therefore, only
voiced frames were used for the speaker change detection.
Similarly, it was confirmed that the use of feature deriva-
tives was not convenient for this task.

2.4. Speaker clustering
The speaker clustering is performed applying a hierar-
chical agglomerative bottom-up off-line clustering process
(Hastie et al., 2009). Initially each segment detected by
the speaker change detection module constitutes a different
cluster. This module computes the BIC difference between
each pair of clusters and selects the pair with the minor dif-
ference. If this difference is negative both clusters are com-
bined and the cluster statistics are updated. This process
is repeated until the minor BIC difference found is greater
than zero.

3. Database
The baseline speaker diarisation tool was applied to the
broadcast speech database used in Albayzin 2010 speaker
diarisation challenge. This is a Catalan broadcast news
database from the 3/24 TV channel recorded by the TALP
Research Center from the UPC and annotated by Verbio
Technologies. The database contains different types of
speech material, like advertisements, reports, interviews,
discussions and short statements. The original audio tracks
were extracted at 32 kHz sample rate, 16 bit resolution, but
were down-sampled to 16 kHz sample rate.
The database includes around 87 hours of audio, with the
following distribution of background conditions: Clean
speech: 37%; Music: 5%; Speech with music in the back-
ground: 15%; Speech with noise in the background: 40%;
Other: 3%.
Although TV3 is primarily a Catalan television channel,

the recorded broadcasts include about a 16% of Spanish
speech segments. There are 24 recordings and the num-
ber of speakers per recording ranges from 30 to 250. Some
of these speakers appear in different recordings (journalists
and anchors) but most of them appear in only one record-
ing. About 60% of the speakers in the database are male.
For the Albayzin 2010 speaker diarization evaluation a sub-
set of 8 recordings, totalling approximately 30 hours was
selected for testing and the rest was used for training and
developing the systems.

4. Strategies to reduce diarisation error
The results obtained by the baseline system in the training
and test sets of the database are shown in Table 1. These
values are calculated according to the criteria defined by
NIST and the primary metric is the overall speaker diari-
sation error rate (DER). The main source of error is the
incorrect labelling of the speakers, accounting for the 83%
of the DER.

Train set Test set
Missed Speaker Time 2.60% 2.80%
False Alarm Speaker Time 2.30% 2.20%
Speaker Error Time 23.30% 25.10%
Overall Speaker Diarisation Error 28.25% 30.11%

Table 1: Results of the baseline system

4.1. Error Analysis
An exhaustive analysis of the errors observed in the train-
ing set has been accomplished in order to reduce the final
DER. The time labels obtained were compared with refer-
ence labels provided by the Albayzin organisation to find
the nature of the different errors and design appropriate
techniques to treat each case separately. According to Ta-
ble 1, the influence of the speaker error time (SET) in DER
is obvious, so it has been studied in detail. This particular
error appears in three different ways:

• Short segments from one speaker that the clustering
process assigns to other speaker when the BIC has de-
tected a speaker change that does not really exist. This
type of error typically represents 2-5% of total SET
and occurs after a long speaker turn.

• Different appearances of one speaker that the cluster-
ing process interprets as two or more different speak-
ers. It is the main source of error and produces about
75% of total SET.

• Segments of speakers with short appearances that the
clustering process assigns to other already identified
speaker instead of creating a new cluster. It means
about 20% of total SET and it is usually undetectable
applying automatic procedures.

Both Missed Speaker Time (MST) and False Alarm
Speaker Time (FAST) appear as a result of a malfunction
of the speech detection block. FAST represents about 2%
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of DER and in most cases corresponds to segments of mu-
sic that the clustering process usually interprets like new
speakers.

4.2. Proposed Strategies to Cope with Errors
After the analysis of the system errors, several strategies
have been designed in order to reduce each type of error,
focusing particularly on the SET reduction.

4.2.1. Strategy 1
Short segments suspicious of being wrong labelled,
especially those located between long appearances of
the same speaker, are studied and removed if considered
necessary. Let us assume that one segment is suspicious
of having been incorrectly labelled as X (according to
its duration, for instance), being the adjacent labels A
and B, respectively. First, a separate GMM Gx is trained
using other segments reliably labelled as X. Similarly, two
GMMs corresponding to the adjacent speakers, Ga and Gb,
are trained from all the available data of these speakers
(note that in the particular case when the adjacent labels
are equal to A, only Ga is trained). Finally, if the vectors
in the suspicious segment are better modelled by Ga or Gb

than by Gx, the segment is assimilated.

4.2.2. Strategy 2
Once the incorrect short segments have been taken care
of, the speakers labelled with different identifiers can be
treated. When these errors appear, the number of clusters,
M, becomes higher than the actual number of speakers, N.
We aim at determining which of these M clusters should be
unified. First, the data inside each cluster are decomposed
into a training set and a validation set. Then, we train one
GMM for each cluster using its corresponding training set:
Gi, i=1...M. Once the M models are trained, we compute
an M-by-M likelihood-difference matrix L, where Lij con-
tains the likelihood of the validation set inside the ith clus-
ter given Gi minus the likelihood of the same data given
Gj . In order to increase the difference between the clusters,
we apply a logarithmic scale and modify the matrix L as
follows:

L =

{
0 if Lij ≤ 1
log(Lij) if Lij > 1

(1)

Next, for each cluster i, we calculate the mean (m) and
standard deviation (σ) of the modified likelihood-difference
values (each row of the L matrix). The threshold to decide
which clusters should be recombined is calculated taking
into account this mean and standard deviation, according
to the expression thr1=m-cσ, where c is a weighting coef-
ficient that has been empirically set to 1.7 taking into ac-
count the training sessions of the database. In Figure 2
the likelihood-difference values for speaker 2 are displayed.
The likelihood difference for speakers 1 and 25 is well be-
low the recombination threshold (indicated by the black
line), so we can combine speakers 1, 2 and 25 in a single
cluster.
If for a given cluster, there are too many candidates with
likelihood differences below the established threshold, the
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Figure 2: Difference between the likelihood of the valida-
tion set inside the cluster 2 given G2 and the likelihood of
the same data given Gj in logarithmic scale

probability that they belong to the same speaker is low.
Usually this indicates that there are several speakers with
similar voices that should not be recombined. To avoid
these incorrect cluster combinations, a secure threshold is
established at m-1.4σ (less strict than the recombination
threshold) and recombination is done only for clusters with
less than 4 likelihood differences below this secure thresh-
old. Besides, development experiments showed that not all
the values below the combination threshold can be trusted.
Speech segments corresponding to some of the labelled
speakers do not contain enough data to obtain a robust
GMM model, and in this case the matrix L presents many
close to zero values. In most of these cases, the obtained
combination threshold is below zero, so no cluster is recom-
bined. However in a few cases, the combination threshold
is barely above zero and the clusters with lower likelihood
difference values are erroneously recombined. To avoid this
incorrect recombination, clusters are only combined if the
combination threshold is greater than a minimum allowed
value. This minimum has been established in 0.25 taking
into account the training sessions of the database.
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Figure 3: Difference between the likelihood of the valida-
tion set inside the cluster 26 given G26 and the likelihood
of the same data given Gj in logarithmic scale

Figure 3 shows the likelihood differences for cluster 26: the
pink dotted line indicates the secure threshold and it can be
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seen that less than 4 clusters have difference values below
this threshold; cluster 40 has a likelihood difference smaller
than the combination threshold and then, would be com-
bined with cluster 26. However, development experiments
showed that in this case this combination is not correct, but
due to the high similarity between the voices of the corre-
sponding speakers. In order to cope with this problem a
maximum value for the likelihood difference is imposed.
As the mean value of the differences (m) increases, the ad-
mitted maximum likelihood-difference can be higher with-
out losing reliability. Therefore, three different maximum
values for the likelihood differences (U) are considered ac-
cording to:

U =

 0.25 if m ≤ 1.95
1.23 if 1.95 < m < 2.6
1.64 if m ≥ 2.6

(2)

5. Results
Table 2 and 3 show the obtained results for development
and test sessions respectively. For each session, results for
the baseline system are presented as well as the final DER
obtained after applying each proposed strategy. Strategy 1
barely modifies the DER, but it increases the purity of the
clusters and improves the performance of strategy 2.

Session Baseline DER Strategy 1 Strategy 2
session1 22.17% 21.88% 27.15%
session2 24.58% 24.50% 13.56%
session3 23.10% 22.99% 17.47%
session4 27.47% 27.31% 27.31%
session5 14.15% 14.15% 11.14%
session6 21.22% 21.19% 16.06%
session7 24.84% 24.87% 24.03%
session8 27.26% 27.26% 19.75%
session9 28.92% 29.61% 27.81%
session10 34.75% 34.62% 22.86%
session11 27.94% 28.13% 16.39%
session12 27.42% 27.42% 25.29%
session13 31.92% 31.64% 30.57%
session14 41.16% 41.26% 25.66%
session15 32.50% 32.52% 21.94%
session16 32.06% 31.97% 23.23%

Table 2: Results of the strategies for development sessions

As displayed in Table 2 and 3, almost all the sessions
achieve a DER reduction when both strategies are applied.
Also in Table 4 it can be seen that the improvement ob-
tained by including the post-processing block is consider-
ably high. The final DER is reduced by 21.5% for devel-
opment part of the database and 16.4% for test part, which
proves the validity of the proposed system.
The same post-processing module has been applied with no
modification to another diarisation system that also partic-
ipated in Albayzin 2010 evaluation campaign (Luengo et
al., 2010). This system has a similar architecture to the one
presented here, but works online. The addition of the devel-
oped post-processing module eliminates the online charac-

ter of the system, but improves the results by a 18.18% as
can be seen in Table 5.

Session Baseline DER Strategy 1 Strategy 2
session17 34.92% 34.89% 26.03%
session18 31.35% 31.48% 24.88%
session19 27.14% 27.14% 20.28%
session20 34.72% 35.06% 29.71%
session21 34.20% 34.09% 18.02%
session22 33.06% 33.18% 34.38%
session23 24.92% 25.14% 23.16%
session24 22.99% 23.26% 21.81%

Table 3: Results of the strategies for test sessions

Session Baseline DER Strategy 1 Strategy 2
Development 28.25% 28.24% 22.17%
Test 30.11% 30.24% 25.17%

Table 4: Total results of the post-processing module

Session Baseline DER After post-processing
Development 26.77% 21.44%
Test 27.17% 22.23%

Table 5: Total results of the post-processing module for the
online diarisation system

6. Conclusions
Our off-line speaker diarisation tool has been described and
the errors made by this tool when working with the Al-
bayzin 2010 speaker diarisation challenge database have
been presented and analysed. Two strategies have been pro-
posed to deal with each type of error: removing the incor-
rect short segments and combining the clusters that corre-
spond to the same speaker. These two strategies have been
implemented and tuned using the training dataset. A post-
processing module that applies the two strategies has been
built and added to the baseline off-line diarisation system,
with a 16% improvement in the results for the test dataset.
The same post-processing module has been used with an-
other diarisation system to check its generalisation capa-
bilities and the results have also been improved by 18% in
this case. New strategies to cope with FAST must also be
considered and tests using different diarisation databases
should also be made.
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